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Abstract

In this paper we provide a splitting method for finding a zero of the sum of a maximally
monotone operator, a lipschitzian monotone operator, and a normal cone to a closed vectorial
subspace of a real Hilbert space. The problem is characterized by a simpler monotone inclusion
involving only two operators: the partial inverse of the maximally monotone operator with respect
to the vectorial subspace and a suitable lipschitzian monotone operator. By applying the Tseng’s
method in this context we obtain a splitting algorithm that exploits the whole structure of the
original problem and generalizes partial inverse and Tseng’s methods. Connections with other
methods available in the literature and applications to inclusions involving m maximally monotone
operators, to primal-dual composite monotone inclusions, and to zero-sum games are provided.
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1 Introduction

This paper is concerned with the numerical resolution of the problem of finding a zero of the sum
of a set-valued maximally monotone operator A, a lipschitzian monotone operator B, and a normal
cone NV , where V is a closed vectorial subspace of a real Hilbert space H. This problem arises in
a wide range of areas such as optimization [17, 36], variational inequalities [26, 38, 39], monotone
operator theory [20, 25, 32, 35], partial differential equations [26, 27, 43], economics [24, 29], signal
and image processing [5, 15, 19], evolution inclusions [4, 23, 34], traffic theory [8, 21, 33], and game
theory [22, 44], among others.

In the particular case when the operator B is zero, the problem is studied in [35] and it is solved
via the method of partial inverses. On the other hand, when V = H, the normal cone is zero and
our problem reduces to find a zero of A + B. In this case, the problem is studied in [40], where the
forward-backward-forward splitting or Tseng’s method is proposed for solving this problem (see also
[13] and the references therein). In addition, two methods are proposed in [12] for finding a zero of
A+B +NV in the particular case when B is cocoercive.

In the general case, several algorithms are available in the literature for finding a zero of A+B +
NV , but any of them exploits the intrinsic structure of the problem. The forward-backward-forward
splitting introduced in [40] can be applied to the general case, but it needs to compute the resolvent
of A + NV , which is not always easy to compute. It is preferable to activate A and NV separately.
Other ergodic approaches for solving the problem can be found in [9, 28]. A disadvantage of these
methods is the presence of vanishing parameters, which usually lead to numerical instabilities. The
algorithms proposed in [13, 16, 35] permit to find a zero of the sum of finitely many maximally
monotone operators by activating them independently and without considering vanishing parameters.
However, these methods involve implicit steps on B by using its resolvent, which is not easy to
compute in general. An algorithm proposed in [18] overcome this difficulty by activating explicitly the
operator B. However, this method does not take advantage of the vector subspace involved and, as
a consequence, it needs to store additional auxiliary variables at each iteration, which can be difficult
for high dimensional problems.

In this paper we propose a fully split method for finding a zero of A + B + NV by exploiting
each of its intrinsic properties. The proposed algorithm computes, at each iteration, explicit steps
on B and the resolvent of the partial inverse of A with respect to V [35], which can be explicitly
found in several cases. In a particular instance, this resolvent becomes a Douglas-Rachford step
[25, 37], which activates separately A and NV . Hence, in this case our method can be perceived as a
forward-Douglas-Rachford-forward splitting. The proposed algorithm generalizes partial inverse and
Tseng’s methods in the particular instances when B = 0 and V = H, respectively. We also provide
connections with other methods in the literature and we illustrate the flexibility of this framework via
some applications to inclusions involving m maximally monotone operators, to primal-dual composite
monotone inclusions, and to zero-sum games. In the application to primal-dual inclusions we introduce
a new operation between set-valued operators, called partial sum with respect to a closed vectorial
subspace, which preserves monotonicity and takes a central role in the problem and algorithm. On the
other hand, in continuous zero-sum games, we provide an interesting splitting algorithm for calculating
a Nash equilibrium that avoids the computation of the projection onto mixed strategy spaces in infinite
dimensions by performing simpler projections alternately.

The paper is organized as follows. In Section 2 we provide the notation and some preliminaries. We
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also obtain a relaxed version of Tseng’s method [40], which is interesting in its own right. In Section 3 a
characterization of Problem 3.1 in terms of two appropriate monotone operators is given and a method
for solving this problem is derived from the relaxed version of Tseng’s algorithm. Moreover, we provide
connections with other methods in the literature. Finally, in Section 4 we apply our method to the
problem of finding a zero of a sum of m maximally monotone operators and a lipschitzian monotone
operator, to a primal-dual composite monotone inclusion, and to continuous zero-sum games. The
methods derived in each instance generalize and improve available algorithms in the literature in each
context.

2 Notation and Preliminaries

Throughout this paper, H is a real Hilbert space with scalar product denoted by 〈· | ·〉 and associated
norm ‖ · ‖. The symbols ⇀ and → denote, respectively, weak and strong convergence and Id denotes
the identity operator. The indicator function of a subset C of H is ιC , which takes the value 0 in C
and +∞ in H \ C. If C is non-empty, closed, and convex, the projection of x onto C, denoted by
PCx, is the unique point in Argminy∈C ‖x− y‖, and the normal cone to C is the maximally monotone
operator

NC : H → 2H : x 7→

{

{

u ∈ H | (∀y ∈ C) 〈y − x | u〉 ≤ 0
}

, if x ∈ C;

∅, otherwise.
(2.1)

An operator T : H → H is β–cocoercive for some β ∈ ]0,+∞[ if, for every x ∈ H and y ∈ H,
〈x− y | Tx− Ty〉 ≥ β‖Tx − Ty‖2, it is χ-lipschitzian if, for every x ∈ H and y ∈ H, ‖Tx − Ty‖ ≤
χ‖x − y‖, it is non expansive if it is 1-lipschitzian, and the set of fixed points of T is given by
Fix T =

{

x ∈ H | Tx = x
}

.

We denote by graA =
{

(x, u) ∈ H ×H | u ∈ Ax
}

the graph of a set-valued operator A : H → 2H,
by domA =

{

x ∈ H | Ax 6= ∅
}

its domain, by zerA =
{

x ∈ H | 0 ∈ Ax
}

its set of zeros, by ranA =
{

u ∈ H | (∃x ∈ H) u ∈ Ax
}

its range, and by JA = (Id+A)−1 its resolvent. If A is monotone, i.e.,
for every (x, u) and (y, v) in graA, 〈x− y | u− v〉 ≥ 0, then JA is single-valued and non expansive.
In addition, if ran(Id+A) = H, A is maximally monotone and dom JA = H. Let A : H → 2H be
maximally monotone. The reflection operator of A is RA = 2JA − Id, which is non expansive. The
partial inverse of A with respect to a vector subspace V of H, denoted by AV , is defined by

(∀(x, y) ∈ H2) y ∈ AV x ⇔ (PV y + PV ⊥x) ∈ A(PV x+ PV ⊥y). (2.2)

Note that AH = A and A{0} = A−1. The following properties of the partial inverse will be useful
throughout this paper.

Proposition 2.1 Let A : H → 2H be a set-valued operator and let V be a vector subspace of H. Then
the following hold.

(i) (AV )
−1 = (A−1)V = AV ⊥.

(ii) PV (A+NV )
−1PV = PV (AV ⊥ +NV )PV .
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Proof. (i): Let (x, u) ∈ H2. We have from (2.2) that

u ∈ (AV )
−1x ⇔ x ∈ AV u

⇔ PV x+ PV ⊥u ∈ A(PV u+ PV ⊥x) (2.3)

⇔ PV u+ PV ⊥x ∈ A−1(PV x+ PV ⊥u)

⇔ x ∈ (A−1)V u. (2.4)

On the other hand, it follows from (2.3) and (2.2) that u ∈ (AV )
−1x is equivalent to u ∈ AV ⊥x. (ii):

Let (x, u) ∈ H2. We deduce from (i) and (2.2) that

u ∈ PV (A+NV )
−1(PV x) ⇔ (u ∈ V ) PV x ∈ Au+NV u

⇔ (u ∈ V )(∃ y ∈ V ⊥) PV x− y ∈ Au

⇔ (u ∈ V )(∃ y ∈ V ⊥) u− y ∈ AV ⊥(PV x)

⇔ u ∈ PV (AV ⊥ +NV )(PV x), (2.5)

which yields the result.

The following result is a relaxed version of the method originally proposed in [40] over some mod-
ifications developed in [11, 13].

Proposition 2.2 Let A : H → 2H be maximally monotone and let B : H → H be monotone and η–
lipschitzian such that zer(A + B) 6= ∅. Moreover, let z0 ∈ H, let ε ∈ ]0,max{1, 1/2η}[, let (δn)n∈N be

a sequence in [ε, (1/η) − ε], let (λn)n∈N be a sequence in [ε, 1], and iterate, for every n ∈ N,













rn = zn − δnBzn
sn = JδnArn
tn = sn − δnBsn
zn+1 = zn + λn(tn − rn).

(2.6)

Then, zn ⇀ z̄ for some z̄ ∈ zer(A+ B) and zn+1 − zn → 0.

Proof. First note that (2.6) yields

(∀n ∈ N) δ−1
n (rn − sn) ∈ Asn. (2.7)

Let z ∈ zer(A+ B) and fix n ∈ N. It follows from [40, Lemma 3.1] and (2.6) that

‖zn+1 − z‖2 = ‖(1− λn)(zn − z) + λn

(

sn − δn(Bsn −Bzn)− z
)

‖2

= (1− λn)‖zn − z‖2 + λn‖sn − δn(Bsn − Bzn)− z‖2 − λn(1− λn)‖tn − rn‖
2

≤ (1− λn)‖zn − z‖2 + λn

(

‖zn − z‖2 + δ2n‖Bsn − Bzn‖
2 − ‖sn − zn‖

2
)

− λn(1− λn)‖tn − rn‖
2

≤ ‖zn − z‖2 −
(

1− (δnη)
2
)

‖sn − zn‖
2 − λn(1− λn)‖tn − rn‖

2. (2.8)

Hence, since δn < 1/η and 0 < λn ≤ 1, we obtain ‖zn+1−z‖
2 ≤ ‖zn−z‖

2, which yields the boundedness
of the sequence (zk)k∈N. Moreover, we deduce from (2.8) and [13, Lemma 2.1] that (‖sk − zk‖

2)k∈N
and (‖tk − rk‖

2)k∈N are summable and, in particular,

sk − zk → 0 and tk − rk → 0, (2.9)
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which yields zk+1 − zk = λk(tk − rk) → 0. By setting, for every k ∈ N, uk = δ−1
k (rk − tk), it follows

from (2.6), (2.7), and (2.9) that

(∀k ∈ N) 0← uk = δ−1
k (rk − sk) + Bsk ∈ (A+ B)sk. (2.10)

Now let us take w ∈ H be any sequential weak cluster point of (zk)k∈N, say zkℓ ⇀ w. Then, it follows
from (2.9) and (2.10) that

skℓ ⇀ w, ukℓ → 0, and (skℓ , ukℓ) ∈ gra(A + B). (2.11)

Since B is monotone and continuous, it is maximally monotone [7, Corollary 20.25]. Moreover, since
domB = H, we deduce from [7, Corollary 24.4(i)] that A + B is maximally monotone and, hence, its
graph is sequentially closed in Hweak ×Hstrong [7, Proposition 20.33(ii)]. Therefore, we conclude from
(2.10) that w ∈ zer(A+B) and from [13, Lemma 2.2] we deduce that there exists z̄ ∈ zer(A+B) such
that zn ⇀ z̄ which yields the result.

Remark 2.3 As in [13, Theorem 2.5], absolutely summable errors can be incorporated in each step
of the algorithm in (2.6). However, for ease of presentation throughout the document, we only provide
the error free version.

For complements and further background on monotone operator theory and algorithms, the reader
is referred to [4, 7, 35, 43].

3 Forward–Partial Inverse–Forward Splitting

We aim at solving the following problem.

Problem 3.1 Let H be a real Hilbert space and let V be a closed vector subspace of H. Let A : H →
2H be a maximally monotone operator and let B : H → H be a monotone and χ–lipschitzian operator.
The problem is to

find x ∈ H such that 0 ∈ Ax+Bx+NV x, (3.1)

under the assumption zer(A+B +NV ) 6= ∅.

In this section we provide our method for solving Problem 3.1. We first provide a characterization
of the solutions to Problem 3.1, which motivates our algorithm. Its convergence to a solution to
Problem 3.1 is then proved.

3.1 Characterization

The following result provides a characterization of the solutions to Problem 3.1 in terms of two suitable
monotone operators.

Proposition 3.2 Let γ ∈ ]0,+∞[ and H, A, B, and V be as in Problem 3.1. Define
{

Aγ = (γA)V : H → 2H

Bγ = γPV ◦B ◦ PV : H → V.
(3.2)

Then the following hold.
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(i) Aγ is maximally monotone and, for every δ ∈ ]0,+∞[ and x ∈ H, JδAγ
x = PV p+γPV ⊥q, where

p and q in H are such that x = p+ γq and

PV q

δ
+ PV ⊥q ∈ A

(

PV p+
PV ⊥p

δ

)

. (3.3)

In particular, for every x ∈ H, JAγx = 2PV JγA − JγA + Id−PV = (Id+RNV
RγA)/2.

(ii) Bγ is γχ–lipschitzian and monotone.

(iii) Let x ∈ H. Then x is a solution to Problem 3.1 if and only if x ∈ V and

(

∃ y ∈ V ⊥ ∩ (Ax+Bx)
)

such that x+ γ(y − PV ⊥Bx) ∈ zer(Aγ + Bγ). (3.4)

Proof. (i): Since γA is maximally monotone, Aγ inherits this property [35, Proposition 2.1]. In
addition, it follows from (2.2) that, for every (p, q, x) ∈ H3 such that p+γq = x and every δ ∈ ]0,+∞[,

PV q

δ
+ PV ⊥q ∈ A

(

PV p+
PV ⊥p

δ

)

⇔
γPV q

δ
+ γPV ⊥q ∈ γA

(

PV p+
PV ⊥p

δ

)

⇔
γPV q

δ
+

PV ⊥p

δ
∈ Aγ (PV p+ γPV ⊥q)

⇔ γPV q + PV ⊥p ∈ δAγ (PV p+ γPV ⊥q)

⇔ PV p+ γPV ⊥q = JδAγ
(p+ γq)

⇔ PV p+ γPV ⊥q = JδAγ
x. (3.5)

In particular, if δ = 1, (3.3) reduces to p = JγA(p+ γq) = JγAx and, hence,

JAγx = PV (JγAx) + PV ⊥(x− JγAx)

= 2PV JγAx− JγAx+ x− PV x

=
1

2
(x+ 2PV (2JγAx− x)− 2JγAx+ x)

=
1

2
(x+RNV

RγAx) . (3.6)

(ii): Let (x, y) ∈ H2. We have from (3.2), the monotonicity of B, the fact that PV is linear, and P ∗
V =

PV that 〈x− y | Bγx− Bγy〉 = γ 〈PV x− PV y | B(PV x)−B(PV y)〉 ≥ 0, and, from the lipschitzian
property on B and (3.2) we obtain ‖Bγx−Bγy‖ ≤ γ‖B(PV x)−B(PV y)‖ ≤ γχ‖PV x−PV y‖ ≤ γχ‖x−
y‖. (iii): Let x ∈ H be a solution to Problem 3.1. We have x ∈ V and there exists y ∈ V ⊥ = NV x
such that y ∈ Ax+Bx. Since B is single valued and PV is linear, it follows from (2.2) that

y ∈ Ax+Bx ⇔ γy − γBx ∈ γAx

⇔ −γPV (Bx) ∈ (γA)V
(

x+ γ(y − PV ⊥Bx)
)

⇔ 0 ∈ (γA)V (x+ γ(y − PV ⊥Bx)) + γPV

(

B
(

PV (x+ γ(y − PV ⊥Bx))
))

⇔ x+ γ(y − PV ⊥Bx) ∈ zer(Aγ + Bγ), (3.7)

which yields the result.

Remark 3.3 Note that the characterization in Proposition 3.2(iii) yields Z = PV

(

zer(Aγ + Bγ)
)

.
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3.2 Algorithm and convergence

In the following result we propose our algorithm and we prove its convergence to a solution to Prob-
lem 3.1. Since Proposition 3.2 asserts that Problem 3.1 can be solved via a monotone inclusion
involving a maximally monotone operator and a single-valued lipschitzian monotone operator, our
method is obtained as a consequence of Proposition 2.2, which is inspired from [13, 40].

Theorem 3.4 Let H, V , A, and B, be as in Problem 3.1, let γ ∈ ]0,+∞[, let ε ∈
]

0,max{1, 1
2γχ}

[

,

let (δn)n∈N be a sequence in
[

ε, 1
γχ − ε

]

, and let (λn)n∈N be a sequence in [ε, 1]. Moreover, let x0 ∈ V ,

let y0 ∈ V ⊥, and iterate, for every n ∈ N,

1. find (pn, qn) ∈ H
2 such that xn − δnγPV Bxn + γyn = pn + γqn

and
PV qn
δn

+ PV ⊥qn ∈ A
(

PV pn +
PV ⊥pn
δn

)

. (3.8)

2. set xn+1 = xn + λn(PV pn + δnγPV (Bxn −BPV pn)− xn)

and yn+1 = yn + λn(PV ⊥qn − yn).Go to 1.

Then, the sequences (xn)n∈N and (yn)n∈N are in V and V ⊥, respectively, xn ⇀ x and yn ⇀ y for some

solution x ∈ zer(A+B +NV ) and y ∈ V ⊥ ∩ (Ax+ PV Bx), xn+1 − xn → 0 , and yn+1 − yn → 0.

Proof. Since x0 ∈ V and y0 ∈ V ⊥, (3.8) yields (xn)n∈N ⊂ V and (yn)n∈N ⊂ V ⊥. Thus, for every
n ∈ N, it follows from (3.8) and Proposition 3.2(i) that

PV pn + γPV ⊥qn = Jδn(γA)V (xn + γyn − δnγPV Bxn). (3.9)

For every n ∈ N, denote by zn = xn + γyn and by

sn = Jδn(γA)V (xn + γyn − δnγPV Bxn) = Jδn(γA)V (zn − δnγPV BPV zn) = JδnAγ
(zn − δnBγzn). (3.10)

Hence, it follows from (3.9) that PV pn = PV sn, γPV ⊥qn = PV ⊥sn, and, from (3.8), we obtain

{

xn+1 = xn + λn(PV sn + δnγPV (Bxn −BPV sn)− xn)

γyn+1 = γyn + λn(PV ⊥sn − γyn).
(3.11)

By adding the latter equations we deduce that the algorithm described in (3.8) can be written equiv-
alently as

(∀n ∈ N)













rn = zn − δnBγzn
sn = JδnAγ

rn
tn = sn − δnBγsn
zn+1 = zn + λn(tn − rn),

(3.12)

which is a particular instance of (2.6) when B = Bγ and A = Aγ . Therefore, it follows from Propo-
sition 3.2(i)&(ii) and Proposition 2.2 that zn ⇀ z ∈ zer(Aγ + Bγ) and zn+1 − zn → 0. By defining
x := PV z ∈ Z and y := PV ⊥z/γ ∈ (Ax + Bx) − PV ⊥Bx = Ax + PV Bx, the results follow from
Proposition 3.2(iii) and Proposition 2.2.
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Remark 3.5

(i) It is known that the forward–backward–forward splitting admits errors in the computations of
the operators involved [11, 13]. In our algorithm these inexactitudes have not been considered
for simplicity.

(ii) In the particular case when λn ≡ 1 and B ≡ 0 (χ = 0), (3.8) reduces to the classical partial
inverse method proposed in [35] for finding x ∈ V such that there exists y ∈ V ⊥ satisfying
y ∈ Ax.

(iii) As in [13], under further assumptions on the operators Aγ and/or Bγ , e.g., as demiregularity
(see [2, Definition 2.3&Proposition 2.4]), strong convergence can be achieved.

The sequence (δn)n∈N in Theorem 3.4 can be manipulated in order to accelerate the algorithm.
However, as in [35], Step 1 in Theorem 3.4 is not always easy to compute. The following result show
us a particular case of our method in which Step 1 can be obtained explicitly when the resolvent of A
is computable. The method can be seen as a forward-Douglas-Rachford-forward splitting for solving
Problem 3.2.

Corollary 3.6 Let H, V , A, and B, be as in Problem 3.1, let γ ∈ ]0, 1/χ[, let ε ∈ ]0, 1[, and let

(λn)n∈N be a sequence in [ε, 1]. Moreover, let z0 ∈ H, and iterate, for every n ∈ N,

















rn = zn − γPV BPV zn
pn = JγArn
sn = 2PV pn − pn + rn − PV rn
tn = sn − γPV BPV sn
zn+1 = zn + λn(tn − rn).

(3.13)

Then, by setting, for every n ∈ N, xn = PV zn and yn = PV ⊥zn/γ, we have xn ⇀ x̄ and yn ⇀ ȳ for

some x ∈ zer(A+B +NV ) and y ∈ V ⊥ ∩ (Ax+ PV Bx), xn+1 − xn → 0, and yn+1 − yn → 0.

Proof. Indeed, it follows from the proof of Theorem 3.4 that (3.8) is equivalent to (3.12), where,
for every n ∈ N, zn = xn + γyn. In the particular case when δn ≡ 1 ∈ ]0, 1/(γχ)[, it follows from
Proposition 3.2(i) that (3.12) reduces to (3.13). Hence, the results follow from Theorem 3.4.

Remark 3.7

(i) Note that, when V = H and λn ≡ 1, we have V ⊥ = {0}, PV = Id, (Id+RNV
RγA)/2 = JγA, and,

therefore, (3.13) reduces to

(∀n ∈ N)













rn = xn − γBxn
sn = JγArn
tn = sn − γBsn
xn+1 = xn + tn − rn,

(3.14)

which is a version with constant step size of the modified forward-backward splitting [40] for
finding a zero of A+B.
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(ii) On the other hand, when B ≡ 0, (3.13) reduces to

(∀n ∈ N)

⌊

sn = (zn +RNV
RγAzn)/2

zn+1 = zn + λn(sn − zn),
(3.15)

which is the Douglas-Rachford splitting method [25, 37] for finding x ∈ H such that x ∈ NV x+
Ax. It coincides with Spingarn’s partial inverse method with constant step size.

4 Applications

In this section we study three applications of our algorithm. We first apply Theorem 3.4 to the
problem of finding a zero of the sum of m maximally monotone operators and a monotone lipschitzian
operator. Secondly, we study a primal-dual composite monotone inclusion involving normal cones and
we obtain from Theorem 3.4 a primal-dual method for solving this problem. Finally, we study the
application of our method in the framework of continuous zero-sum games. Connections with other
methods in each framework are also provided.

4.1 Inclusion Involving the Sum of m Monotone Operators

Let us consider the following problem.

Problem 4.1 Let (H, | · |) be a real Hilbert space, for every i ∈ {1, . . . ,m}, let Ai : H → 2H be a
maximally monotone operator, and let B : H → H be a monotone and χ–lipschitzian operator. The
problem is to

find x ∈ H such that 0 ∈
m
∑

i=1

Aix+ Bx, (4.1)

under the assumption that solutions exist.

Problem 4.1 has several applications in image processing, principally in the variational setting (see,
e.g., [17, 30] and the references therein), variational inequalities [38, 39], partial differential equations
[27, 43], and economics [24, 29], among others. In [30, 41], Problem 4.1 is solved by a fully split
algorithm in the particular case when B is cocoercive. Nevertheless, this approach does not seem
to work in the general case. In [18] a method for solving a more general problem than Problem 4.1
is proposed. However, this approach stores and updates at each iteration m dual variables in order
to solve (4.1) and its dual simultaneously. This generality does not allow to exploit the intrinsic
properties of Problem 4.1, which may be unfavourable in large scale systems. Our method is obtained
as a consequence of Theorem 3.4 for a suitable closed vectorial subspace and exploits the whole
structure of the problem.

Let us first provide a connection between Problem 4.1 and Problem 3.1 via product space techniques.
Let (ωi)1≤i≤m be real numbers in ]0, 1[ such that

∑m
i=1 ωi = 1, let H be the real Hilbert space obtained

by endowing the Cartesian product Hm with the scalar product and associated norm respectively
defined by

〈· | ·〉 : (x, y) 7→

m
∑

i=1

ωi〈xi | yi〉 and ‖ · ‖ : x 7→

√

√

√

√

m
∑

i=1

ωi|xi|2, (4.2)
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where x = (xi)1≤i≤m is a generic element of H.

Proposition 4.2 Let H, (Ai)1≤i≤m, and B be as in Problem 4.1, and define























V =
{

x = (xi)1≤i≤m ∈ H | x1 = · · · = xm
}

j : H→ V ⊂ H : x 7→ (x, . . . , x)

A : H → 2H : x 7→ 1
ω1
A1x1 × · · · ×

1
ωm

Amxm

B : H → H : x 7→ (Bx1, . . . ,Bxm).

(4.3)

Then the following hold.

(i) V is a closed vector subspace of H, PV : (xi)1≤i≤m 7→ j(
∑m

i=1 ωixi), and

NV : x 7→

{

V ⊥ =
{

x = (xi)1≤i≤m ∈ H |
∑m

i=1 ωixi = 0
}

, if x ∈ V ;

∅, otherwise.
(4.4)

(ii) j : H→ V is a bijective isometry and j−1 : (x, . . . , x) 7→ x.

(iii) A is a maximally monotone operator and, for every γ ∈ ]0,+∞[, JγA : (xi)1≤i≤m 7→ (JγAi/ωi
xi).

(iv) B is monotone and χ–lipschitzian, B(j(x)) = j(Bx), and B(V ) ⊂ V .

(v) For every x ∈ H, x is a solution to Problem 4.1 if and only if j(x) ∈ zer(A+B +NV ).

Proof. (i)&(ii): They follow from (2.1) and easy computations. (iii): See [7, Proposition 23.16]. (iv):
They follow from straightforward computations by using (4.3), (4.2), and the properties on B. (v):
Let x ∈ H. We have

0 ∈

m
∑

i=1

Aix+ Bx ⇔

(

∃ (yi)1≤i≤m ∈

m

×
i=1

Aix

)

0 =

m
∑

i=1

yi + Bx

⇔

(

∃ (yi)1≤i≤m ∈

m

×
i=1

Aix

)

0 =
m
∑

i=1

ωi(−yi/ωi − Bx)

⇔

(

∃ (yi)1≤i≤m ∈

m

×
i=1

Aix

)

− (y1/ω1, . . . , ym/ωm)− j(Bx) ∈ V ⊥

⇔ 0 ∈ A(j(x)) +B(j(x)) +NV (j(x))

⇔ j(x) ∈ zer(A+B +NV ), (4.5)

which yields the result.

The following result provides a method for solving Problem 4.1. It is a direct consequence of
Corollary 3.6 applied to the equivalent monotone inclusion in Proposition 4.2(v).
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Theorem 4.3 Let H, (Ai)1≤i≤m, and B be as in Problem 4.1, let γ ∈ ]0, 1/χ[, let ε ∈ ]0, 1[, and let

(λn)n∈N be a sequence in [ε, 1]. Moreover, let (zi,0)1≤i≤m ∈ Hm and iterate, for every n ∈ N,



































xn =
∑m

j=1 ωjzj,n

For i = 1, . . . ,m
⌊

ri,n = zi,n − γBxn
pi,n = JγAi/ωi

ri,n
qn =

∑m
j=1 ωjpj,n

For i = 1, . . . ,m








si,n = 2qn − pi,n + zi,n − xn
ti,n = si,n − γBqn
zi,n+1 = zi,n + λn(ti,n − ri,n).

(4.6)

Then, xn ⇀ x for some solution x to Problem 4.1 and xn+1 − xn → 0.

Proof. Set, for every n ∈ N, xn = j(xn), qn = j(qn), sn = (si,n)1≤i≤m, zn = (zi,n)1≤i≤m, and
pn = (pi,n)1≤i≤m. It follows from Proposition 4.2(i) and (4.6) that, for every n ∈ N, xn = PV zn
and qn = PV pn = PV sn. Hence, it follows from (4.3) and Proposition 4.2 that (4.6) can be written
equivalently as (3.13). Altogether, Corollary 3.6 and Proposition 4.2(v) yield the results.

Remark 4.4 In the particular case when m = 2, B = 0, and ω1 = ω2 = 1/2, the method proposed
in Theorem 4.3 reduces to

(∀n ∈ N)

















xn = (z1,n + z2,n)/2
p1,n = J2γA1

(z1,n)
p2,n = J2γA2

(z2,n)
z1,n+1 = z1,n + λn(p2,n − xn)
z2,n+1 = z2,n + λn(p1,n − xn),

(4.7)

which is exactly the method proposed in [12, Remark 6.2(ii)] for finding a zero of the sum of two
maximally monotone operators A1 and A2. In the case when these resolvents are hard to calculate,
(4.7) provides an alternative method which computes them in parallel.

4.2 Primal-Dual Monotone Inclusions

This section is devoted to the numerical resolution of a very general composite primal-dual monotone
inclusion involving vectorial subspaces. A difference of the method in Section 4.1, the algorithm
proposed in this section deals with monotone operators composed with linear transformations and
solves simultaneously primal and dual inclusions.

Let us introduce a partial sum of two set-valued operators with respect a closed vectorial subspace.
This notion is a generalization of the parallel sum (see, e.g., [10] and the references therein).

Definition 4.5 Let H be a real Hilbert space, let U ⊂ H be a closed vectorial subspace, and let

A : H → 2H and B : H → 2H be two non linear operators. The partial sum of A and B with respect
to U is defined by

A�UB =
(

AU +BU

)

U
. (4.8)

In particular, we have A�HB = A+B and A�{0}B = A�B = (A−1 +B−1)−1.
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Note that, since the operation A 7→ AU preserves monotonicity [35], if A and B are monotone then
A�UB is monotone as well. In this section we are interested in the following problem.

Problem 4.6 Let H, (Gi)1≤i≤m be real Hilbert spaces, for every i ∈ {1, . . . ,m}, let U ⊂ H and Vi ⊂ Gi

be closed vectorial spaces, let A : H → 2H and Bi : Gi → 2Gi be maximally monotone, let Li : H → Gi

be linear and bounded, let Di : Gi → 2Gi be monotone such that (Di)V⊥

i
is νi-lipschitzian for some

νi ∈ ]0,+∞[, let C : H → H be monotone and µ-lipschitzian for some µ ∈ ]0,+∞[, let z ∈ H, and let
bi ∈ Gi. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax+NUx+

m
∑

i=1

(

L∗iPVi
(Bi�V⊥

i
Di +NVi

)PVi
(Lix− bi)

)

+ Cx (4.9)

together with the dual inclusion

find u1 ∈ G1, . . . , um ∈ Gm such that

(∃ x ∈ H)

{

z−
∑m

i=1 L
∗
iPVi

ui ∈ Ax+ Cx+NUx

(∀i ∈ {1, . . . ,m}) ui ∈ PVi
(Bi�V⊥

i
Di +NVi

)PVi
(Lix− bi).

(4.10)

The set of solutions to (4.9) is denoted by P and the set of solutions to (4.10) by D, which are
assumed to be nonempty.

In the particular case when U = H and, for every i ∈ {1, . . . ,m}, Vi = Gi, Problem 4.6 reduces
to the problem solved in [18], where a convergent primal-dual algorithm activating separately each
involved operator is proposed. In the case when, for every i ∈ {1, . . . ,m}, Vi = Gi, Problem 4.6 reduces
to the problem addressed in [9], where a splitting method with ergodic convergence is provided. A
disadvantage of this algorithm is the presence of vanishing parameters which may lead to numerical
instabilities together with additionally conditions difficult to be verified in general. At the best of our
knowledge, the general case has not been tackled in the literature via splitting methods.

Problem 4.6 requires a lipschitzian condition on (DiV⊥

i
)1≤i≤m. In the simplest case when, for every

i ∈ {1, . . . ,m}, Vi = Gi, this condition reduces to the lipschitzian property on Di
−1, which is trivially

satisfied, e.g., when Di0 = Gi and, for every y 6= 0, Diy = ∅. The following proposition furnishes
other non-trivial instances in which the partial inverse of a monotone operator with respect to a closed
vectorial subspace is lipschitzian.

Proposition 4.7 Let V be a closed vectorial subspace of a real Hilbert space H and suppose that one

of the following holds.

(i) D : H→ H is β-strongly monotone and ν-cocoercive.

(ii) D = ∇f, where f : H→ ]−∞,+∞] is differentiable, β-strongly convex, and ∇f is ν−1-lipschitzian.

(iii) D is linear bounded operator satisfying, for every x ∈ H, 〈x | Dx〉 ≥ β‖x‖2, and ν = β/‖D‖2.

Then DV is α-cocoercive and α-strongly monotone with α = min{β, ν}/2. In particular, DV is α−1-

lipschitzian.
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Proof. (i): Let (x, u) and (y, v) in gra(DV). Then it follows from (2.2) that (PVx+PV⊥u, PVu+ PV⊥x)
and (PVy+PV⊥v, PVv+PV⊥y) are in gra(D), and, from the strong monotonicity assumption on D, we
have

〈x− y | u− v〉 = 〈PV(x− y) | PV(u− v)〉+ 〈PV⊥(u− v) | PV⊥(x− y)〉

= 〈PVx+ PV⊥u− (PVy + PV⊥v) | PVu+ PV⊥x− (PVv+ PV⊥y)〉

≥ β‖PVx+ PV⊥u− (PVy+ PV⊥v)‖2

= β(‖PV(x− y)‖2 + ‖PV⊥(u− v)‖2). (4.11)

Analogously, the cocoercivity assumption on D yields 〈x− y | u− v〉 ≥ ν(‖PV(u−v)‖
2+‖PV⊥(x−y)‖2).

Hence, it follows from (4.11) that

〈x− y | u− v〉 ≥
β

2
(‖PV(x− y)‖2 + ‖PV⊥(u− v)‖2) +

ν

2
(‖PV(u− v)‖2 + ‖PV⊥(x− y)‖2), (4.12)

which yields 〈x− y | u− v〉 ≥ α
(

‖x − y‖2 + ‖u − v‖2
)

and the result follows. (ii): From the strong
convexity of f we have that D = ∇f is β-strongly monotone and it follows from [6] that D is ν-cocoercive.
Hence, the result follows from (i). (iii): Since D is linear and bounded we have ‖x‖2 ≥ ‖Dx‖2/‖D‖2.
Then D is β-strongly monotone and ν-cocoercive and the result follows from (i).

The following proposition gives a connection between Problem 4.6 and Problem 3.1.

Proposition 4.8 In the real Hilbert space H = H⊕ G1 ⊕ · · · ⊕ Gm set











































A : H → 2H : (x, u1, . . . , um) 7→ (−z+ Ax)× (PV1
b1 + (B1)V⊥

1

u1)× · · · × (PVm
bm + (Bm)V⊥

m
um)

L : H → H : (x, u1, . . . , um) 7→
(
∑m

i=1 L
∗
iPVi

ui,−PV1
L1x, . . . ,−PVm

Lmx
)

C : H → H : (x, u1, . . . , um) 7→
(

Cx, (D1)V⊥

1

u1, . . . , (Dm)V⊥
m
um
)

B : H → H : (x, u1, . . . , um) 7→ (C + L)(x, u1, . . . , um)

W = U× V1 × · · · × Vm

χ = max{µ, ν1, . . . , νm}+
√
∑m

i=1 ‖Li‖
2.

(4.13)
Then the following hold.

(i) A is maximally monotone and, for every γ ∈ ]0,+∞[,

JγA : (x, u1, . . . , um) 7→
(

JγA(x+ z), Jγ(B1)V⊥
1

(u1 − PV1
b1), . . . , Jγ(Bm)

V⊥m

(um − PVm
bm)

)

. (4.14)

(ii) L is a linear bounded operator, L∗ = −L, and ‖L‖ ≤
√
∑m

i=1 ‖Li‖
2.

(iii) B is monotone and χ-lipschitzian.

(iv) W is a closed vectorial subspace of H, NW : (x, u1, . . . , um) 7→ NUx×NV1
u1× · · · ×NVm

um, and

PW : (x, u1, . . . , um) 7→ (PUx, PV1
u1, . . . , PVm

um).

(v) zer(A+B +NW ) ⊂ P ×D.

(vi) P 6= ∅ ⇔ zer(A+B +NW ) 6= ∅ ⇔ D 6= ∅.
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Proof. (i): Since, for every i ∈ {1, . . . ,m}, (Bi)V⊥

i
is maximally monotone, the result follows

from [7, Proposition 23.15 and Proposition 23.16]. (ii): Let us define M : G1 ⊕ · · · ⊕ Gm → H by
M : (u1, . . . , um) 7→

∑m
i=1 L

∗
iPVi

ui. Since (Li)1≤i≤m and (PVi
)1≤i≤m are linear bounded operators,

it is easy to check that M is linear and bounded, M∗ : x 7→ (PV1
L1x, . . . , PVm

Lmx), and that we
can rewrite L as L : (x, u1, . . . , um) 7→ (M(u1, . . . , um),−M∗x). Hence, we deduce from [13, Propo-
sition 2.7(ii)] that L is linear and bounded, that L∗ = −L, and that ‖L‖ = ‖M‖. Now, for every
(u1, . . . , um) ∈ G1 ⊕ · · · ⊕ Gm, we have from triangle and Hölder inequalities ‖M(u1, . . . , um)‖ ≤
∑m

i=1 ‖Li‖‖PVi
‖‖ui‖ ≤

∑m
i=1 ‖Li‖‖ui‖ ≤

√
∑m

i=1 ‖Li‖
2
√
∑m

i=1 ‖ui‖
2, which yields the last assertion.

(iii): It follows from (ii) that L is linear, bounded, and skew. Therefore, it is monotone and ‖L‖-
lipschitzian. On the other hand, since C and (Di)V⊥

i
are monotone and lipschitzian, C is monotone

and max{µ, ν1, . . . , νm}-lipschitzian. Altogether, it follows from (ii) that B = C +L is monotone and
χ-lipschitzian. (iv): Clear. (v): Let (x, u1, . . . , um) ∈ H × G1 × · · ·Gm. We have from (4.13) and
Proposition 2.1(ii) that

(x, u1, . . . , um) ∈ zer(A+B +NW )

⇔























0 ∈ −z+ Ax+ Cx+
∑m

i=1 L
∗
iPVi

ui +NUx

0 ∈ PV1
b1 + (B1)V⊥

1

u1 + (D1)V⊥

1

u1 − PV1
L1x+NV1

u1
...

0 ∈ PVm
bm + (Bm)V⊥

m
um + (Dm)V⊥

m
um − PVm

Lmx+NVm
um

⇔























0 ∈ −z+ Ax+ Cx+
∑m

i=1 L
∗
iPVi

ui +NUx

PV1
(L1x− b1) ∈ ((B1)V⊥

1

+ (D1)V⊥

1

+NV1
)u1, u1 ∈ V1

...

PVm
(Lmx− bm) ∈ ((Bm)V⊥

m
+ (Dm)V⊥

m
+NVm

)um, um ∈ Vm

⇔























0 ∈ −z+ Ax+ Cx+
∑m

i=1 L
∗
iPVi

ui +NUx

u1 ∈ PV1
((B1)V⊥

1

+ (D1)V⊥

1

+NV1
)−1PV1

(L1x− b1)
...

um ∈ PVm
((Bm)V⊥

m
+ (Dm)V⊥

m
+NVm

)−1PVm
(Lmx− bm)

⇔























z−
∑m

i=1 L
∗
iPVi

ui ∈ Ax+ Cx+NUx

u1 ∈ PV1
(B1�V⊥

1

D1 +NV1
)PV1

(L1x− b1)
...

um ∈ PVm
(Bm�V⊥

m
Dm +NVm

)PVm
(Lmx− bm)

(4.15)

⇒ z ∈ Ax+NUx+

m
∑

i=1

L∗iPVi
(Bi�V⊥

i
Di +NVi

)PVi
(Lix− bi) + Cx, (4.16)

which yields x ∈ P. Moreover, (4.15) yields (u1, . . . , um) ∈ D.

(vi): We will prove P 6= ∅ ⇒ D 6= ∅ ⇒ zer(A + B + NW ) 6= ∅ ⇒ P 6= ∅. If x ∈ P, there
exist (u1, . . . , um) such that (4.15) holds and, hence, (u1, . . . , um) ∈ D. Now, if (u1, . . . , um) ∈ D, there
exists x ∈ H such that (4.15) holds and we deduce from the equivalences in (4.15) that (x, u1, . . . , um) ∈
zer(A+B +NW ). The last implication follows from (v).

14



Theorem 4.9 In the setting of Problem 4.6, let γ ∈ ]0, 1/χ[ where χ is defined in (4.13), and let

(λn)n∈N be a sequence in [ε, 1]. Moreover, let x0 ∈ H, let (ui,0)1≤i≤m ∈ G1 × · · · × Gm, and iterate, for

every n ∈ N,













































r1,n = xn − γPU

(

CPUxn +
∑m

i=1 L
∗
iPVi

ui,n
)

p1,n = JγA(r1,n + γz)
s1,n = 2PUp1,n − p1,n + r1,n − PUr1,n
For i = 1, . . . ,m


















r2,i,n = ui,n − γPVi
(DiV⊥

i
PVi

ui,n − LiPUxn)

p2,i,n = JγBiV⊥
i

(r2,i,n − γPVi
bi)

s2,i,n = 2PVi
p2,i,n − p2,i,n + r2,i,n − PVi

r2,i,n
t2,i,n = s2,i,n − γPVi

(DiV⊥

i
PVi

s2,i,n − LiPUs1,n)

ui,n+1 = ui,n + λn(t2,i,n − r2,i,n)
t1,n = s1,n − γPU

(

CPUs1,n +
∑m

i=1 L
∗
iPVi

s2,i,n
)

xn+1 = xn + λn(t1,n − r1,n).

(4.17)

Then, xn ⇀ x ∈ H and, for every i ∈ {1, . . . ,m}, ui,n ⇀ ui ∈ Gi, and (PUx, PV1
u1, . . . , PVm

um) is a

solution to Problem 4.6. Moreover, xn+1 − xn → 0 and, for every i ∈ {1, . . . ,m}, ui,n+1 − ui,n → 0.

Proof. For every n ∈ N, denote by zn = (xn, u1,n, . . . , um,n), rn = (r1,n, r2,1,n, . . . , r2,m,n), pn =
(p1,n, p2,1,n, . . . , p2,m,n), sn = (s1,n, s2,1,n, . . . , s2,m,n), and tn = (t1,n, t2,1,n, . . . , t2,m,n). Then, it follows
from Proposition 4.8 that (4.17) is a particular instance of (3.13). Hence, the results follow from
Corollary 3.6 and Proposition 4.8(v).

Remark 4.10

(i) Even if Problem 4.1 can be seen as a particular case of Problem 4.6, the methods in (4.17) and
(4.7) have different structures. Indeed, in (4.17) dual variables are updated at each iteration,
which may be numerically costly in large scale problems, while only primal variables are updated
in Theorem 4.3.

(ii) Algorithm (4.17) activates independently each operator involved in Problem 4.6. The algorithm
is explicit in each step if the resolvents of A and (BiV⊥

i
)1≤i≤m can be computed explicitly. Observe

that the resolvent of the partial inverse of a maximally monotone operator can be explicitly found
via Proposition 3.2(i).

(iii) Note that, when λn ≡ 1, U = H, and, for every i ∈ {1, . . . ,m}, Vi = Gi, the method in
Theorem 4.9 reduces to the algorithm proposed in [18, Theorem 3.1] with constant step-size

(iv) In the simplest case when m = 2, z = A = C = b1 = b2 = 0, L1 = L2 = Id, U = H, V1 ≡ G1,
V2 ≡ G2, D10 = G1, D20 = G2, and for every y 6= 0, D1y = D2y = ∅, we have, for every
i ∈ {1, 2}, DiV ⊥

i
= Di{0} = D−1

i : y 7→ 0 and Problem 4.6 reduces to find a zero of B1 + B2. In

this case (4.17) becomes
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(∀n ∈ N)



















p1,n = JγB−1

1

(u1,n + γxn)

p2,n = JγB−1

2

(u2,n + γxn)

xn+1 = xn − γλn(p1,n + p2,n)
u1,n+1 = (1− λn)u1,n + λn

(

p1,n − γ2(u1,n + u2,n)
)

u2,n+1 = (1− λn)u2,n + λn

(

p2,n − γ2(u1,n + u2,n)
)

.

(4.18)

A difference of the method derived in Remark 4.4 for solving this problem, (4.18) update primal
and dual variables and solve the primal and dual inclusion, simultaneously.

4.3 Zero-Sum Games

Our last application focus in the problem of finding a Nash equilibrium in continuous zero sum games.
Some comments on finite zero-sum games are also provided. This problem can be formulated in the
form of Problem 3.1 and solved via an algorithm derived from Theorem 3.4.

Problem 4.11 For every i ∈ {1, 2}, let Hi and Gi be real Hilbert spaces, let Ci be a closed convex
subset of Hi, let Li : Hi → Gi be a linear bounded operator with closed range, let Si =

{

x ∈ Ci |
Lix = bi

}

, where bi = Liei for some ei ∈ Hi, let χ ∈ ]0,+∞[, and let f : H1×H2 → R be a differentiable
function with a χ–lipschitzian gradient such that, for every z1 ∈ H1, f(z1, ·) is concave and, for every
z2 ∈ H2, f(·, z2) is convex. Moreover suppose that int(C1−e1)∩ker L1 6= ∅ and int(C2−e2)∩ker L2 6= ∅.
The problem is to

find x1 ∈ S1 and x2 ∈ S2 such that











x1 ∈ Argmin
z1∈S1

f(z1, x2)

x2 ∈ Argmax
z2∈S2

f(x1, z2),
(4.19)

under the assumption that solutions exist.

Problem 4.11 is a generic zero-sum game in which the sets S1 and S2 are usually convex bounded
sets representing mixed strategy spaces. For example, if, for every i ∈ {1, 2}, Hi = R

Ni , Ci is the
positive orthant, Gi ≡ R, bi ≡ 1, and Li is the sum of the components in the space R

Ni , Si is the
simplex in R

Ni . In that case, for a bilinear function f, Problem 4.11 reduces to a finite zero-sum game.
Beyond this particular case, Problem 4.11 covers continuous zero-sum games in which mixed strategies
are distributions and L1 and L2 are integral operators.

As far as we know, some attempts for solving (4.19) are proposed in [1, 3] in particular cases
when the function f has a special separable structure with specific coupling schemes. In this particular
context they propose alternating methods for finding a Nash equilibrium. On the other hand, a method
proposed in [14] can solve (4.19) when the projections onto S1 and S2 are computable. However, in
infinite dimension this projections are not always easy to compute, as we will discuss in Example 4.14
below. The following result provides an algorithm for solving Problem 4.11 in the general case,
which is obtained as a consequence of Corollary 3.6. The method avoids the projections onto S1 and
S2 by alternating simpler projections onto C1, C2, ker(L1), and ker(L2). Let us first introduce the
generalized Moore-Penrose inverse of a bounded linear operator L : H→ G with closed range, defined
by L† : G→ H : y 7→ PCy0, where, for every y ∈ G, Cy =

{

x ∈ H | L∗Lx = L∗y
}

. The operator L† is also
linear and bounded and, in the particular case when L∗L is invertible, L† = (L∗L)−1L∗. For further
details and properties the reader is referred to [7, Section 3].
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Theorem 4.12 Under the notation and assumptions of Problem 4.11, let ε ∈ ]0, 1[, let γ ∈ ]0, 1/χ[,
and let (λn)n∈N be a sequence in [ε, 1]. Moreover, let (z1,0, z2,0) ∈ H1 ⊕ H2, and iterate, for every

n ∈ N,










































































u1,n = z1,n − L∗1L
∗†
1 z1,n

u2,n = z2,n − L∗2L
∗†
2 z2,n

g1,n = ∇
(

f(·, e2 + u2,n)
)

(e1 + u1,n)− L∗1L
∗†
1 ∇

(

f(·, e2 + u2,n)
)

(e1 + u1,n)

g2,n = −∇
(

f(e1 + u1,n, ·)
)

(e2 + u2,n) + L∗2L
∗†
2 ∇

(

f(e1 + u1,n, ·)
)

(e2 + u2,n)
r1,n = z1,n − γg1,n
r2,n = z2,n − γg2,n
p1,n = PC1

(r1,n + e1)− e1
p2,n = PC2

(r2,n + e2)− e2

v1,n = p1,n − L∗1L
∗†
1 p1,n

v2,n = p2,n − L∗2L
∗†
2 p2,n

s1,n = 2v1,n − p1,n + L∗1L
∗†
1 r1,n

s2,n = 2v2,n − p2,n + L∗2L
∗†
2 r2,n

h1,n = ∇
(

f(·, e2 + v2,n)
)

(e1 + v1,n)− L∗1L
∗†
1 ∇

(

f(·, e2 + v2,n)
)

(e1 + v1,n)

h2,n = −∇
(

f(e1 + v1,n, ·)
)

(e2 + v2,n) + L∗2L
∗†
2 ∇

(

f(e1 + v1,n, ·)
)

(e2 + v2,n)
t1,n = s1,n − γh1,n
t2,n = s2,n − γh2,n
z1,n+1 = z1,n + λn(t1,n − r1,n)
z2,n+1 = z2,n + λn(t2,n − r2,n).

(4.20)

Then there exists a solution (x1, x2) to Problem 4.11 such that z1,n + e1 ⇀ x1 and z2,n + e2 ⇀ x2.

Proof. It follows from [7, Theorem 16.2] that Problem 4.11 can be written equivalently as the problem
of finding x1 and x2 such that 0 ∈ ∂(ιS1 + f(·, x2))(x1) and 0 ∈ ∂(ιS2 − f(x1, ·))(x2), which, because of
[7, Corollary 16.38], is equivalent to

{

0 ∈ NS1(x1) +∇
(

f(·, x2)
)

(x1)

0 ∈ NS2(x2)−∇
(

f(x1, ·)
)

(x2).
(4.21)

Now since, for every i ∈ {1, 2}, Si = Ci ∩ L−1
i (bi) = Ci ∩ (ei + ker Li), it follows from qualification

conditions assumed in Problem 4.11 that (4.21) is equivalent to
{

0 ∈ NC1
(e1 + z1) +Nker L1(z1) +∇

(

f(·, e2 + z2)
)

(e1 + z1)

0 ∈ NC2
(e2 + z2) +Nker L2(z2)−∇

(

f(e1 + z1, ·)
)

(e2 + z2),
(4.22)

where z1 = x1 − e1 and z2 = x2 − e2. Hence, by defining






















V = ker(L1)× ker(L2)

A : H1 × H2 → 2H1×H2 : (z1, z2) 7→ NC1×C2
(e1 + z1, e2 + z2)

B : H1 × H2 → H1 × H2 : (z1, z2) 7→

(

∇
(

f(·, e2 + z2)
)

(e1 + z1)

−∇
(

f(e1 + z1, ·)
)

(e2 + z2)

)

,

(4.23)

Problem 4.11 is equivalent to find z1 ∈ H1 and z2 ∈ H2 such that 0 ∈ A(z1, z2)+B(z1, z2)+NV (z1, z2),
where V is clearly a closed vectorial subspace of H1 × H2, A is maximally monotone [7, Propo-
sition 20.22], and B is monotone ([7, Proposition 20.22] and [31]). Moreover, since ∇f is χ-
lipschitzian, B is also χ-lipschitzian. On the other hand, it follows from [7, Proposition 3.28(iii)]

17



and [7, Proposition 23.15(iii)] that PV : (z1, z2) 7→
(

z1 − L∗1L
∗†
1 z1, z2 − L∗2L

∗†
2 z2

)

, JγA : (z1, z2) 7→
(

PC1
(z1 + e1)− e1, PC2

(z2 + e2)− e2
)

and we deduce that (4.20) is a particular case of (3.13) when A,
B, and V are defined by (4.23). Altogether, the result follows from Corollary 3.6.

Remark 4.13 Note that the proposed method does not need the projection onto S1 and S2 at each
iteration, but it converges to solution strategies belonging to these sets. This new feature is very useful
in cases in which the projection onto S1 and S2 are not available or are not easy to compute as the
following example illustrates.

Example 4.14 We consider a 2-player zero-sum game in which X1 ⊂ R
N1 is bounded and represents

the set of pure strategies of player 1, and S1 =
{

f ∈ L2(X1) | f ≥ 0 a.e.,
∫

X1
f(x)dx = 1

}

is her set of

mixed strategies, which are distributions of probability in L2(X1) (X2, N2, and S2 are defined likewise).
We recall that L2(X) stands for the set of square-integrable functions f : X ⊂ R

n → ]−∞,+∞].
Moreover, let F ∈ L2(X1 ×X2) be a function representing the payoff for player 1 and let −F be the
payoff of player 2. The problem is to

find f1 ∈ S1 and f2 ∈ S2 such that















f1 ∈ Argmin
g1∈S1

∫

X1

∫

X2

F (x1, x2)g1(x1)f2(x2)dx2dx1

f2 ∈ Argmax
g2∈S2

∫

X1

∫

X2

F (x1, x2)f1(x1)g2(x2)dx2dx1.
(4.24)

Note that S1 and S2 are closed convex sets in L2(X1) and L2(X2), respectively. Hence, the projection
of any square-integrable function onto S1 or S2 is well defined. However, these projections are not easy
to compute. A possible way to avoid the explicit computation of these projections is to split S1 and S2

in S1 = C1∩ (e1 +ker L1) and S2 = C2 ∩ (e2+ker L2) as in the proof of Theorem 4.12, where, for every
i ∈ {1, 2}, Ci =

{

f ∈ L2(Xi) | f ≥ 0 a.e.
}

, ei ≡ (mi(Xi))
−1, Li : f 7→

∫

Xi
f(x)dx, and mi(Xi) stands

for the Lebesgue measure of the setXi. Note that e1 ∈ intC1∩(e1+ker L1) and e2 ∈ intC2∩(e2+ker L2),
which yield the qualification condition in Problem 4.11. For every i ∈ {1, 2}, let Hi = L2(Xi) and
define the function f : H1×H2 → R : (f1, f2) 7→

∫

X1

∫

X2
F (x1, x2)f1(x1)f2(x2)dx2dx1, which is bilinear,

differentiable, and it follows from F ∈ L2(X1 ×X2) that

∇f : (f1, f2) 7→
(

∫

X2

F (·, x2)f2(x2)dx2,

∫

X1

F (x1, ·)f1(x1)dx1

)

∈ H1 × H2 (4.25)

and that ∇f is χ-lipschitzian with χ = ‖F‖L2(X1×X2). Thus, by defining Gi = R, (4.24) is a particular
instance of Problem 4.11. Note that, for every i ∈ {1, 2}, L∗i : R → L2(Xi) : ξ 7→ δξ, where, for every
ξ ∈ R, δξ : x 7→ ξ is the constant function. Moreover, the operator Li ◦ L

∗
i : ξ → mi(Xi)ξ is invertible

with (Li ◦ L
∗
i )

−1 : ξ 7→ ξ/mi(Xi), which yields L
∗†
i = (Li ◦ L

∗
i )

−1Li = Mi, where Mi : f 7→ δf̄ and
f̄ =

∫

Xi
f(x)dx/mi(Xi) is the mean value of f . In addition, for every i ∈ {1, 2}, PCi

: f 7→ f+ : t 7→
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max{0, f(t)}. Altogether, (4.20) reduces to














































































u1,n = z1,n −M1(z1,n)
u2,n = z2,n −M2(z2,n)

g1,n = G1 +
(

∫

X2
F (·, x2)u2,n(x2)dx2 −M1

( ∫

X2
F (·, x2)u2,n(x2)dx2

)

)

g2,n = −G2 −
(

∫

X1
F (x1, ·)u1,n(x1)dx1 −M2

( ∫

X1
F (x1, ·)u1,n(x1)dx1

)

)

r1,n = z1,n − γg1,n
r2,n = z2,n − γg2,n
p1,n =

[

r1,n +m1(X1)
−1
]

+
−m1(X1)

−1

p2,n =
[

r2,n +m2(X2)
−1
]

+
−m2(X2)

−1

v1,n = p1,n −M1(p1,n)
v2,n = p2,n −M2(p2,n)
s1,n = 2v1,n − p1,n +M1(r1,n)
s2,n = 2v2,n − p2,n +M2(r2,n)

h1,n = G1 +
(

∫

X2
F (·, x2)v2,n(x2)dx2 −M1

( ∫

X2
F (·, x2)v2,n(x2)dx2

)

)

h2,n = −G2 −
(

∫

X1
F (x1, ·)v1,n(x1)dx1 −M2

( ∫

X1
F (x1, ·)v1,n(x1)dx1

)

)

t1,n = s1,n − γh1,n
t2,n = s2,n − γh2,n
z1,n+1 = z1,n + λn(t1,n − r1,n)
z2,n+1 = z2,n + λn(t2,n − r2,n),

(4.26)

where














G1 : z1 7→ M2(F (z1, ·))−
1

m1(X1)m2(X2)

∫

X1

∫

X2

F (x1, x2)dx2dx1

G2 : z2 7→ M1(F (·, z2))−
1

m1(X1)m2(X2)

∫

X1

∫

X2

F (x1, x2)dx2dx1

(4.27)

and γ ∈]0, 1/χ[. Altogether, Theorem 4.12 asserts that the sequences (z1,n + m1(X1)
−1)n∈N and

(z2,n +m2(X2)
−1)n∈N converge to f1 ∈ H1 and f2 ∈ H2, respectively, where (f1, f2) is a solution to

(4.24).

Note that, in the particular case when X1 and X2 are finite sets of actions (or pure strategies),
S1 and S2 are finite dimensional simplexes, and F : (x1, x2) 7→ x⊤1 Fx2 is a payoff matrix. In this
case (4.26) provides a first order method for finding Nash equilibria in the finite zero-sum game (for
complements and background on finite games, see [42])

find x1 ∈ S1 and x2 ∈ S2 such that











x1 ∈ Argmin
y1∈S1

x⊤1 Fx2

x2 ∈ Argmax
y2∈S2

x⊤1 Fx2.
(4.28)

When a large number of pure actions are involved (e.g., Texas Hold’em poker) classical linear pro-
gramming methods for solving (4.24) are enormous and unsolvable via standard algorithms as simplex.
Other attempts using acceleration schemes for obtaining good convergence rates are provided in [22].
However, the proposed method does not guarantee the convergence of the iterates. Other methods
need to compute a Nash equilibrium at each iteration, which is costly numerically [44]. The method
obtained from (4.26) is an explicit convergent method that solves (4.28) overcoming previous difficul-
ties. Numerical simulations and comparisons with other methods in the literature are part of further
research.
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5 Conclusions

We provide a fully split algorithm for finding a zero of A+B+NV . The proposed method exploits the
intrinsic properties of each of the operators involved by activating explicitly the single-valued operator
B and by computing the resolvent of A and projections onto V . Weak convergence to a zero of
A+B+NV is guaranteed and applications to monotone inclusions involving m maximally monotone
operators, to primal-dual composite inclusions involving partial sums of monotone operators, and
continuous zero-sum games are provided. In addition, the partial sum of two set-valued operators
with respect to a closed vectorial subspace is introduced. This operation preserves monotonicity and
a further study will be done in a future work. Furthermore, in the zero-sum games context, a splitting
method is provided for computing Nash equilibria. The algorithm replaces the projections onto mixed
strategy spaces (infinite dimensional simplexes) by alternate simpler projections.
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J., Wolkowicz, H. (eds.): Computational and Analytical Mathematics, vol. 50, pp. 143–159.
Springer, New York (2013)

[15] Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems.
Numer. Math. 76, 167–188 (1997)

[16] Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators.
J. Convex Anal. 16, 727–748 (2009)

[17] Combettes, P.L., Pesquet, J.-C.: A proximal decomposition method for solving convex variational
inverse problems. Inverse Problems 24, 065014, 27 pp (2008)

[18] Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mix-
tures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var.
Anal. 20, 307–330 (2012)

[19] Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1457 (2004)

[20] Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators. Math. Programming 55, 293–318 (1992)

[21] Fukushima, M.: The primal Douglas-Rachford splitting algorithm for a class of monotone map-
pings with applications to the traffic equilibrium problem. Math. Program. 72, 1–15 (1996)

[22] Gilpin, A., Peña, J., Sandholm, T.: First-order algorithm with O(ln(1/ǫ)) convergence for ǫ-
equilibrium in two-person zero-sum games. Math. Program. Ser. A 133, 279–298 (2012)

[23] Haraux, A.: Nonlinear Evolution Equations: Global Behavior of Solutions. Lecture Notes in
Math. 841, Springer-Verlag, New York (1981)
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