Skip to main content
Log in

Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-sided space–time Caputo fractional-order telegraph equation with three types of non-homogeneous boundary conditions, namely, Dirichlet, Robin, and non-local conditions. The proposed algorithm is based on shifted Chebyshev tau technique combined with the derived shifted Chebyshev operational matrices. We focus primarily on implementing the novel algorithm both in temporal and spatial discretizations. This algorithm reduces the problem to a system of algebraic equations greatly simplifying the problem. This system can be solved by any standard iteration method. For confirming the efficiency and accuracy of the proposed scheme, we introduce some numerical examples with their approximate solutions and compare our results with those achieved using other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, New York (2008)

    MATH  Google Scholar 

  2. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  3. Machado, J.A.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kumar, D., Purohit, S.D., Secer, A., Atangana, A.: On generalized fractional kinetic equations involving generalized Bessel function of the first kind. Math. Probl. Eng. (2015). doi:10.1155/2015/289387

    MathSciNet  Google Scholar 

  5. Li, C., Deng, W.: Chaos synchronization of fractional-order differential systems. Int. J. Mod. Phys. B 20(07), 791–803 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  7. Miller, K., Ross, B.: An Introduction to the Fractional Calaulus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  8. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81, 1023–1052 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao, Z., Li, C.: Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl. Math. Comput. 219, 2975–2988 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Atangana, A.: Numerical analysis of time fractional three dimensional diffusion equation. Therm. Sci. 19(1), 7–12 (2015)

    Article  Google Scholar 

  11. Chen, S., Jiang, X., Liu, F., Turner, I.: High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation. J. Comput. Appl. Math. 278, 119–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tian, W.Y., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 294, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, W.H., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Atangana, A.: On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys. 293, 104–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C., Zhao, T., Deng, W., Wu, Y.: Orthogonal spline collocation methods for the subdiffusion equation. J. Comput. Appl. Math. 255, 517–528 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.06.012

  18. Wei, L., Dai, H., Zhang, D., Si, Z.: Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation. Calcolo 51, 175–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bhrawy, A.H.: A highly accurate collocation algorithm for \(1+1\) and \(2+1\) fractional percolation equations. J. Vib. Control (2015). doi:10.1177/1077546315597815

    MATH  Google Scholar 

  20. Bhrawy, A.H., Zaky, M.A., Van Gorder, R.A.: A space\({-}\)time Legendre spectral tau method for the two-sided space\({-}\)time Caputo fractional diffusion-wave equation. Numer. Algorithms (2015). doi:10.1007/s11075-015-9990-9

    MATH  Google Scholar 

  21. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, W., Li, J., Yang, Y.: Spatial fractional telegraph equation for image structure preserving denoising. Signal Process. 107, 368–377 (2015)

    Article  Google Scholar 

  23. Hosseini, V.R., Shivanian, E., Chen, W.: Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur. Phys. J. Plus 130(2), 1–21 (2015)

    Article  Google Scholar 

  24. Shivanian, E.: Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation. Math. Methods Appl. Sci. (2015). doi:10.1002/mma.3604

    MATH  Google Scholar 

  25. Tian, W.Y., Deng, W., Wu, Y.: Polynomial spectral collocation method for space fractional advection–diffusion equation. Numer. Methods Partial Differ. Equ. 30(2), 514–535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ding, X.L., Jiang, Y.L.: Analytical solutions for the multi-term time–space fractional advection–diffusion equations with mixed boundary conditions. Nonlinear Anal. Real World Appl. 14, 1026–1033 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiang, W., Lin, Y.: Representation of exact solution for the time-fractional telegraph equation in the reproducing kernel space. Commun. Nonlinear Sci. Numer. Simul. 16, 3639–3645 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Orsingher, E., Beghin, L.: Time-fractional telegraph equation and telegraph processes with Brownian time. Probab. Theory Relat. Fields 128, 141160 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Orsingher, E., Zhao, X.: The space-fractional telegraph equation and the related fractional telegraph process. Chin. Ann. Math. 24B, 1–12 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 170, 1126–1134 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338, 1364–1377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dehghan, M., Yousefi, S.A., Lotfi, A.: The use of He’s variational iteration method for solving the telegraph and fractional telegraph equations. Int. J. Numer. Methods Biomed. Eng. 27, 219–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moaddya, K., Momani, S., Hashima, I.: The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics. J. Comput. Appl. Math. 61, 1209–1216 (2011)

    Article  MathSciNet  Google Scholar 

  34. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Bound. Elem. 38, 31–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model. 35, 5662–5672 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26, 25–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kanth, ASVRavi, Aruna, K.: Differential transform method for solving the linear and nonlinear Klein–Gordon equation. Comput. Phys. Commun. 180, 708–711 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space–time Riesz–Caputo fractional advection–diffusion equation. Numer. Algorithms 56, 383–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Y.X., Ding, H.F.: Improved matrix transform method for the Riesz space fractional reaction dispersion equation. Comput. Math. Appl. 260, 266–280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Luchko, Y.: Fractional wave equation and damped waves. J. Math. Phys. 54, 031505 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, 1737–1748 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Efficient Legendre spectral tau algorithm for solving two-sided space\({-}\)time Caputo fractional advection\({-}\)dispersion equation. J. Vib. Control (2015). doi:10.1177/1077546314566835

    MATH  Google Scholar 

  44. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the referees for their constructive comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Bhrawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H., Zaky, M.A. & Machado, J.A.T. Numerical Solution of the Two-Sided Space–Time Fractional Telegraph Equation Via Chebyshev Tau Approximation. J Optim Theory Appl 174, 321–341 (2017). https://doi.org/10.1007/s10957-016-0863-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0863-8

Keywords

Navigation