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Abstract The minimal time function of a class of semilinear control systems
is considered in Banach spaces, with the target set being a closed ball. It is
shown that the minimal time functions of the Yosida approximation equa-
tions converge to the minimal time function of the semilinear control system.
Complete characterization is established for the subdifferential of the minimal
time function satisfying the Hamilton-Jacobi-Bellman equation. These results
extend the theory of finite dimensional linear control systems to infinite di-
mensional semilinear control systems.
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1 Introduction

We consider a time optimal control problem in a Banach space (see a detailed
definition in Sect. 2 below). The goal of the optimal control problem is to steer
an initial point to a given nonempty and closed set along a trajectory of the
control system in minimal time. The optimal value function of the optimal
control problem is called the minimal time function.

The infinite dimensional semilinear system has been a focal point of re-
search since 1990s; see, e.g., [1–3] and the references therein. An important
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topic in this area is the property of the subdifferential of the minimal time
function satisfying the Hamilton-Jacobi-Bellman equation. Bardi [4] proved
that the minimal time function for general nonlinear control problems is a
viscosity solution to the Hamilton-Jacobi-Bellman equation and is the unique
viscosity solution of a boundary value problem. Soravia [5] extended Bardi’s
results to allow noncontrollability assumptions and more general boundary
conditions. Recently, Cannarsa and Cârjǎ [6] showed that the subdifferentials
of the minimal time function for the semilinear control system satisfy the
Hamilton-Jacobi-Bellman equation by an appropriate Kruz̆kov-type transfor-
mation. This result is elegant, but certain important cases are not covered in
the analysis. There have been some recent papers addressing the missing cases
of [6] such as [7–15], but they are either on simpler systems (constant or linear)
or restricted to finite dimensional spaces.

In this paper, we extend the results in [7–15] to semilinear systems in in-
finite dimensional spaces. We also obtain a complete characterization of the
proximal subdifferential of the minimal time function. There are two key diffi-
culties that we have to overcome. One is the unboundedness of the generator
of a semigroup. We use the Yosida approximation to guarantee certain regu-
larity. The other is the convergence of the minimal time function of the Yosida
approximation equation. By estimating its upper bound and by using the prin-
ciple of optimality, we establish the desired convergence result.

The organization of the paper is as follows. Section 2 presents basic notions,
assumptions, and related results about the time optimal control problem of the
semilinear control system. In Sect. 3, we prove that the minimal time functions
of the Yosida approximation equations converge to the minimal time function
of the semilinear control system. In Sect. 4, we establish a characterization
of the subdifferential of the minimal time function satisfying the Hamilton-
Jacobi-Bellman equation. Section 5 concludes this paper.

2 The Time Optimal Control Problem of the Semilinear Control
System

Let X be a Banach space and consider the time optimal control problem of
the semilinear control system

ẋ(t) = Ax(t) + f(x(t)) + u(t) and x(0) = x0, (1)

where A is the generator of a C0 semigroup, f is a Lipschitz continuous
function, and u : [0,+∞[→ U is a measurable function, which is called a
control strategy. For some given M,R > 0, we assume that the set of all
control strategies U is a closed ball BM := {x ∈ X : ‖x‖ 6M}, and the target
set S is a closed ball BR := {x ∈ X : ‖x‖ 6 R}.

The following basic hypotheses are used in [3,6] and are adopted through-
out this paper.
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(H1) A : D(A) ⊂ X → X is the infinitesimal generator of a C0 semigroup of
bounded linear operators on X, satisfying∥∥etA∥∥ 6 e−wt, ∀t > 0, for certain constant w > 0. (2)

(H2) f : X → X is a Lipschitz continuous function satisfying

‖f(x)− f(y)‖ 6 L‖x− y‖, for all x, y ∈ X, and f(0) = 0. (3)

(H3) M > LR.

Under (H1) and (H2), for any x0 ∈ X and any control u, the mild solution
of the semilinear control system (2) uniquely exists. That is, there exists a
unique x(t, x0, u) ∈ C([0,+∞[;X) satisfying

x(t, x0, u) = etAx0 +

∫ t

0

e(t−s)A[f(x(s)) + u(s)]ds, ∀t > 0. (4)

This solution is also called the trajectory of the semilinear control system (2)
starting from x0 with control u, and is often simply denoted by x(t). Assump-
tion (H3) is a controllability condition. We can see its effects in Corollary 3.1.
To see that these assumptions are nontrivial, a parabolic state equation in
Sobolev spaces is given as an example in Albano et al. [16].

Consider the time optimal control problem for (2). For any control strategy
u ∈ X, if x0 /∈ S, we define

τmin := min{τ > 0 : There exists x(t, x0, u) satisfying (2) andx(τ, x0, u) ∈ S}.

For any x0 ∈ X and any control strategy u ∈ X, the transition time function
θ(x0, u) from x0 to S is defined as

θ(x0, u) :=

{
τmin, if x0 /∈ S,
0, if x0 ∈ S.

(5)

The controllable set is given by C := {x0 : θ(x0, u) < +∞, for some u}.
The minimal time function T : C→ [0,+∞[ is defined as

T (x0) := inf
u∈U

θ(x0, u). (6)

The Yosida approximation equation, based on (2), is

ẋµ(t) = Aµx(t) + f(xµ(t)) + u(t) and xµ(0) = x0, (7)

where Aµ = µA(µ − A)−1, µ > −w. Under (H2), the unique mild solution
xµ(t) ∈ C([0,+∞[;X) of (7) satisfies

xµ(t, x0, u)) = etAµx0 +

∫ t

0

e(t−s)Aµ [f(xµ(s)) + u(s)]ds, ∀t > 0. (8)
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Then, the transition time function of the Yosida approximation is defined as

θµ(x0, u) :=

{
τµ if x0 /∈ S;

0, if x0 ∈ S,
(9)

where

τµ := min{τ > 0 :There exists xµ(t, x0, u) satisfying (7) and xµ(τ, x0, u) ∈ S}.

The corresponding controllable set is denoted by

Cµ := {x0 : θµ(x0, u) < +∞, for some u}.

The minimal time function is then defined as Tµ(x0) := infu∈U θµ(x0, u).
One of the main properties of Yosida’s approximation can be seen in [3]

(p. 68) and [17] (p.376), which is as follows.

Proposition 2.1 Let Aµ be the Yosida approximation of A, x(t, x0, u) and
xµ(t, x0, u) be the corresponding mild solutions of (2) and (7), respectively.
Then,

lim
µ→+∞

‖Aµx0 −Ax0‖ = 0, ∀x0 ∈ D(A),

lim
µ→+∞

‖etAµx0 − etAx0‖ = 0, ∀x0 ∈ X, t ∈ [0, T̃ ], and

lim
µ→+∞

sup
t∈[0,T̃ ]

‖xµ(t, x0, u)− x(t, x0, u)‖ = 0, where 0 < T̃ < +∞.

3 Convergence Properties of the Minimal Time Function

The target of this section is to show that the minimal time function of the
Yosida approximation equation converges to the minimal time function of the
semilinear control system. We start with two lemmas, whose proofs can be
found in [6,18].

Lemma 3.1 Assume (H1) and (H2) hold. For any x0 ∈ X, there exists a
control ũ such that the trajectory of the semilinear control system (2) satisfies

‖x(t, x0, ũ)‖ 6 e(L−w)t

(
‖x0‖ −

M

L

)
+
M

L
e−wt, ∀ 0 6 t 6

‖x0‖
M

. (10)

Lemma 3.2 Assume ( H1) and (H2) hold. For any x0, y0 ∈ X and any control
u, the mild solution of the semilinear control system (2) satisfies

‖x(t, x0, u)‖ 6 e(L−w)t

(
‖x0‖+

M

L− w

)
− M

L− w
(11)

and
‖x(t, x0, u)− x(t, y0, u)‖ 6 e(L−w)t‖x0 − y0‖, ∀ t ∈ [0,+∞[. (12)
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Remark 3.1 From Lemma 3.2, we can see that, if ‖x0‖ 6 ρ, then
‖f(x(t))‖ 6 L‖x(t)‖ 6 Cρ, for all t ∈ [0, T ], where 0 < T < +∞, ρ > 0, and
Cρ > 0.

Proposition 3.1 Assume (H1)–(H3) hold. Then, the following properties hold

(i) If L− w > 0, then there exists δ ∈]0, ML −R[ such that

T (x0) 6
dS(x0)

(L− w)[ML − (R+ δ)]
(13)

and

T (x0) 6
1

L− w
log

M
L −R

M
L − ‖x0‖

<
‖x0‖
M

, (14)

for all x0 satisfying dS(x0) 6 δ.

(ii) If L− w 6 0, then there exists δ ∈]0, ML −R[ such that

T (x0) 6
dS(x0)

LR
(15)

and

T (x0) 6
1

−w
log

R

‖x0‖
<
‖x0‖
M

, (16)

for all x0 satisfying dS(x0) 6 δ.

Proof Let t := 1
L−w log

M
L −R

M
L −‖x0‖

and R < ‖x0‖ < M
L . Since

lim
‖x0‖→R

(t− ‖x0‖
M ) < 0, there exists a δ ∈]0, ML −R[ such that 0 < dS(x0) < δ and

t < ‖x0‖
M . Now, let x0 ∈ X be fixed so that 0 < dS(x0) < δ. Lemma 3.1 yields

that there exists ũ satisfying ‖x(t, x0, ũ)‖ 6 R. Hence, T (x0) 6 t < ‖x0‖
M .

By computation, we can see lim
‖x0‖→R

(M
L −R− δ

)
−

 ‖x0‖−R

log
M
L
−R

M
L
−‖x0‖

 < 0.

Therefore, T (x0) 6 t 6 dS(x0)

(L−w)[ML −(R+δ)]
.

By the same schemes as above, setting t := 1
−w log R

‖x0‖ andR < ‖x0‖ < M
L ,

we can prove (ii). ut
According to Lemma 3.1 and Proposition 3.1, it is straightforward to have

the following corollary related to controllability.

Corollary 3.1 Assume (H1)–(H3) hold and let δ ∈]0, ML − R[. For every

x0 ∈ X satisfying 0 < dS(x0) 6 δ, the following properties hold:

(i) If L − w > 0, then there exists a control ũ such that the corresponding
trajectory x(t, x0, ũ) of the semilinear control system (2) over

t ∈]0, 1
L−w log

M
L −R

M
L −‖x0‖

] can reach the target set S;
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(ii) If L − w 6 0, then there exists a control ũ such that the corresponding
trajectory x(t, x0, ũ) of the semilinear control system (2) over
t ∈]0, 1

−w log R
‖x0‖ ] can reach the target set S.

Proposition 3.2 Assume (H1)–(H3) hold and let x0 ∈ C\S. Then, the min-
imal time function is locally Lipschizian on C\S. In other words, there exist
σ > 0 and m > 0 such that

|T (y0)− T (z)| 6 m‖y0 − z‖, ∀ y0, z ∈ B(x0, σ). (17)

Proof First, we consider the case that L − w > 0. Let u0 be a control such
that θ0 := θ(x0, u0) < +∞,

σ := min

{
δe(w−L)θ0 ,

δ

2
e(w−L)C

}
, and C := θ0 +

δ

(L− w)[ML − (R+ δ)]
,

where δ ∈]0, ML − R[ is the constant in Proposition 3.1. For all z ∈ B(x0, σ),
let y(θ0, z, u0) be the trajectory of system (2) from z with control u0, and
y(θ0, x0, u0) be the trajectory of system (2) from x0 with control u0. From
Lemma 3.2, we can see

dS(y(θ0, z, u0)) 6 ‖y(θ0, z, u0)− y(θ0, x0, u0)‖
6 e(L−w)θ0‖z − x0‖ < e(L−w)θ0σ < δ.

When T (z) > θ(x0, u0), Proposition 3.1 and the principle of optimality yield

T (z) 6 θ0 + T (y(θ0, z, u0)) 6 θ0 +
δ

(L− w)[ML − (R+ δ)]
= C.

When T (z) 6 θ(x0, u0), it is obvious that T (z) < C, where C is a certain
constant. For all y0, z ∈ B(x0, σ), without any loss of generality, we consider
T (y0) < T (z). Hence, for any ε ∈ [0, T (z) − T (y0)], there exists a control û
such that θ(y0, û) < T (y0) + ε < T (z) 6 C.

Now, we set ŷ := y(θ(y0, û), y0, û) and ẑ := y(θ(y0, û), z, û), which are
trajectories of the semilinear control system (2). Since ŷ ∈ S, we can obtain

dS(ẑ) 6 ‖ẑ − ŷ‖ 6 e(L−w)C‖y0 − z‖ < 2e(L−w)Cσ < δ.

According to Proposition 3.1 and the principle of optimality, we have

|T (y0)− T (z)| 6 T (z)− T (y0) 6 T (ẑ) + ε 6
‖ẑ − ŷ‖

(L− w)[ML − (R+ δ)]
+ ε

6
e(L−w)C‖y0 − z‖

(L− w)[ML − (R+ δ)]
+ ε.

Since ε is arbitrary, we obtain |T (y0)− T (z)| 6 m‖y0 − z‖, where

m := e(L−w)C

(L−w)[ML −(R+δ)]
.
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It remains to prove the results when L−w 6 0. Let u0 be a control such that

θ0 := θ(x0, u0) < +∞, σ := min
{
δe(w−L)θ0 , δ2e

(w−L)C
}
, and C := θ0 + δ

LR ,

where δ is the constant in Proposition 3.1. Using the same methods as in the
case of L − w > 0, we can obtain that the minimal time function is locally

Lipschizian with Lipschitz constant m = e(L−w)C
LR . ut

Our next task is to study the properties of the minimal time function of
the Yosida approximation equation.

Lemma 3.3 Assume (H1)–(H3) hold. For any x0 ∈ X and w ∈]0, w[, there
exist control ũ and N > 0 such that when µ > N , the trajectory of control
system (7) satisfies

‖xµ(t, x0, ũ)‖ 6 e(L−w)t

(
‖x0‖ −

M

L

)
+
M

L
e−wt, ∀t ∈ [0,

‖x0‖
M

]. (18)

Proof From Proposition 2.1 and Lemma 3.1, we can see that for any ε > 0,
there exists N > 0 such that when µ > N ,

‖xµ(t, x0, ũ)‖ 6 ‖xµ(t, x0, ũ)− x(t, x0, ũ)‖+ ‖x(t, x0, ũ)‖

6 ε+ e(L−w)t

(
‖x0‖ −

M

L

)
+
M

L
e−wt, ∀t ∈ [0,

‖x0‖
M

].

Let ε = e(L−w)t(‖x0‖ − M
L ) + M

L e
−wt − [e(L−w)t(‖x0‖ − M

L ) + M
L e
−wt] . From

0 < w < w, we can see that (18) holds. ut
By the same arguments as Proposition 3.1, Lemma 3.3 yields the following

proposition.

Proposition 3.3 Assume (H1)–(H3) hold. Then, there exists a constant
N > 0 such that for µ > N , the following properties hold.

(i) If L− w > 0, then there exists δ ∈]0, ML −R[ such that

Tµ(x0) 6
dS(x0)

(L− w)[ML − (R+ δ)]
(19)

and

Tµ(x0) 6
1

L− w
log

M
L −R

M
L − ‖x0‖

<
‖x0‖
M

, (20)

for all x0 satisfying dS(x0) 6 δ.

(ii) If L− w 6 0, then there exists δ ∈]0, ML −R[ such that

Tµ(x0) 6
dS(x0)

LR
(21)

and

Tµ(x0) 6
1

−w
log

R

‖x0‖
<
‖x0‖
M

, (22)

for all x0 satisfying dS(x0) 6 δ.



8 Y. Jiang et al.

Now, we give the convergence properties of the minimal time function.

Theorem 3.1 Assume (H1)–(H3) hold and let δ ∈]0, ML −R[. Then, for every

x0 ∈ X satisfying 0 < dS(x0) 6 δ, one has

lim
µ→+∞

Tµ(x0) = T (x0). (23)

Proof The inequalities in Proposition 3.3 tell us that Tµ(x0) is bounded. With-
out any loss of generality, we assume

lim
µ→+∞

Tµ(x0) = T. (24)

By definition, there exists a trajectory yµ(·) of system (7) such that
yµ(Tµ(x0)) ∈ S. Applying Proposition 2.1, we can see that yµ(·) is uniformly
convergent to y(·). The equality (24) and the continuity imply

lim
µ→+∞

yµ(Tµ(x0)) = y(T ) ∈ S. It follows that

T (x0) 6 T = lim
µ→+∞

Tµ(x0). (25)

Now we prove the equality holds in (25). If not, then T (x0) < lim
µ→+∞

Tµ(x0).

It follows for large enough µ, Tµ(x0) > T (x0). Let x(t) := y(t, x0, ū) and ū be
optimal control so that x(T (x0)) ∈ S. Proposition 2.1 implies that there exists
a trajectory yµ(t) := yµ(t, x0, ū) such that lim

µ→+∞
yµ(t) = x(t).

Let δ ∈]0, ML −R[ and 0 < dS(x0) < δ. If L−w > 0, then Lemma 3.3 yields

dS(yµ(t)) 6 ‖yµ(t)‖ −R 6 e(L−w)t

(
‖x0‖ −

M

L

)
+
M

L
e−wt −R < δ,

for all t ∈ [0, 1
L−w log

M
L −R

M
L −‖x0‖

[. If L− w 6 0, then Lemma 3.3 yields that

dS(yµ(t)) 6 ‖yµ(t)‖ −R 6 e(L−w)t

(
‖x0‖ −

M

L

)
+
M

L
e−wt −R < δ,

for all t ∈ [0, 1
−w log R

‖x0‖ [. From Proposition 3.4 and the principle of optimality,

if L− w > 0, then

Tµ(x0) 6 Tµ(yµ(t)) + t 6
dS(yµ(t))

(L− w)[ML − (R+ δ)]
+ t, ∀t ∈ [0, Tµ(x0)]. (26)

If L− w 6 0, then

Tµ(x0) 6 Tµ(yµ(t)) + t 6
dS(yµ(t))

LR
+ t, ∀t ∈ [0, Tµ(x0)]. (27)

Letting µ→ +∞ on both sides of (26) or (27), we can obtain

lim
µ→+∞

Tµ(x0) 6
dS(x(t))

(L− w)[ML − (R+ δ)]
+ t, ∀ L− w > 0 (28)
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and

lim
µ→+∞

Tµ(x0) 6
dBR(x(t))

LR
+ t, ∀ L− w 6 0. (29)

Proposition 3.3 implies that T (x0) < Tµ(x0) 6 1
L−w log

M
L −R
M
L −‖x‖

, for

L− w > 0, and T (x0) < Tµ(x0) 6 1
−w log R

‖x0‖ , for L− w 6 0. Set

t = T (x0) < Tµ(x0) in (28) and (29); then

T = lim
µ→+∞

Tµ(x0) 6 T (x0). (30)

From (25) and (30), we see that the theorem holds. ut
It should be noted that by Proposition 3.2 and Theorem 3.1, it is easy to

see that the minimal time function Tµ(·) is locally Lipschitz on C\S, as stated
in the following proposition.

Proposition 3.4 Assume (H1)–(H3) and given x0 ∈ C\S. Then, there exists
a constant N > 0. When µ > N , there exist σ > 0 and m > 0 such that

|Tµ(y)− Tµ(z)| 6 m‖y − z‖, ∀ y, z ∈ B(x0, σ). (31)

4 Proximal Subdifferentials of the Minimal Time Function

In this section, we present the results for the proximal subdifferentials of the
minimal time function that satisfies the Hamilton-Jacobi-Bellman equation.

Let us recall some notions from nonsmooth analysis [19,20]. Let f be a
proper and lower semicontinuous function with domf := {y : f(y) < +∞}.
For any δ > 0 and x ∈ X, let B(x, δ) := {y ∈ X : ‖x− y‖ < δ} .
• The proximal subdifferential of f at x is denoted by ∂P f(x) and is defined

as ξ ∈ ∂P f(x) iff there exist σ > 0 and δ > 0 such that f(x + v) − f(x) >
〈ξ, v〉 − σ‖v‖2, for all v ∈ B(0, δ).
• The proximal normal cone to a closed set Ω at x is denoted by NP

Ω (x)
and is defined as ξ ∈ NP

Ω (x) iff there exist σ > 0 and η > 0 such that
〈ξ, s′−x〉 6 σ ‖ s′−x ‖2, for all s′ ∈ Ω∩B(x, η). Furthermore, if Ω is convex,
then ξ ∈ NΩ(x) satisfies 〈ξ, s′ − x〉 6 0, for all s′ ∈ Ω, where NΩ(x) is the
usual normal cone of Ω at x in the sense of convex analysis.
• The Maximized Hamiltonian function of system (2) is defined as

H(x, ζ) := sup
u∈U
〈ζ,Ax+ f(x) + u〉.

• The Hamilton-Jacobi-Bellman Equation of system (2) is defined as
H(x, ζ) = 1.

Now, we consider that the initial state x0 is outside of the target set S.
For r > 0, define S(r) := {x0 ∈ X : T (x0) 6 r}, as the r-level set of T (·).

Theorem 4.1 Assume (H1)–(H3) hold. Let δ ∈]0, ML −R[, x0 ∈ (C\S)∩D(A),

0 < r := T (x0) < +∞, and 0 < dS(x0) < δ. Then,
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(a) ∂PT (x0) ⊂ NP
S(r)(x0) ∩ {ξ ∈ X∗ : H(x0,−ξ) = 1};

(b) ∂PT (x0) = NP
S(r)(x0) ∩ {ξ ∈ D(A∗) : H(x0,−ξ) = 1}.

Proof (a) Let ξ ∈ ∂PT (x0). By the definition of proximal subdifferentials, there
exist σ > 0, η > 0 such that for all y ∈ B(x0, η),

T (y)− T (x0)− 〈ξ, y − x0〉 > −σ ‖ y − x0 ‖2 . (32)

It follows that 〈ξ, y − x0〉 6 σ ‖ y − x0 ‖2, for any y ∈ S(r) ∩ B(x0, η), which
implies that ξ ∈ NP

S(r)(x0).

Now, we need to prove H(x0,−ξ) = 1. For any ε > 0, it is clearly that there
exists some v ∈ U such that 〈ξ, v〉 6 inf

u∈U
〈ξ, u〉 + ε. Let u(t) be a measurable

function satisfying u(0) = v. Suppose that xµ(t) satisfies the following system:

ẋµ(t) = −Aµxµ(t)− f(xµ(t))− u(t) and xµ(0) = x0, (33)

for all t ∈ [0,+∞[. Since x0 /∈ S, for any µ > 0, we can find a constant λ > 0
such that xµ(t) /∈ S and t ∈ [0, λ]. For s ∈ [0, t], define xµ(s) := xµ(t− s) and
u(s) := u(t− s). Then, xµ(·) is a trajectory of

ẋµ(s) = Aµxµ(s) + f(xµ(s)) + u(s) and xµ(0) = xµ(t). (34)

By the principle of optimality, we can get

T (x0) + t = T (x(0)) + t = T (xµ(t)) + t > T (xµ(0)) = T (xµ(t)). (35)

It follows from (32) that for t ∈ [0, λ],

t > T (xµ(t))− T (x0) > 〈ξ, xµ(t)− x0〉 − σ ‖ xµ(t)− x0 ‖2 . (36)

Dividing both sides of (36) by t and letting t→ 0+, we can see
〈−ξ, Aµx0 + f(x0)〉+ sup

u∈U
〈−ξ, u〉 6 1 + ε. Let µ→ +∞. Then,

〈−ξ, Ax0 + f(x0)〉+ sup
u∈U
〈−ξ, u〉 6 1 + ε. Therefore, letting ε→ 0+, we have

〈−ξ, Ax0 + f(x0)〉+ sup
u∈U
〈−ξ, u〉 6 1. (37)

It remains to show that the equality holds in (37). Let y(·) be an optimal
trajectory and v(·) be an optimal control for T (x0). It follows from the principle
of optimality that T (y(t)) + t = T (x0). From (32), note that there exists a
constant λ > 0 such that for t ∈ [0, λ],

−t = T (y(t))− T (x0) > 〈ξ, y(t)− x0〉 − σ ‖ y(t)− x0 ‖2 . (38)

Dividing both sides of (38) by t and letting t→ 0+, we can obtain

〈ξ, Ax0 + f(x0)〉+ inf
u∈U
〈ξ, u〉 6 〈ξ, Ax0 + f(x0)〉+ 〈ξ, v〉 6 −1. (39)

Therefore, together with (37), it yields 〈−ξ, Ax0 + f(x0)〉+ sup
u∈U
〈−ξ, u〉 = 1.
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(b) Given (a), we only need to prove

NP
S(r)(x0) ∩ {ξ ∈ D(A∗) : H(x0,−ξ) = 1} ⊂ ∂PT (x0).

Let ξ ∈ NP
S(r)(x0) be such that 〈ξ, Ax0 +f(x0)〉+ inf

u∈U
〈ξ, u〉 = −1. Then, there

exist σ1 > 0, η1 > 0 such that

〈ξ, y − x0〉 6 σ1 ‖ y − x0 ‖2, ∀ y ∈ S(r) ∩B(x0, η1) (40)

and 〈ξ, Ax0 + f(x0)〉+ 〈ξ, u〉 > −1, for all u ∈ U.
From [3] (p. 53) and ξ ∈ D(A∗), there exists a constant M > 0 such that

‖A∗µξ‖ = ‖µ(µ−A∗)−1A∗ξ‖ 6 ‖µ(µ−A∗)−1‖‖A∗ξ‖ 6M.

According to Proposition 2.1 and the Banach-Steinhaus Theorem, we can see
that there exists C > 0 such that ‖etAµ‖ 6 C, for t ∈ [0, T̂ ]. Let ε = 1, it is
clearly that there exist constants k > 0 and N > 0 such that when µ > N , we
can obtain ‖ ddt (e

tAµx0)‖ = ‖etAµAµx0‖ 6 C(‖Ax0‖+ 1) ≤ k, for all t ∈ [0, T̂ ],

where 0 < T̂ < +∞ and k is the Lipschitz constant of t 7→ etAµx0.
Set

c1 := mk(η + ‖x0‖+M + Cρ) + 1 and

σ := min{σ1c21 +m[M + (L+ 2M)‖ξ‖]c1},

where m is the Lipschitz constant of the minimal time function T (·), Cρ is the
constant in Remark 3.1. Let η := min{δ − dS(x0), η1c1 } and δ ∈]0, ML −R[.

Now, our aim is to prove that for all y ∈ B(x0, η),

T (y)− T (x0)− 〈ξ, y − x0〉 > −σ‖y − x0‖2. (41)

That is, ξ ∈ ∂PT (x0). If not, then there is y0 such that

‖y0 − x0‖ < η and T (y0)− T (x0) < 〈ξ, y0 − x0〉 − σ‖y0 − x0‖2. (42)

In the following, we divide the discussion into three cases: (1) T (y0) = r,
(2) T (y0) > r, and (3) T (y0) < r.

Case (1). If T (y0) = r, then y0 ∈ S(r). Thus (40) contradicts to (42).
Hence (41) holds.

Case (2). If T (y0) > r, let yµ(t) be the optimal trajectory with initial

state y0 satisfying: yµ(t) := etAµy0 +
∫ t
0
e(t−s)Aµ [f(yµ(s)) + u(s)]ds, for any

t ∈ [0, Tµ(y0)], where u(t) is the optimal control.
By the definition of η, we can obtain dS(y0) 6 ‖y0−x0‖+ dS(x0) < δ. Let

tµ := Tµ(y0)− r. Proposition 3.2 and Theorem 3.1 yield that

lim
µ→+∞

tµ = t := T (y0)− r > 0, and lim
µ→+∞

(tµ −m‖y0 − x0‖) 6 0.

This means that there exists a constant N > 0. When µ > N , one has

tµ > 0, and tµ 6 m‖y0 − x0‖. (43)
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By simple calculus, for all t ∈ [0, tµ], we obtain

‖yµ(t)− x0‖ 6 ‖etAµy0 − x0‖+ ‖
∫ t

0

e(t−s)Aµ [f(yµ(s)) + u(s)]ds‖

6 (ktµ + 1)‖y0 − x0‖+ ktµ‖x0‖+ k(M + Cρ)tµ.

When µ > N , for all t ∈ [0, tµ], the inequality (43) yields

‖yµ(t)− x0‖ 6 [mk(η + ‖x0‖+M + Cρ) + 1]‖y0 − x0‖ 6 c1‖y0 − x0‖. (44)

Set yµ := yµ(tµ) for simplification. From (44), we try to estimate formulas to
prove ξ ∈ ∂PT (x0) as follows

T (y0)− r − 〈ξ, y0 − x0〉 = t− 〈ξ, y0 − yµ + yµ − x0〉

> t+

∫ tµ

0

〈ξ, ẏµ(s)〉ds− 〈ξ, yµ − x0〉

> t+

∫ tµ

0

〈ξ, ẏµ(s)−Aµx0 − f(x0)− u(s)〉ds− 〈ξ, yµ − x0〉

+

∫ tµ

0

〈ξ, Aµx0 + f(x0) + u(s)〉ds

> t+ tµ〈ξ, Aµx0 + f(x0)〉+

∫ tµ

0

〈ξ, u(s)〉ds− 〈ξ, yµ − x0〉

+

∫ tµ

0

(〈ξ, Aµ(yµ(s)− x0)〉+ 〈ξ, f(yµ(s))− f(x0)〉)ds

> t+ tµ〈ξ, Aµx0 + f(x0)〉+

∫ tµ

0

〈ξ, u(s)〉ds− 〈ξ, yµ − x0〉

−
∫ tµ

0

(‖A∗µξ‖‖yµ(s)− x0‖+ ‖ξ‖‖f(yµ(s))− f(x0)‖)ds

> t+ tµ〈ξ, Aµx0 + f(x0)〉+

∫ tµ

0

〈ξ, u(s)〉ds−m(M + L‖ξ‖)c1‖y0 − x0‖2

− 〈ξ, yµ − x0〉. (45)

We next estimate the terms in (45). Let y(t) be the trajectory with initial

state y0 satisfying: y(t) := etAy0 +
∫ t
0
e(t−s)A[f(y(s))+u(s)]ds, ∀t ∈ [0, T (y0)].

Take y := y(t). Proposition 2.1 yields that

lim
µ→+∞

yµ = y. (46)

From the principle of optimality, we can see T (y(t)) + t = T (y0), for any
t ∈ [0, T (y0)]. Let t = t, then T (y(t)) = r. Hence, y(t) ∈ S(r). Moreover, by
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the Lipschitz continuity of T (·), we can get that

‖y − x0‖ 6 ‖etAy0 − x0‖+ ‖
∫ t

0

e(t−s)A[f(y(s)) + u(s)]ds‖

6 (kt+ 1)‖y0 − x0‖+ kt‖x0‖+ k(M + Cρ)t

6 [mk(η + ‖x0‖+M + Cρ) + 1]‖y0 − x0‖ 6 c1‖y0 − x0‖ 6 η1.

This implies y ∈ S(r) ∩ B(x0, η1). Letting µ → +∞ in (40), (45) and (46)
yields

T (y0)− r − 〈ξ, y0 − x0〉 > −mc1(M + L‖ξ‖)]‖y0 − x0‖2 − 〈ξ, y − x0〉
> −[σ1c

2
1 +mc1(M + L‖ξ‖)]‖y0 − x0‖2

> −σ‖y0 − x0‖2. (47)

Then, (47) contradicts (42). Therefore, the result (41) holds.
Case (3). Now we consider T (y0) < r. Consider the trajectory yµ(·) with

initial state y0 satisfying yµ(t) = e−tAµy0 −
∫ t
0
e(s−t)Aµ [f(y(s)) + u(s)]ds. Let

t̄µ = r−Tµ(y0). Since dS(y0) 6 ‖y0−x0‖+ dS(x0) < δ, Proposition 3.2 yields
lim

µ→+∞
tµ =: t = r − T (y0) > 0 and lim

µ→+∞
(tµ −m‖y0 − x0‖) ≤ 0. This means

that there exists a constant N > 0. When µ > N , one has

tµ > 0 and tµ 6 m‖y0 − x0‖. (48)

Let yµ := yµ(tµ). For t ∈ [0, tµ], we can get

‖yµ(t)− x0‖ 6 ‖etAµy0 − x0‖+ ‖
∫ t

0

e(t−s)Aµ [f(yµ(s)) + u(s)]ds‖

6 (ktµ + 1)‖y0 − x0‖+ ktµ‖x0‖+ k(M + Cρ)tµ.

When µ > N , for all t ∈ [0, tµ], the inequality (48) yields

‖yµ(t)− x0‖ 6 [mk(η + ‖x0‖+M + Cρ) + 1]‖y0 − x0‖ 6 c1‖y0 − x0‖. (49)

Since 〈ξ, Ax0 +f(x0)〉+ inf
u∈U
〈ξ, u〉 = −1, for any ε > 0, there exists a v ∈ U

such that
〈ξ, Ax0 + f(x0) + v〉 6 −1 + ε. (50)

In terms of (49), we next deduce formulas to prove ξ ∈ ∂PT (x0).

T (y0)− r − 〈ξ, y0 − x0〉 = −t− 〈ξ, y0 − yµ + yµ − x0〉

> −t+

∫ tµ

0

〈ξ, ẏµ(s)〉ds− 〈ξ, yµ − x0〉

> −t+

∫ tµ

0

〈ξ, ẏµ(s) +Aµx0 + f(x0) + v(s)〉ds− 〈ξ, yµ − x0〉

−
∫ tµ

0

〈ξ, Aµx0 + f(x0) + v(s)〉ds

> −t− tµ〈ξ, Aµx0 + f(x0)〉 −
∫ tµ

0

〈ξ, v(s)〉ds− 〈ξ, yµ − x0〉
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−
∫ tµ

0

(〈ξ, Aµ(yµ(s)− x0)〉+ 〈ξ, f(yµ(s))− f(x0) + u(s)− v(s)〉)ds

> −t− tµ〈ξ, Aµx0 + f(x0)〉 −
∫ tµ

0

〈ξ, v(s)〉ds− 〈ξ, yµ − x0〉

−
∫ tµ

0

(‖A∗µξ‖‖yµ(s)− x0‖+ ‖ξ‖‖f(yµ(s))− f(x0)‖+ 2M‖ξ‖)ds

> −
∫ tµ

0

〈ξ, v(s)〉ds−mc1[M + (L+ 2M)‖ξ‖]‖y0 − x0‖2 − 〈ξ, yµ − x0〉

− t− tµ〈ξ, Aµx0 + f(x0)〉. (51)

We analyze the terms in (51). Let y(t) be the trajectory with initial state y0
satisfying y(t) := e−tAy0 −

∫ t
0
e−(t−s)A[f(y(s)) + u(s)]ds, for all t ∈ [0, T (y0)].

Take y := y(t). Proposition 2.1 yields

lim
µ→+∞

yµ = y. (52)

If y /∈ BR, define x(s) := y(t− s) and g(s) := u(t− s), for s ∈ [0, t]. Then,
x(·) is the mild solution satisfying ẋ(s) = Ax(s)+f(x(s))+g(s) and x(0) = y.
From the principle of optimality, we can see

T (x(0)) = T (y) 6 T (x(s)) + s, ∀t ∈ [0, T (y)]. (53)

If t 6 T (y), take s = t in (53), then T (y) 6 r. If not, it is obvious that
T (y) 6 r. Hence, y ∈ S(r). By simple calculus, for all s ∈ [0, t], we can obtain

‖y − x0‖ 6 ‖e−tAy0 − x0‖+ ‖
∫ t

0

e(s−t)A[f(y(s)) + u(s)]ds‖

6 (kt+ 1)‖y0 − x0‖+ kt‖x0‖+ k(M + Cρ)t

6 [mk(η + ‖x0‖+M + Cρ) + 1]‖y0 − x0‖.
6 c1‖y0 − x0‖ 6 η1. (54)

This implies y ∈ S(r)∩B(x0, η1). Letting µ→ +∞ and ε→ 0+ in (40), (50)-
(52), and (54) yield

T (y0)− r − 〈ξ, y0 − x0〉 > −m[M + (L+ 2M)‖ξ‖]c1‖y0 − x0‖2 − 〈ξ, y − x0〉
> −[σ1c

2
1 +mc1(M + (L+ 2M)‖ξ‖)]‖y0 − x0‖2

> −σ‖y0 − x0‖2. (55)

Then, (55) contradicts (42). Thus, (41) holds and the proof is completed. ut
For the case in which the initial state x0 is inside of the target set S, the

proof is similar. For brevity, we only state the result and omit its proof.

Theorem 4.2 Assume (H1)–(H3) hold and let x0 ∈ S ∩D(A). Then,

(a) ∂PT (x0) ⊂ NS(x0) ∩ {ξ ∈ X∗ : H(x0,−ξ) 6 1};
(b) ∂PT (x0) = NS(x0) ∩ {ξ ∈ D(A∗) : H(x0,−ξ) 6 1}.
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5 Conclusions

This paper studies the minimal time function of a semilinear control system
with the target set being a closed ball in Banach spaces. We show that the min-
imal time functions of the Yosida approximation systems converge to the min-
imal time function of the semilinear control system. We also give a complete
characterization for the proximal subdifferential of the minimal time function
satisfying the Hamilton-Jacobi-Bellman equation. We therefore establish new
results for semilinear control systems in infinite dimensional spaces, which ex-
tend the corresponding results in the literature on linear control systems in
finite dimensional spaces.
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6. Cannarsa, P., Cârjǎ, O.: On the Bellman equation for the minimum time problem in
infinite dimensions. SIAM J. Control Optim. 43, 532–548 (2004)

7. Wolenski, P.R., Yu, Z.: Proximal analysis and the minimal time function. SIAM J.
Control Optim. 36, 1048–1072 (1998)

8. Colombo, G., Wolenski, P.R.: The subgradient formula for the minimal time function
in the case of constant dynamics in Hilbert space. J. Glob. Optim. 28, 269–282 (2004)

9. Colombo, G., Wolenski, P.R.: Variational analysis for a class of minimal time functions
in Hilbert spaces. J. Convex. Anal. 11, 335–361 (2004)

10. He, Y.R., Ng, K.F.: Subdifferentials of a minimum time function in Banach spaces. J.
Math. Anal. Appl. 321, 896–910 (2006)

11. Jiang, Y., He, Y.R.: Subdifferentials of a minimum time function in normed spaces. J.
Math. Anal. Appl. 358, 410–418 (2009)

12. Jiang, Y., He, Y.R.: Subdifferential properties for a class of minimal time functions with
moving target sets in normed spaces. Appl. Anal. 91, 491-502 (2012)

13. Mordukhovich, B.S., Nguyen, M.N.: Limiting subgradients of minimal time functions in
Banach spaces. J. Global Optim. 46, 615-633 (2009)

14. Mordukhovich, B.S., Nguyen, M.N.: Subgradients of minimal time functions under min-
imal requirements. J. Convex Anal. 18, 915–947 (2011)

15. Jiang, Y., He, Y.R., Sun, J.: Subdifferential properties of the minimal time function of
linear control systems. J. Global Optim. 51, 395-412 (2011)

16. Albano, P., Cannarsa, P., Sinestrari, C.: Regularity results for the minimum time func-
tion of a class of semilinear evolution equations of parabolic type. SIAM J. Control
Optim. 38, 916–946 (2000)



16 Y. Jiang et al.

17. Rudin, W.: Functional Analysis. McGraw-Hill Book Inc, New York (1991)
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