Skip to main content
Log in

Numerical Solution of a Class of Moving Boundary Problems with a Nonlinear Complementarity Approach

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Parabolic-type problems, involving a variational complementarity formulation, arise in mathematical models of several applications in Engineering, Economy, Biology and different branches of Physics. These kinds of problems present several analytical and numerical difficulties related, for example, to time evolution and a moving boundary. We present a numerical method that employs a global convergent nonlinear complementarity algorithm for solving a discretized problem at each time step. Space discretization was implemented using both the finite difference implicit scheme and the finite element method. This method is robust and efficient. Although the present method is general, at this stage we only apply it to two one-dimensional examples. One of them involves a parabolic partial differential equation that describes oxygen diffusion problem inside one cell. The second one corresponds to a system of nonlinear differential equations describing an in situ combustion model. Both models are rewritten in the quasi-variational form involving moving boundaries. The numerical results show good agreement when compared to direct numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crank, J.: Free and Moving Boundary Problems. The Universities Press, Oxford (1984)

    MATH  Google Scholar 

  2. Ferris, M., Pang, J.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(1), 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Wadsworth & Brooks, Belmont (1989)

    MATH  Google Scholar 

  4. Mazorche, S., Herskovits, J.: A new interior point algorithm for nonlinear complementarity problems. In: Proceedings of 6 World Congress on Structural and Multidisciplinary Optimization. Rio de Janeio, Brasil (2005)

  5. Chapiro, G., Mazorche, S.R., Herskovits, J., Roche, J.R.: Solution of the nonlinear parabolic problem using nonlinear complementarity algorithm (fda-ncp). In: Mecánica Computacional, vol. XXIX, 20, pp. 2141–2153 (2010)

  6. Gharbia, I.B., Jaffré, J.: Gas phase appearance and disappearance as a problem with complementarity constraints. Math. Comput. Simul. 99, 28–36 (2014)

    Article  Google Scholar 

  7. Chen, C., Mangasarian, O.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5(2), 97–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lauser, A., Hager, C., Helmig, R., Wohlmuth, B.: A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Resour. 34(8), 957–966 (2011)

    Article  Google Scholar 

  9. Gupta, S.C.: The Classical Stefan Problem: Basic Concepts, Modelling and Analysis. Elsevier, Amsterdam (2003)

    Google Scholar 

  10. Herskovits, J.: A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl. 99(1), 121–146 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mazorche, S., Herskovits, J.: A feasible directions algorithm for nonlinear complementarity problems and applications in mechanics. Struct. Multidiscip. O. 37(5), 435–446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Morton, K., Mayers, D.: Numerical Solutions of Partial Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  13. Chapiro, G., Mailybaev, A.A., Souza, A., Marchesin, D., Bruining, J.: Asymptotic approximation of long-time solution for low-temperature filtration combustion. Comput. Geosci. 16, 799–808 (2012)

    Article  Google Scholar 

  14. Bruining, J., Mailybaev, A., Marchesin, D.: Filtration combustion in wet porous medium. SIAM J. Appl. Math. 70, 1157–1177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Crank, J., Gupta, R.: A moving boundary problem arising from the diffusion of oxygen in absorbing tissue. IMA J. Appl. Math. 10(1), 19–33 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gupta, R., Kumar, D.: Variable time step methods for one-dimensional Stefan problem with mixed boundary condition. Int. J. Heat Mass Transf. 24, 251–259 (1981)

    Article  MATH  Google Scholar 

  17. Ahmed, S.: A numerical method for oxygen diffusion and absorption in a sike cell. Appl. Math. Comput. 173(1), 668–682 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boureghda, A.: Numerical solution of the oxygen diffusion in absorbing tissue with a moving boundary. Commun. Numer. Methods Eng. 22(9), 933–942 (2006)

    Article  MATH  Google Scholar 

  19. Çatal, S.: Numerical approximation for the oxygen diffusion problem. Appl. Math. Comput. 145(2–3), 361–369 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gupta, R., Banik, N.: Approximate method for the oxygen diffusion problem. Int. J. Heat Mass Transf. 32(4), 781–783 (1989)

    Article  Google Scholar 

  21. Hansen, E., Hougaard, P.: On a moving boundary problem from biomechanics. IMA J. Appl. Math. 13(3), 385–398 (1974)

    Article  MATH  Google Scholar 

  22. Baiocchi, C., Pozzi, G.: An evolution variational inequality related to a diffusion–absorption problem. Appl. Math. Optim. 2(4), 304–314 (1975)

    Article  MathSciNet  Google Scholar 

  23. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, London (1984)

    MATH  Google Scholar 

  24. Gupta, R.S.: Ph.D. thesis, Brunel University (1973)

  25. Akkutlu, I., Yortsos, Y.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 134, 229–247 (2003)

    Article  Google Scholar 

  26. Chapiro, G., Bruining, J.: Enhanced recovery of shale gas through combustion. J. Petrol. Sci. Eng. 127, 179–189 (2015)

    Article  Google Scholar 

  27. Wahle, C., Matkowsky, B., Aldushin, A.: Effects of gas-solid nonequilibrium in filtration combustion. Combust. Sci. Technol. 175, 1389–1499 (2003)

    Article  Google Scholar 

  28. LeVeque, R.J.: Numerical Methods for Conservation Laws, vol. 132. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  29. Chapiro, G., Marchesin, D., Schecter, S.: Combustion waves and Riemann solutions in light porous foam. J. Hyperb. Differ. Equ. 11(02), 295–328 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Jean R. Roche and anonymous referees for helping to improve the text. This work was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigori Chapiro.

Additional information

Communicated by Ilio Galligani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapiro, G., Gutierrez, A.E.R., Herskovits, J. et al. Numerical Solution of a Class of Moving Boundary Problems with a Nonlinear Complementarity Approach. J Optim Theory Appl 168, 534–550 (2016). https://doi.org/10.1007/s10957-015-0816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0816-7

Keywords

Mathematics Subject Classification

Navigation