Skip to main content
Log in

Mathematical Programs with Complementarity Constraints in Banach Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider optimization problems in Banach spaces involving a complementarity constraint, defined by a convex cone K. By transferring the local decomposition approach, we define strong stationarity conditions and provide a constraint qualification, under which these conditions are necessary for optimality. To apply this technique, we provide a new uniqueness result for Lagrange multipliers in Banach spaces. In the case that the cone K is polyhedral, we show that our strong stationarity conditions possess a reasonable strength. Finally, we generalize to the case where K is not a cone and apply the theory to two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000). doi:10.1287/moor.25.1.1.15213

    Article  MathSciNet  MATH  Google Scholar 

  3. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137(1–2), 257–288 (2013). doi:10.1007/s10107-011-0488-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Outrata, J.V., Sun, D.: On the coderivative of the projection operator onto the second-order cone. Set-Valued Anal. 16(7–8), 999–1014 (2008). doi:10.1007/s11228-008-0092-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Liang, Y.C., Zhu, X.D., Lin, G.H.: Necessary optimality conditions for mathematical programs with second-order cone complementarity constraints. Set-Valued Var. Anal. 22(1), 59–78 (2014). doi:10.1007/s11228-013-0250-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, C., Sun, D., Ye, J.: First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints. Math. Program. 147, 1–41 (2013). doi:10.1007/s10107-013-0735-z

    MathSciNet  Google Scholar 

  7. Wu, J., Zhang, L., Zhang, Y.: Mathematical programs with semidefinite cone complementarity constraints: constraint qualifications and optimality conditions. Set-Valued Var. Anal. 22(1), 155–187 (2014). doi:10.1007/s11228-013-0242-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Yan, T., Fukushima, M.: Smoothing method for mathematical programs with symmetric cone complementarity constraints. Optimization 60(1–2), 113–128 (2011). doi:10.1080/02331934.2010.541458

    Article  MathSciNet  MATH  Google Scholar 

  9. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hintermüller, M., Surowiec, T.: First-order optimality conditions for elliptic mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 21(4), 1561–1593 (2011). doi:10.1137/100802396

    Article  MathSciNet  MATH  Google Scholar 

  11. Outrata, J., Jarušek, J., Stará, J.: On optimality conditions in control of elliptic variational inequalities. Set-Valued Var. Anal. 19(1), 23–42 (2011). doi:10.1007/s11228-010-0158-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Herzog, R., Meyer, C., Wachsmuth, G.: B- and strong stationarity for optimal control of static plasticity with hardening. SIAM J. Optim. 23(1), 321–352 (2013). doi:10.1137/110821147

    Article  MathSciNet  MATH  Google Scholar 

  13. Wachsmuth, G.: Strong stationarity for optimal control of the obstacle problem with control constraints. SIAM J. Optim. 24(4), 1914–1932 (2014). doi:10.1137/130925827

  14. de los Reyes, J.C., Meyer, C.: Strong stationarity conditions for a class of optimization problems governed by variational inequalities of the 2nd kind. (2014). arxiv:1404.4787

  15. Pang, J.S., Fukushima, M.: Complementarity constraint qualifications and simplified \(B\)-stationarity conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13(1–3), 111–136 (1999). doi: 10.1023/A:1008656806889

    Article  MathSciNet  MATH  Google Scholar 

  16. Flegel, M., Kanzow, C.: On the Guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54(6), 517–534 (2005). doi:10.1080/02331930500342591

    Article  MathSciNet  MATH  Google Scholar 

  17. Flegel, M.L., Kanzow, C.: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124(3), 595–614 (2005). doi:10.1007/s10957-004-1176-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  19. Wachsmuth, G.: On LICQ and the uniqueness of Lagrange multipliers. Oper. Res. Lett. 41(1), 78–80 (2013). doi:10.1016/j.orl.2012.11.009

    Article  MathSciNet  MATH  Google Scholar 

  20. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bonnans, J.F., Shapiro, A.: Optimization problems with perturbations: a guided tour. SIAM Rev. 40(2), 228–264 (1998). doi:10.1137/S0036144596302644

    Article  MathSciNet  MATH  Google Scholar 

  22. Shapiro, A.: On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints. SIAM J. Optim. 7(2), 508–518 (1997). doi:10.1137/S1052623495279785

    Article  MathSciNet  MATH  Google Scholar 

  23. Bergounioux, M., Mignot, F.: Optimal control of obstacle problems: existence of Lagrange multipliers. ESAIM Control Optim. Calc Var. 5, 45–70 (2000). doi:10.1051/cocv:2000101

    Article  MathSciNet  MATH  Google Scholar 

  24. Haraux, A.: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Jpn. 29(4), 615–631 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kurcyusz, S.: On the existence and non-existence of Lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 20(1), 81–110 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Krumbiegel, K., Rösch, A.: A virtual control concept for state constrained optimal control problems. Comput. Optim. Appl. 43(2), 213–233 (2009). doi:10.1007/s10589-007-9130-0

    Article  MathSciNet  Google Scholar 

  27. Hiriart-Urruty, J.B., Malick, J.: A fresh variational-analysis look at the positive semidefinite matrices world. J. Optim. Theory Appl. 153(3), 551–577 (2012). doi:10.1007/s10957-011-9980-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Radu Ioan Boţ for the idea leading to the counterexample at the end of Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Wachsmuth.

Additional information

Communicated by Masao Fukushima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wachsmuth, G. Mathematical Programs with Complementarity Constraints in Banach Spaces. J Optim Theory Appl 166, 480–507 (2015). https://doi.org/10.1007/s10957-014-0695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0695-3

Keywords

Mathematics Subject Classification

Navigation