Skip to main content
Log in

Guaranteed Collision Avoidance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A set of cooperative and noncooperative collision avoidance strategies for a pair of interacting agents with acceleration constraints, bounded sensing uncertainties, and limited sensing ranges is presented. We explicitly consider the case in which position information from the other agent is unreliable, and develop bounded control inputs using Lyapunov-based analysis, that guarantee collision-free trajectories for both agents. The proposed avoidance control strategies can be appended to any other stable control law (i.e., main control objective) and are active only when the agents are close to each other. As an application, we study in detail the synthesis of the avoidance strategies with a set-point stabilization control law and prove that the agents converge to the desired configurations while avoiding collisions and deadlocks (i.e., unwanted local minima). Simulation results are presented to validate the proposed control formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In what follows, we will assume that the control objective for the \(i\hbox {th}\) and \(j\hbox {th}\) vehicles is to converge to a desired configuration \({\mathbf {q}}_i^o\in {\mathbb {R}}^n\) and \({\mathbf {q}}_j^o\in {\mathbb {R}}^n\), respectively. See Sect. 3 for details.

  2. In real applications, it is advised or desirable to enforce a minimum distance between the vehicle and any obstacle larger than \(r^*\). In addition, it is a standard practice whenever position information is not updated continuously [46].

  3. Other bounded stable control laws can be chosen. The main results on collision avoidance (i.e., Theorems 4.1 and 4.2) are independent of the objective control.

  4. For the most part of this paper, we will choose \(\mu _i^o = \bar{\mu }_i^o\). However, in Sect. 5 we will make the distinction between both parameters by choosing \(\mu _i^o = \bar{\mu }_i^o - \bar{\mu }_i^L\), where \(\bar{\mu }_i^L \in ]0,\bar{\mu }_i^o[\).

  5. We can always choose design parameters \(R_i=R_j\) and \(h_i=h_j\) such that the assumption holds.

  6. Herein, we make reference to LaSalle’s Invariance Principle for nonsmooth systems developed in [49], which only requires \(\dot{{\xi }}\) to be Lebesgue measurable, or equivalently, \({\xi }\) to be absolutely continuous. Moreover, note that our two-agent system under no sensing uncertainties is time-invariant.

  7. Note that the results in Sect. 4 (i.e., Lemma 4.1 and Theorems 4.1 and 4.2) still hold since \(\left\| {\mathbf {u}}^o_i+{\mathbf {u}}^L_i\right\| \le \bar{\mu }_i^o\) and, therefore, we can arrive to the same conclusions on collision avoidance by replacing \({\mathbf {u}}^o_i\) with \({\mathbf {u}}^o_i+{\mathbf {u}}^L_i\).

  8. Note that \({\mathbf {d}}_i\) and \({\mathbf {d}}_j\) are piecewise continuous and time-invariant. Therefore, \({\mathbf {u}}_i^a\) and \({\mathbf {u}}_j^a\) are also bounded, time-invariant, piecewise continuous vector functions, which allow us to apply LaSalle’s Invariance Principle for nonsmooth systems [49].

References

  1. Desouza, G.N., Kak, A.C.: Vision for mobile robot navigation: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 237–267 (2002)

    Article  Google Scholar 

  2. Whitcomb, L.L., Yoerger, D.R., Singh, H.: Combined doppler/LBL based navigation of underwater vehicles. In: Proceedings of International Symposium Unmanned Untethered Submersible Technology (1999)

  3. Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey of underwater vehicle navigation: recent advances and new challenges. In: Proceedings of IFAC Conference Manoeuvring Control Marine Craft. Lisbon, Portugal (2006)

  4. Ghabcheloo, R., Aguiar, A.P., Pascoal, A., Silvestre, C., Kaminer, I., Hespanha, J.: Coordinated path-following in the presence of communication losses and time delays. SIAM J. Control Optim. 48(1), 234–265 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory Appl. 23(4), 581–591 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Leitmann, G.: Guaranteed avoidance feedback control. IEEE Trans. Automat. Control 25(4), 850–851 (1980)

    Article  MATH  Google Scholar 

  7. Leitmann, G.: Guaranteed avoidance strategies. J. Optim. Theory Appl. 32(4), 569–576 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barmish, B., Schmitendorf, W., Leitmann, G.: A note on avoidance control. J. Dyn. Syst. Meas. 103(1), 69–70 (1981)

    Article  MathSciNet  Google Scholar 

  9. Leitmann, G., Skowronski, J.: A note on avoidance control. Optim. Control Appl. Methods 4(4), 335–342 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corless, M., Leitmann, G., Skowronski, J.: Adaptive control for avoidance or evasion in an uncertain environment. Comput. Math. Appl. 13, 1–11 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pawluszewicz, E., Torres, D.: Avoidance control on time scales. J. Optim. Theory Appl. 145(3), 527–542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Automat. Control 50(7), 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  13. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  14. Stipanović, D.M., Hwang, I., Tomlin, C.J.: Computation of an over-approximation of the backward reachable set using subsystem level set functions. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11((2—-3)), 399–411 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Hwang, I., Stipanović, D.M., Tomlin, C.J.: Polytopic approximations of reachable sets applied to linear dynamic games and to a class of nonlinear systems. In: Abed, E. (ed.) Advances in Control, Communication Networks, and Transportation Systems: In Honor of Pravin Varaiya, Systems and Control: Foundations and Applications, pp. 1–20. Birkhäuser Boston (2005)

  16. Stipanović, D.M., Hokayem, P.F., Spong, M.W., Šiljak, D.: Cooperative avoidance control for multiagent systems. J. Dyn. Syst. Meas. Control 129, 699–707 (2007)

    Article  Google Scholar 

  17. Mastellone, S., Stipanović, D.M., Graunke, C.R., Intlekofer, K.A., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)

    Article  Google Scholar 

  18. Hokayem, P.F., Stipanović, D.M., Spong, M.W.: Coordination and collision avoidance for Lagrangian systems with disturbances. Appl. Math. Comput. 217(3), 1085–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rodríguez-Seda, E.J., Troy, J.J., Erignac, C.A., Murray, P., Stipanović, D.M., Spong, M.W.: Bilateral teleoperation of multiple mobile agents: coordinated motion and collision avoidance. IEEE Trans. Control Syst. Technol. 18(4), 984–992 (2010)

    Article  Google Scholar 

  20. Koditschek, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Adv. Appl. Math. 11(4), 412–442 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Panyakeow, P., Mesbahi, M.: Decentralized deconfliction algorithms for unicycle UAVs. In: Proceedings of American Control Conference, pp. 794–799. Baltimore, MD (2010)

  23. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Automat. Control 51(3), 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  24. Sierra, D., McCullough, P., Olgac, N., Adams, E.: Control of antagonistic swarm dynamics via Lyapunov’s method. Asian J. Control 14(1), 23–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Do, K.: Formation control of multiple elliptic agents with limited sensing ranges. Asian J. Control 14(6), 1514–1526 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Do, K.D.: Output-feedback formation tracking control of unicycle-type mobile robots with limited sensing ranges. Robot. Auton. Syst. 57(1), 34–47 (2009)

    Article  Google Scholar 

  27. Rodríguez-Seda, E.J.: Decentralized trajectory tracking with collision avoidance control for teams of unmanned vehicles with constant speed. In: Proceedings of American Control Conference, pp. 1216–1223. Portland, OR (2014)

  28. Tarnopolskaya, T., Fulton, N.: Synthesis of optimal control for cooperative collision avoidance for aircraft (ships) with unequal turn capabilities. J. Optim. Theory Appl. 144(2), 367–390 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tarnopolskaya, T., Fulton, N., Maurer, H.: Synthesis of optimal bangbang control for cooperative collision avoidance for aircraft (ships) with unequal linear speeds. J. Optim. Theory Appl. 155(1), 115–144 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miele, A., Wang, T.: Optimal trajectories and guidance schemes for ship collision avoidance. J. Optim. Theory Appl. 129(1), 1–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  32. Stipanović, D.M.: A survey and some new results in avoidance control. In: Proceedings of International Workshop Dynamic Control, pp. 166–173. Tossa de Mar, Spain (2009)

  33. Lalish, E., Morgansen, K.A.: Distributed reactive collision avoidance. Auton. Robots 32(3), 207–226 (2012)

    Article  Google Scholar 

  34. Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9(2), 61–74 (1988)

    Google Scholar 

  35. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. IEEE Comput. 22(6), 46–57 (1989)

    Article  Google Scholar 

  36. Frew, E., Sengupta, R.: Obstacle avoidance with sensor uncertainty for small unmanned aircraft. In: Proceedings of IEEE Conference Decision Control, pp. 614–619. Paradise Island, Bahamas (2004)

  37. Fulgenzi, C., Spalanzani, A., Laugier, C.: Dynamic obstacle avoidance in uncertain environment combining PVOs and occupancy grid. In: Proceedings of IEEE International Conference on Robotics Automation, pp. 1610–1616. Roma, Italy (2007)

  38. Bis, R., Peng, H., Ulsoy, G.: Vehicle occupancy space: Robot navigation and moving obstacle avoidance with sensor uncertainty. In: Proceedings of ASME Dynamic System Control Conference. Hollywood, CA (2009)

  39. Rodríguez-Seda, E.J., Stipanović, D.M., Spong, M.W.: Lyapunov-based cooperative avoidance control for multiple Lagrangian systems with bounded sensing uncertainties. In: Proceedings of IEEE Conference Decision Control, pp. 4207–4213. Orlando, FL (2011)

  40. Rodríguez-Seda, E.J., Spong, M.W.: Guaranteed safe motion of multiple Lagrangian systems with limited actuation. In: Proc. IEEE Conference on Decision Control, pp. 2773–2780. Maui, HI (2012)

  41. Fraichard, T., Asama, H.: Inevitable collision states: a step towards safer robots? In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots Systems, pp. 388–393. Las Vegas, NV (2003)

  42. van den Berg, J., Snape, J., Guy, S.J., Manocha, D.: Reciprocal collision avoidance with acceleration-velocity obstacles. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3475–3482. Shanghai, China (2011)

  43. Althoff, D., Kuffner, J.J., Wollherr, D., Buss, M.: Safety assessment of robot trajectories for navigation in uncertain and dynamic environments. Auton. Robots 32(3), 285–302 (2012)

    Article  Google Scholar 

  44. Rodríguez-Seda, E.J., Stipanović, D.M., Spong, M.W.: Collision avoidance control with sensing uncertainties. In: Proceedings of American Control Conference, pp. 3363–3368. San Francisco, CA (2011)

  45. Rodríguez-Seda, E.J., Tang, C., Spong, M.W., Stipanović, D.M.: Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing. Int. J. Robot. Res. 33(12), 1569–1592 (2014)

    Article  Google Scholar 

  46. Gonzalez, H., Polak, E.: On the perpetual collision-free RHC of fleets of vehicles. J. Optim. Theory Appl. 145(1), 76–92 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  48. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations for mobile robot navigation. In: Proceedings of IEEE International Conference on Robotics Automation, pp. 1398–1404. Sacramento, CA (1991)

  49. Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE Trans. Automat. Control 39(9), 1910–1914 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by The Boeing Company via the Information Trust Institute, University of Illinois at Urbana–Champaign, and by NSF Grant ECCS-0725433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick J. Rodríguez-Seda.

Additional information

Communicated by Martin Corless.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Seda, E.J., Stipanović, D.M. & Spong, M.W. Guaranteed Collision Avoidance for Autonomous Systems with Acceleration Constraints and Sensing Uncertainties. J Optim Theory Appl 168, 1014–1038 (2016). https://doi.org/10.1007/s10957-015-0824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0824-7

Keywords

Mathematics Subject Classification

Navigation