Skip to main content
Log in

Equilibrium Dividend Strategy with Non-exponential Discounting in a Dual Model

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper studies an optimal dividend problem for a company with non-exponential discounting. The surplus process is described by a dual model, and the target is to find a dividend strategy that maximizes the expected discounted value of dividends until ruin. The non-exponential discount function leads to a time-inconsistent problem. We aim at seeking the equilibrium strategy derived by taking our problem as a non-cooperate game, which is a time-consistent strategy. An extended Hamilton–Jacobi–Bellman equation system and a verification theorem are provided to derive the equilibrium strategy and the equilibrium value function. For the case of pseudo-exponential discount function, closed-form expressions for the equilibrium strategy and the equilibrium value function are derived. In addition, some numerical illustrations of our results are showed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A barrier strategy is that, when the controlled surplus is above a barrier, whatever amount exceeds the barrier level is paid out as dividend, but no dividend is paid out when the controlled surplus is below the barrier.

  2. We note that the classical C–L model, \(R_{t}=x+\mu t-S_{t}\), is a Lévy process with sample paths that are skip-free upwards. However, the sample paths of stochastic process, in Eq. (1), are skip-free downwards, and if we turn the sample paths of C–L model upside down (rotate \(180^{\circ }\)) and look at them from right to left, we get the shape of sample paths of model (1) (see [16]). Because of the symmetry of the two processes’ sample paths, the model (1) is called the dual model of the classical C–L model in the actuarial literature. About the more detailed discussion of the connection between the classical C–L model and the dual model, we can refer to Avanzi et al. [13], Afonso et al. [16], Dimitrova et al. [17].

  3. We can also state the time-inconsistent strategy as follows: We determine the optimal strategy \(\tilde{\ell }=\{\tilde{l}(t)\}_{t\ge 0}\) for the objective functional \(J(0, x, \ell )\) at initial point (0, x); and at some intermediate time s, we also determine the optimal strategy \(\bar{\ell }=\{\bar{l}(t)\}_{t\ge s}\) at state \((s, R_s^{\tilde{\ell }})\). If \(\tilde{l}(t)\ne \bar{l}(t)\) at least some \(t\ge s\), then \(\tilde{l}\) is a time-inconsistent strategy.

References

  1. De Finetti, B.: Su un’impostazione alternativa dell teoria colletiva del rischio. Trans. XVth Int. Congr. Actuar. 2, 433–443 (1957)

    Google Scholar 

  2. Jeanblanc-Picqué, M., Shiryaev, A.N.: Optimization of the flow of dividends. Russ. Math. Surv. 50, 257–277 (1995)

    Article  MATH  Google Scholar 

  3. Asmussen, S., Taksar, M.: Controlled diffusion models for optimal dividend pay-out. Insur. Math. Econ. 20, 1–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asmussen, S., Højgaard, B., Taksar, M.: Optimal risk control and dividend distribution policies. Example of excess of loss reinsurance for an insurance corporation. Finance Stoch. 4(3), 299–324 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Paulsen, J.: Optimal dividend payments until ruin of diffusion processes when payments are subject to both fixed and proportional costs. Adv. Appl. Probab. 39(3), 669–689 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Paulsen, J.: Optimal dividend payments and reinvestments of diffusion processes with both fixed and proportional costs. SIAM J. Control Optim. 47(5), 2201–2226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bai, L., Hunting, M., Paulsen, J.: Optimal dividend policies for a class of growth-restricted diffusion processes under transaction costs and solvency constraints. Finance Stoch. 16(3), 477–511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gerber, H.U.: Entscheidungskriterien fuer den zusammengesetzten Poisson-prozess. Schweiz. Aktuarver. Mitt. 1, 185–227 (1969)

    Google Scholar 

  9. Azcue, P., Muler, N.: Optimal reinsurance and dividend distribution policies in the Cramér–Lundberg model. Math. Finance 15(2), 261–308 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerber, H.U., Shiu, E.S.W.: On optimal dividend strategies in the compound poisson model. N. Am. Actuar. J. 10(2), 76–93 (2006)

    Article  MathSciNet  Google Scholar 

  11. Jin, Z., Yin, G.: Numerical methods for optimal dividend payment and investment strategies of markov-modulated jump diffusion models with regular and singular controls. J. Optim. Theory Appl. 159, 246–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zajic, T.: Optimal dividend payout under compound poisson income. J. Optim. Theory Appl. 104(1), 195–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Avanzi, B., Gerber, H.U., Shiu, E.S.W.: Optimal dividends in the dual model. Insur. Math. Econ. 41(1), 111–123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao, D.J., Yang, H.L., Wang, R.M.: Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs. Eur. J. Oper. Res. 211, 568–576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bayraktar, E., Kyprianou, A., Yamazaki, K.: On optimal dividends in the dual model. ASTIN Bull. 43(03), 359–372 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Afonso, L.B., Cardoso, R.M., Egidio dos Reis, A.D.: Dividend problems in the dual risk model. Insur. Math. Econ. 53(3), 906–918 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dimitrova, D.S., Kaishev, V.K., Zhao, S.: On finite-time ruin probabilities in a generalized dual risk model with dependence. Eur. J. Oper. Res. 242, 134–148 (2015)

    Article  MathSciNet  Google Scholar 

  18. Ainslie, G.W.: Picoeconomics. Cambridge University Press, London (1992)

    Google Scholar 

  19. Loewenstein, G., Prelec, D.: Anomalies in intertemporal choice: evidence and an interpretation. Q. J. Econ. 107, 573–597 (1992)

    Article  Google Scholar 

  20. Strotz, R.: Myopia and inconsistency in dynamic utility maximization. Rev. Financ. Stud. 23(3), 165–180 (1956)

    Google Scholar 

  21. Peleg, B., Menahem, E.: On the existence of a consistent course of action when tastes are changing. Rev. Econ. Stud. 40, 391–401 (1973)

    Article  MATH  Google Scholar 

  22. Goldman, S.: Consistent plans. Rev. Econ. Stud. 47, 533–537 (1980)

    Article  MATH  Google Scholar 

  23. Harris, C., Laibson, D.: Dynamic choices of hyperbolic consumers. Econometrica 69(4), 935–957 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krusell, P., Smith, A.: Consumption and savings decisions with quasi-geometric discounting. Econometrica 71, 366–375 (2003)

    Article  Google Scholar 

  25. Ekeland, I., Lazrak, A.: Being serious about non-commitment: subgame perfect equilibrium in continuous time. arXiv preprint (2006). http://arxiv.org/abs/math/0604264

  26. Ekeland, I., Pirvu, T.A.: Investment and consumption without commitment. Math. Financ. Econ. 2, 57–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Björk, T., Murgoci, A.: A general theory of Markovian time inconsistent stochastic control problems. Working paper (2010). Stockholm School of Economics

  28. Björk, T., Murgoci, A., Zhou, X.: Mean-variance portfolio optimization with state dependent risk aversion. Math. Finance 24(1), 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ekeland, I., Mbodji, O., Pirvu, T.A.: Time-consistent portfolio management. SIAM J. Financ. Math. 3(1), 1–32 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeng, Y., Li, Z.F.: Optimal time-consistent investment and reinsurance policies for mean-variance insurers. Insur. Math. Econ. 49(1), 145–154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, S.M., Li, Z.F., Zeng, Y.: Optimal dividend strategies with time-inconsistent preference. J. Econ. Dyn. Control 46, 150–172 (2014)

    Article  MathSciNet  Google Scholar 

  32. Zhao, Q., Wei, J.Q., Wang, R.M.: On dividend strategies with non-exponential discounting. Insur. Math. Econ. 58, 1–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two anonymous referees for valuable comments for the revision of the paper. This research is partially supported by Grants of the National Natural Science Foundation of China (Nos. 71231008, 71201173), Guangdong Natural Science for Research Team (2014A030312003), Guangdong Natural Science for Distinguished Young Scholar and Natural Science Foundation of Guangdong Province of China (No. S2013010011959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfei Li.

Additional information

Communicated by Moawia Alghalith.

Appendices

Appendix 1: Proof of Theorem 3.1

We first show that V is the value function corresponding to \(\hat{\ell }\), i.e., that \(V (t, x) = J(t, x, \hat{\ell })\). Note that

$$\begin{aligned} \mathcal {A}^{\hat{\ell }}u^{rs}(t,x) + U(r, t, \hat{l}) = 0. \end{aligned}$$
(34)

By Dynkin’s Theorem for \(u^{rs}\), we have

$$\begin{aligned} E_{t,x}\bigg [\int _t^{\tau _{t,x}^{\hat{\ell }}}\mathcal {A}^{\hat{\ell }}u^{rs}(s, R_s^{\hat{\ell }})\hbox {d}s \bigg ] = E_{t,x}[u^{rs}(\tau _{t,x}^{\hat{\ell }}, R_{\tau _{t,x}^{\hat{\ell }}}^{\hat{\ell }})] - u^{rs}(t,x). \end{aligned}$$

Thus, using (34) and boundary condition \(u^{rs}(t,0)=0\), we have

$$\begin{aligned} u^{rs}(t,x)= & {} E_{t,x}\bigg [\int _t^{\tau _{t,x}^{\hat{\ell }}}U(r, s, \hat{l}(s, R_s^{\hat{\ell }}))\hbox {d}s \bigg ]= E_{t,x}\bigg [\int _t^{\tau _{t,x}^{\hat{\ell }}}\varphi (s-r)\hat{l}(s, R_s^{\hat{\ell }})\hbox {d}s \bigg ] \end{aligned}$$

and

$$\begin{aligned} u^{s}(t,t,x) = u^{ts}(t,x) = E_{t,x}\bigg [\int _t^{\tau _{t,x}^{\hat{\ell }}}\varphi (s-t)\hat{l}(s, R_s^{\hat{\ell }})\hbox {d}s \bigg ]. \end{aligned}$$

Next, by the extended HJB equation system for V, we have

$$\begin{aligned} \mathcal {A}^{\hat{\ell }}V(t, x) + U(t, t, \hat{l}) - \mathcal {A}^{\hat{\ell }}u^s(t, t, x) + \mathcal {A}^{\hat{\ell }}u^{ts}(t, x)= & {} 0 \end{aligned}$$

and (34). Thus we have equation

$$\begin{aligned} \mathcal {A}^{\hat{\ell }}V(t, x) - \mathcal {A}^{\hat{\ell }}u^s(t, t, x)= & {} 0. \end{aligned}$$

Using Dynkin’s Theorem for V, we thus have

$$\begin{aligned} E_{t,x}\left[ V \left( \tau _{t,x}^{\hat{\ell }}, R_{\tau _{t,x}^{\hat{\ell }}}^{\hat{\ell }}\right) \right] = V(t, x) + E_{t,x}\bigg [\int _t^{\tau _{t,x}^{\hat{\ell }}}\mathcal {A}^{\hat{\ell }}V(s, R_s^{\hat{\ell }})\hbox {d}s \bigg ]. \end{aligned}$$

Hence, we get

$$\begin{aligned} E_{t,x}\left[ V\left( \tau _{t,x}^{\hat{\ell }}, R_{\tau _{t,x}^{\hat{\ell }}}^{\hat{\ell }}\right) \right]= & {} V(t, x) + E_{t,x}\bigg [\int _t^{\tau _{t,x}^{\hat{\ell }}}\mathcal {A}^{\hat{\ell }}u^s(r, r, R_r^{\hat{\ell }})dr \bigg ]. \end{aligned}$$
(35)

By using Dynkin’s Theorem for \(u^s\), we have

$$\begin{aligned} E_{t,x}\bigg [\int _t^{\tau _{t,x}^{\hat{\ell }}}\mathcal {A}^{\hat{\ell }}u^s\left( r, r, R_r^{\hat{\ell }}\right) dr \bigg ] = E_{t,x}\left[ u^s\left( \tau _{t,x}^{\hat{\ell }}, \tau _{t,x}^{\hat{\ell }}, R_{\tau _{t,x}^{\hat{\ell }}}^{\hat{\ell }}\right) \right] - u^s(t,t,x). \end{aligned}$$
(36)

Using (35), (36) and boundary conditions for V and \(u^s\), we can derive

$$\begin{aligned} V(t, x) = E_{t,x}\bigg [\int _t^{\tau _{t,x}^{\hat{\ell }}}U\left( t, s, \hat{l}\left( s,R_s^{\hat{\ell }}\right) \right) \hbox {d}s \bigg ] = J\left( t, x, \hat{\ell }\right) . \end{aligned}$$

We now show that \(\hat{\ell }\) is indeed an equilibrium strategy. For any \(h > 0\) and an arbitrary \(l\in [0, M]\), define the strategy \(\ell _h\) as in Definition 2.2. Without loss of generality, suppose that \(t+h<\tau _{t,x}^{\ell _h}\). Then we have

$$\begin{aligned} J(t,x,\ell _h)= & {} E_{t,x} \bigg [\int _t^{\tau _{t,x}^{\ell _h}}U(t, s, l_h(s,R_s^{\ell _h}))\hbox {d}s \bigg ] \\= & {} E_{t,x} \bigg [\int _t^{t+h}U(t, s, l_h(s,R_s^{\ell _h}))\hbox {d}s \bigg ] + E_{t,x} \bigg [\int _{t+h}^{\tau _{t,x}^{\ell _h}}U(t, s, l_h(s,R_s^{\ell _h}))\hbox {d}s \bigg ] \\= & {} E_{t,x} \bigg [\int _t^{t+h}U(t, s, l_h(s,R_s^{\ell _h}))\hbox {d}s \bigg ] + E_{t,x} \bigg [V(t+h, R_{t+h}^{\ell _h}) \bigg ] \\&\quad +\,E_{t,x} \bigg [\int _{t+h}^{\tau _{t,x}^{\ell _h}}U(t, s, l_h(s,R_s^{\ell _h}))\hbox {d}s - V(t+h, R_{t+h}^{\ell _h})\bigg ]. \end{aligned}$$

Using Dynkin’s Theorem for V, we have

$$\begin{aligned} E_{t,x}\left[ V\left( t+h, R_{t+h}^{\ell _h}\right) \right] = V(t, x) + E_{t,x}\bigg [\int _t^{t+h}\mathcal {A}^{l_h}V\left( s, R_s^{\ell _h}\right) \hbox {d}s \bigg ]. \end{aligned}$$

Then

$$\begin{aligned} J(t,x,\ell _h)= & {} E_{t,x} \bigg [\int _t^{t+h}U(t, s, l_h(s,R_s^{\ell _h}))\hbox {d}s \bigg ] + E_{t,x}\bigg [\int _t^{t+h}\mathcal {A}^{l_h}V(s, R_s^{\ell _h})\hbox {d}s \bigg ] \\+ & {} V(t, x) + E_{t,x} \bigg [\int _{t+h}^{\tau _{t,x}^{\ell _h}} [\varphi (s-t)-\varphi (s-t-h)]l_h(s,R_s^{\ell _h})\hbox {d}s \bigg ]. \end{aligned}$$

Noting the fact that \(V (t, x) = J(t, x, \hat{\ell })\), we obtain

$$\begin{aligned} J(t, x, \hat{\ell }) - J(t,x,\ell _h)= & {} -E_{t,x} \bigg [\int _t^{t+h}U(t, s, l(s,R_s^{\ell _h}))\hbox {d}s \bigg ] \\&- E_{t,x}\bigg [\int _t^{t+h}\mathcal {A}^{l_h}V(s, R_s^{\ell _h})\hbox {d}s \bigg ] \\&- E_{t,x} \bigg [\int _{t+h}^{\tau _{t,x}^{\ell _h}} [\varphi (s-t)-\varphi (s-t-h)]l_h(s,R_s^{\ell _h})\hbox {d}s \bigg ]. \end{aligned}$$

So

$$\begin{aligned} \liminf _{h\rightarrow 0} \frac{J(t, x, \hat{\ell }) - J(t, x, \ell _h)}{h}= & {} \liminf _{h\rightarrow 0} \Bigg \{-\mathcal {A}^{\hat{\ell }}V(t, x) - U(t, t, \hat{l}(t, x)) \\&- E_{t,x} \bigg [\int _{t}^{\tau _{t,x}^{\hat{\ell }}} \varphi ^{\prime }(s-t)\hat{l}(s,R_s^{\hat{\ell }})\hbox {d}s \bigg ] \Bigg \}\ge 0. \end{aligned}$$

The last inequality follows from

$$\begin{aligned} \sup _{l\in [0,M]} \Big \{ \mathcal {A}^{\ell }V(t, x) + U(t, t, l) - \mathcal {A}^{\ell }u^s(t, t, x) + \mathcal {A}^{\ell }u^{ts}(t, x) \Big \}= & {} 0. \end{aligned}$$

\(\square \)

Appendix 2: Proof of Proposition 3.1

Note that

$$\begin{aligned} u^{rs}(t,x) = E_{t,x} \bigg [\int _{t}^{\tau _{t,x}^{\hat{\ell }}} \varphi (s-r)\hat{l}(s,R_s^{\hat{\ell }})\hbox {d}s \bigg ] \end{aligned}$$

and

$$\begin{aligned} u^{s}(t,t,x) = E_{t,x} \bigg [\int _{t}^{\tau _{t,x}^{\hat{\ell }}} \varphi (s-t)\hat{l}(s,R_s^{\hat{\ell }})\hbox {d}s \bigg ]. \end{aligned}$$

Then

$$\begin{aligned} \mathcal {A}^{\ell }u^{rs}(t,x)= & {} -\varphi (t-r)\hat{l}(t,R_t^{\hat{\ell }})-(\mu +l(t,x))u^{rs}_x(t,x)\\&+\, \lambda \delta \bigg [\int _0^{\infty }(u^{rs}(t,x+y)-u^{rs}(t,x))\hbox {e}^{-\delta y}\hbox {d}y \bigg ]. \end{aligned}$$

Thus,

$$\begin{aligned} \mathcal {A}^{\ell }u^{ts}(t,x)= & {} -\varphi (t-t)\hat{l}(t,R_t^{\hat{\ell }})-(\mu +l(t,x))u^{ts}_x(t,x) \nonumber \\&+\, \lambda \delta \bigg [\int _0^{\infty }(u^{ts}(t,x+y)-u^{ts}(t,x))\hbox {e}^{-\delta y}\hbox {d}y \bigg ] \end{aligned}$$
(37)

and

$$\begin{aligned}&\mathcal {A}^{\ell }u^{s}(t,t,x) = -\varphi (t-t)\hat{l}(t,R_t^{\hat{\ell }})-E_{t,x} \bigg [\int _{t}^{\tau _{t,x}^{\hat{\ell }}} \varphi ^{\prime }(s-t)\hat{l}(s,R_s^{\hat{\ell }})\hbox {d}s \bigg ] \nonumber \\&\quad -(\mu +l(t,x))u^{s}_x(t,t,x) + \lambda \delta \bigg [\int _0^{\infty }(u^{s}(t,t,x+y)-u^{s}(t,t,x))\hbox {e}^{-\delta y}\hbox {d}y \bigg ].\nonumber \\ \end{aligned}$$
(38)

Inserting (37)–(38) into equations of Definition 3.1, we complete the proof. \(\square \)

Appendix 3: Proof of Lemma 4.1

Note that

$$\begin{aligned} A_1 = \frac{M\xi _5}{\rho _1}\left[ \left( \xi _5-\xi _1\right) \hbox {e}^{\xi _1b} + \left( \xi _2-\xi _5\right) \hbox {e}^{\xi _2b}\right] ^{-1}. \end{aligned}$$
(i):

If \(\xi _5-\xi _1>0\), then \(A_1<0\).

(ii):

If \(\xi _5-\xi _1<0\), then \((\xi _5-\xi _1)\hbox {e}^{\xi _1b}>\xi _5-\xi _1\) and \((\xi _2-\xi _5)\hbox {e}^{\xi _2b}>\xi _2-\xi _5\).

So

$$\begin{aligned} \left( \xi _5-\xi _1\right) \hbox {e}^{\xi _1b}+\left( \xi _2-\xi _5\right) \hbox {e}^{\xi _2b}> & {} \left( \xi _5-\xi _1\right) +(\xi _2-\xi _5)=\xi _2-\xi _1>0, \end{aligned}$$

and then \(A_1<0\).

Similarly, we can prove \(A_2<0,\;\; B_1<0\), and \(B_2<0.\) \(\square \)

Appendix 4: Proof of Lemma 4.2

\((\mathbf {i})\) We only prove the first inequality \((P+1)\xi _2 > \xi _5\). The second one is similar. Inequality \((P+1)\xi _2 > \xi _5\) is equivalent to \(\frac{M}{\rho _1} < \frac{1}{\xi _2} - \frac{1}{\xi _5}.\)

Firstly, note that

$$\begin{aligned} \xi _2= & {} \frac{(\mu \delta -\lambda -\rho _1)+\sqrt{(\mu \delta -\lambda -\rho _1)^2+4\mu \rho _1\delta }}{2\mu },\\ -\xi _5= & {} \frac{-[(\mu +M)\delta -\lambda -\rho _1]+\sqrt{[(\mu +M)\delta -\lambda -\rho _1]^2+4(\mu +M)\rho _1\delta }}{2(\mu +M)}. \end{aligned}$$

In addition, according to Cauchy inequality, we have

$$\begin{aligned} \sqrt{a^2+c}-a < \frac{c}{2a}, \quad a>0 \;\;\hbox {and}\;\; c>0. \end{aligned}$$

Next, we split the problem into the following three situations.

(1) If \((\mu +M)\delta -\lambda -\rho _1>0\) and \(\mu \delta -\lambda -\rho _1<0,\) then we have

$$\begin{aligned} -\xi _5 < \frac{\rho _1\delta }{(\mu +M)\delta -\lambda -\rho _1}, \quad \xi _2 < \frac{\rho _1\delta }{-\mu \delta +\lambda +\rho _1}, \end{aligned}$$

i.e.,

$$\begin{aligned}&-\frac{1}{\xi _5} > \frac{(\mu +M)\delta -\lambda -\rho _1}{\rho _1\delta }, \quad \frac{1}{\xi _2} > \frac{-\mu \delta +\lambda +\rho _1}{\rho _1\delta },\\&\quad \frac{1}{\xi _2}-\frac{1}{\xi _5} > \frac{(\mu +M)\delta -\lambda -\rho _1}{\rho _1\delta } + \frac{-\mu \delta +\lambda +\rho _1}{\rho _1\delta } = \frac{M}{\rho _1}. \end{aligned}$$

(2) If \((\mu +M)\delta -\lambda -\rho _1\le 0\), we have \(\mu \delta -\lambda -\rho _1<0.\) Hence, we have

$$\begin{aligned} \frac{\mu }{\rho _1} + \frac{M}{\rho _1} - \frac{\lambda }{\rho _1\delta } - \frac{1}{\delta } \le 0, \end{aligned}$$

i.e.,

$$\begin{aligned} \frac{M}{\rho _1} \le \frac{\lambda }{\rho _1\delta } + \frac{1}{\delta } - \frac{\mu }{\rho _1}=\frac{1}{\xi _2}. \end{aligned}$$

(3) If \(\mu \delta -\lambda -\rho _1\ge 0,\) we have \((\mu +M)\delta -\lambda -\rho _1>0.\) Thus

$$\begin{aligned} - \frac{1}{\xi _5}> & {} \frac{(\mu +M)\delta -\lambda -\rho _1}{\rho _1\delta } =\frac{M}{\rho _1} + \frac{\mu \delta -\lambda -\rho _1}{\rho _1\delta } ~~\ge ~~ \frac{M}{\rho _1}. \end{aligned}$$

Combining (1), (2) and (3), we complete the proof of \((\mathbf {i})\).

\((\mathbf {ii})\) If \(\omega P+(1-\omega )Q+1<0\), we have \(F(0)>0.\) Note

$$\begin{aligned} F(b) = \frac{\omega P[\xi _1\hbox {e}^{\xi _1b}-\xi _2\hbox {e}^{\xi _2b}]}{[(\xi _5-\xi _1)\hbox {e}^{\xi _1b}+(\xi _2-\xi _5)\hbox {e}^{\xi _2b}]} + \frac{(1-\omega )Q\,[\xi _3\hbox {e}^{\xi _3b}-\xi _4\hbox {e}^{\xi _4b}]}{[(\xi _6-\xi _3)\hbox {e}^{\xi _3b}+(\xi _4-\xi _6)\hbox {e}^{\xi _4b}]} - 1. \end{aligned}$$

According to \((\mathbf {i})\), we have

$$\begin{aligned} \lim _{b\rightarrow +\infty }F(b)= & {} \omega P\, \frac{-\xi _2}{\xi _2-\xi _5} + (1-\omega )Q\, \frac{-\xi _4}{\xi _4-\xi _6}-1 \\= & {} -\omega \left[ P\, \frac{\xi _2}{\xi _2-\xi _5}+1\right] - (1-\omega ) \left[ Q\, \frac{\xi _4}{\xi _4-\xi _6}+1\right] \\= & {} -\omega \frac{(P+1)\xi _2-\xi _5}{\xi _2-\xi _5} - (1-\omega ) \frac{(Q+1)\xi _4-\xi _6}{\xi _4-\xi _6}<0. \end{aligned}$$

Furthermore,

$$\begin{aligned} F^\prime (b)= & {} \omega P\, \frac{-\xi _5(\xi _1-\xi _2)^2\hbox {e}^{(\xi _1+\xi _2)b}}{[(\xi _5-\xi _1)\hbox {e}^{\xi _1b}+(\xi _2-\xi _5)\hbox {e}^{\xi _2b}]^2} \\&+\,(1-\omega )Q\, \frac{-\xi _6(\xi _3-\xi _4)^2\hbox {e}^{(\xi _3+\xi _4)b}}{[(\xi _6-\xi _3)\hbox {e}^{\xi _3b}+(\xi _4-\xi _6)\hbox {e}^{\xi _4b}]^2} \\= & {} -\omega \frac{M}{\rho _1}\, \frac{\xi _5^2(\xi _1-\xi _2)^2\hbox {e}^{(\xi _1+\xi _2)b}}{[(\xi _5-\xi _1)\hbox {e}^{\xi _1b}+(\xi _2-\xi _5)\hbox {e}^{\xi _2b}]^2} \\&-\,(1-\omega )\frac{M}{\rho _2}\, \frac{\xi _6^2(\xi _3-\xi _4)^2\hbox {e}^{(\xi _3+\xi _4)b}}{[(\xi _6-\xi _3)\hbox {e}^{\xi _3b}+(\xi _4-\xi _6)\hbox {e}^{\xi _4b}]^2}<0. \end{aligned}$$

Therefore, \(F(b)=0\) has a unique positive root. The proof of \((\mathbf {ii})\) is completed. \(\square \)

Appendix 5: Proof of Theorem 4.1

\((\mathbf {i})\) We can verify that V(x) defined by (32) is a continuously differentiable concave function and satisfies \(V(0)=0\). Since

$$\begin{aligned} V^{\prime }(0)=-\left[ \omega \frac{M}{\rho _1}\xi _5 + (1-\omega )\frac{M}{\rho _2}\xi _6\right] \le 1, \end{aligned}$$

\(V^{\prime }(x)\le 1\) for all \(x\ge 0\) and

$$\begin{aligned} (M-l)(V^{\prime }(x)-1)\le 0,\quad l\in [0,M]. \end{aligned}$$
(39)

In addition, we know that the function V given by (32) satisfies

$$\begin{aligned} -(\mu \!+\!M)V^{\prime }(x)\!+\!\lambda \delta \left( \int _0^{\infty }\!V(x\!+\!y)\hbox {e}^{-\delta y}\hbox {d}y \right) \!-\!\lambda V(x)\!+\!\varPhi (t, x)\!+\!M=0. \end{aligned}$$
(40)

Adding the inequality (39) to the equality (40), we can obtain (12).

\((\mathbf {ii})\) \(V(0)=0\) is obvious. The first-order derivative of V(x) given by (33) is:

$$\begin{aligned} V^{\prime }(x)= {\left\{ \begin{array}{ll} \omega A_1(\xi _1\hbox {e}^{\xi _1 x}-\xi _2\hbox {e}^{\xi _2 x}) + (1-\omega )A_2(\xi _3\hbox {e}^{\xi _3 x}-\xi _4\hbox {e}^{\xi _4 x}), \quad 0<x<b, \\ \omega B_1\xi _5\hbox {e}^{\xi _5 x} + (1-\omega )B_2\xi _6\hbox {e}^{\xi _6 x},\qquad \qquad \qquad \qquad \qquad \quad x\ge b. \end{array}\right. } \end{aligned}$$

From Lemma 4.1, we have that \(V^{\prime }(x)>0\) for all \(x>0\), which implies that V(x) is a strictly increasing function.

In addition, we can derive the second-order derivative of V(x) as follows:

$$\begin{aligned} V^{\prime \prime }(x)= {\left\{ \begin{array}{ll} \omega A_1(\xi _1^2\hbox {e}^{\xi _1 x}-\xi _2^2\hbox {e}^{\xi _2 x}) + (1-\omega )A_2(\xi _3^2\hbox {e}^{\xi _3 x}-\xi _4^2\hbox {e}^{\xi _4 x}), \quad 0<x<b, \\ \omega B_1\xi _5^2\hbox {e}^{\xi _5 x} + (1-\omega )B_2\xi _6^2\hbox {e}^{\xi _6 x},\qquad \qquad \qquad \qquad \qquad \quad x\ge b. \end{array}\right. } \end{aligned}$$

From Lemma 4.1, we have that \(V^{\prime \prime }(x)<0\) for all \(x\ge b\). Now, we consider the case when \(0<x<b\). Note that

$$\begin{aligned} V^{\prime \prime \prime }(x)=\omega A_1(\xi _1^3\hbox {e}^{\xi _1 x}-\xi _2^3\hbox {e}^{\xi _2 x}) + (1-\omega )A_2(\xi _3^3\hbox {e}^{\xi _3 x}-\xi _4^3\hbox {e}^{\xi _4 x}), \quad 0<x<b. \end{aligned}$$

Thus \(V^{\prime \prime \prime }(x)>0\) and \(V^{\prime \prime }(x)\) is increasing on interval (0, b). Then we have that \(V^{\prime \prime }(x)< V^{\prime \prime }(b-)\) for \(0<x<b\).

Besides, from (16), (18) and (19), we have

$$\begin{aligned} \mu V^{\prime \prime }(b-)= & {} \omega (\mu \delta -\lambda -\rho _1)V_1^{\prime }(b)+\omega \rho _1 \delta V_1(b) \\&\quad +\, (1-\omega )(\mu \delta -\lambda -\rho _2)V_2^{\prime }(b)+(1-\omega )\rho _2 \delta V_2(b) \end{aligned}$$

and

$$\begin{aligned} (\mu +M)V^{\prime \prime }(b+)= & {} \omega (\mu \delta +M\delta -\lambda -\rho _1)V_1^{\prime }(b)+\omega \rho _1 \delta V_1(b)-M\delta \\&\quad +\, (1-\omega )(\mu \delta +M\delta -\lambda -\rho _2)V_2^{\prime }(b)+(1-\omega )\rho _2 \delta V_2(b). \end{aligned}$$

Noting that \(V^{\prime }(b)=1\), we have \(\mu V^{\prime \prime }(b-)=(\mu +M)V^{\prime \prime }(b+)\le 0. \) Therefore, \(V^{\prime \prime }(x)< 0\) for \(0<x<b\).

In conclusion, V(x) defined by (33) is an increasing and continuously differentiable concave function on \(]0, +\infty [\). This implies the uniqueness of b.

In addition, we can adopt the same way as (i) to verify that V(x) given by (33) satisfies Eq. (12), and here we omit it. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Z. & Zeng, Y. Equilibrium Dividend Strategy with Non-exponential Discounting in a Dual Model. J Optim Theory Appl 168, 699–722 (2016). https://doi.org/10.1007/s10957-015-0742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0742-8

Keywords

Mathematics Subject Classification

Navigation