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Abstract

Recently, the tensor complementarity problem (TCP for short) has been inves-
tigated in the literature. An important question involving the property of global
uniqueness and solvability (GUS-property) for a class of TCPs was proposed by
Song and Qi in their paper “Properties of Some Classes of Structured Tensors”. In
the present paper, we give an answer to this question by constructing two counter-
examples. We also show that the solution set of this class of TCPs is nonempty
and compact. In particular, we introduce a class of related structured tensors, and
show that the corresponding TCP has the GUS-property.
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1 Introduction

As a generalization of the linear complementarity problem [1], the tensor complemen-
tarity problem has been introduced and investigated in [2, 3, 4, 5, 6], which is a specific
class of nonlinear complementarity problems [7, 8, 9]. By using properties of structured
tensors, many good results for the tensor complementarity problem have been obtained
in the literature.

It is well-known that a linear complementarity problem has the property of global
uniqueness and solvability (GUS-property) if and only if the matrix involved in the
concerned problem is a P -matrix [10]. It is also well-known that such a result can not
be generalized to the nonlinear complementarity problem [8, 9]. A natural question is
whether such a result can be generalized to the tensor complementarity problem or not?
i.e., whether the result that a tensor complementarity problem has the GUS-property if
and only if the tensor involved in the problem is a P tensor holds or not? Such a question
was proposed by Song and Qi (see, Question 6.3 in [2]). In this paper, we show that the
answer to this question is negative by constructing two counter-examples.

It has been shown that the tensor complementarity problem with a P tensor has a
solution; while our counter-example demonstrates that it is possible such a problem has
more than one solution. Thus, a natural question is what more we can say about the
solution set of such a complementarity problem; and another natural question is that
for which kind of tensor, the corresponding tensor complementarity problem has the
GUS-property. For the first question, we will show that the solution set of the tensor
complementarity problem is nonempty and compact when the involved tensor is a P
tensor; and for the second question, we will introduce a new class of tensors, called the
strong P tensor, and show that the corresponding tensor complementarity problem has
the GUS-property. We also show that the set consists of all strong P tensors is a proper
subset of the set consists of all P tensors; and hence, many results obtained for the case
of the P tensor are still satisfied for the case of the strong P tensor.

The rest of this paper is organized as follows. In the next section, we first briefly
review some basic concepts and results which are useful in the subsequent analysis. In
Sect. 3, we give a negative answer to the result that a tensor complementarity problem
has the GUS-property if and only if the tensor involved in the problem is a P tensor,
and show that the solution set of the tensor complementarity problem with a P tensor
is compact. In Sect. 4, we introduce the concept of the strong P tensor and discuss its
related properties. Conclusions are given in Sect. 5.

2



2 Preliminaries

The complementarity problem, denoted by CP(F ), is to find a point x ∈ R
n such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0.

When F (x) = Ax + q with given A ∈ R
n×n and q ∈ R

n, CP(F ) reduces to the linear
complementarity problem (denoted by LCP(q, A)), which is to find a point x ∈ R

n such
that

x ≥ 0, Ax+ q ≥ 0, xT (Ax+ q) = 0;

and when F (x) = Axm−1 + q with given A = (ai1i2···im) ∈ Tm,n (the set of all real mth
order n-dimensional tensors) and q ∈ R

n, CP(F ) reduces to the tensor complementarity
problem (denoted by TCP(q,A)) [2, 3, 4, 5, 6], which is to find a point x ∈ R

n such that

x ≥ 0, Axm−1 + q ≥ 0, xT (Axm−1 + q) = 0,

where Axm−1 ∈ R
n defined by

(Axm−1)i :=

n
∑

i2,···,im=1

aii2···imxi2 · · ·xim , ∀i ∈ {1, 2, . . . , n}.

It is easy to see that

Axm = xT (Axm−1) =

n
∑

i1,i2,···,im=1

ai1i2···imxi1xi2 · · ·xim .

Throughout this paper, for any positive integer n, we denote [n] := {1, 2, . . . , n} and
R

n
+ := {x ∈ R

n : x ≥ 0}. For any x ∈ R
n, we denote

[x]+ := (max{x1, 0}, . . . ,max{xn, 0})T .

The eigenvalue of tensor is initially studied by Qi [11] and Lim [12]. If there is a
nonzero vector x ∈ R

n and a scalar λ ∈ R such that

(Axm−1)i = λxm−1
i , ∀i ∈ [n],

then λ is called an H-eigenvalue of A and x is called an H-eigenvector of A associated
with λ; and if there is a nonzero vector x ∈ R

n and a scalar λ ∈ R such that

Axm−1 = λx, ∀i ∈ {1, 2, . . . , n} and xTx = 1,

then λ is called a Z-eigenvalue of A and x is called a Z-eigenvector of A associated with
λ.

Recently, many classes of structured tensors are introduced and the related properties
are studied [2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 19]. In this paper, we need the following
concepts of several structured tensors.
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Definition 2.1 Let A = (ai1···im) ∈ Tm,n. We say that A is

(i) a strictly semi-positive tensor iff for each x ∈ R
n
+ \ {0}, there exists an index

i ∈ [n] such that xi > 0 and (Axm−1)i > 0;

(ii) a P tensor iff for each x ∈ R
n \ {0}, there exists an index i ∈ [n] such that

xi(Axm−1)i > 0;

(iii) an R-tensor iff there is no (x, t) ∈ (Rn
+ \ {0})× R+ such that for any i ∈ [n],

{

(Axm−1)i + t = 0 if xi > 0,
(Axm−1)i + t ≥ 0 if xi = 0.

Obviously, every P tensor is a strictly semi-positive tensor and an R-tensor.

In this paper, we also need the following concepts of functions.

Definition 2.2 ([3]) Let mapping F : K ⊆ R
n → R

n. We say that F is

(i) a P -function if for all pairs of distinct vectors x and y in K,

max
i∈[n]

(xi − yi)(Fi(x)− Fi(y)) > 0;

(ii) a uniform P -function if there exists a constant µ > 0 such that for all pairs of
vectors x and y in K,

max
i∈[n]

(xi − yi)(Fi(x)− Fi(y)) ≥ µ‖x− y‖2.

Obviously, every uniform P -function is a P -function. In addition, it is easy to see
from Definition 2.1 and Definition 2.2 that if the mapping Axm−1 + q with any given
q ∈ R

n is a P -function, then A is a P tensor.

Recall that LCP(q, A) is said to have the GUS-property if LCP(q, A) has a unique
solution for every q ∈ R

n. Similarly, we say that TCP(q,A) has the GUS-property if
TCP(q,A) has a unique solution for every q ∈ R

n. For the solvability of LCP(q, A), an
important result is that LCP(q, A) has the GUS-property iff the matrix A is a P -matrix.
In fact, the GUS-property has been extensively discussed for various complementarity
problems, including nonlinear complementarity problems [20], linear complementarity
problems over symmetric cones [21] and Lorentz cone linear complementarity problems
on Hilbert spaces [22]. A natural question is given by

Q1 Whether or not TCP(q,A) has the GUS-property iff the tensor A is a P tensor?

Such a question was proposed by Song and Qi (see, Question 6.3 in [2]). In the next
section, we will answer this question.
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3 Answer to Q1

First, we construct a TCP(q,A) which has a unique solution for every q ∈ R
2.

Example 3.1 Let A = (ai1i2i3) ∈ T3,2, where a111 = 1, a222 = 1 and all other ai1i2i3 = 0.
Then,

Ax2 =

(

x2
1

x2
2

)

.

In this case, TCP(q,A) is to find x ∈ R
2 such that

{

x1 ≥ 0,
x2 ≥ 0,

{

x2
1 + q1 ≥ 0,

x2
2 + q2 ≥ 0,

and

{

x1(x
2
1 + q1) = 0,

x2(x
2
2 + q2) = 0.

(3.1)

For any q ∈ R
2, let xq := (xq

1, x
q
2) ∈ R

2 be given by

xq
i :=

{

0, if qi ≥ 0,√−qi, otherwise.

It is easy to see that for every q ∈ R
2, TCP(q,A) given by (3.1) has a unique solution

xq. Thus, we obtain that TCP(q,A) given in this example has the GUS-property.

It is proved in [23, Proposition 2.1] that there dose not exist an odd order P tensor;
and hence, the tensor given in Example 3.1 is not a P tensor. This, together with
Example 3.1, implies that one does not obtain that tensor A is a P tensor under the
assumption that TCP(q,A) has the GUS-property.

Second, we construct the following TCP(q,A) where A ∈ T4,2 is a P tensor, but it
has two distinct solutions for some q ∈ R

2.

Example 3.2 Let A = (ai1i2i3i4) ∈ T4,2, where a1111 = 1, a1112 = −2, a1122 = 1, a2222 = 1
and all other ai1i2i3i4 = 0. Then,

Ax3 =

(

x3
1 − 2x2

1x2 + x1x
2
2

x3
2

)

,

and
x1(Ax3)1 = x4

1 − 2x3
1x2 + x2

1x
2
2, x2(Ax3)2 = x4

2.

For any x ∈ R
2 \ {0}, it is easy see that

• when x2 6= 0, it follows that x2(Ax3)2 > 0; and

• when x2 = 0, it follows that x1 6= 0 since x 6= 0, and in this case, we have
x1(Ax3)1 = x4

1 > 0.
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Thus, for any x ∈ R
2 \ {0}, there is at least one index i ∈ {1, 2} such that xi(Ax3)i > 0.

So, we obtain that tensor A given in this example is a P tensor by Definition 2.1(ii).

Taking q = (0,−1)T , we consider TCP(q,A) of finding x ∈ R
2 such that

{

x1 ≥ 0,
x2 ≥ 0,

{

x3
1 − 2x2

1x2 + x1x
2
2 ≥ 0,

x3
2 − 1 ≥ 0,

and

{

x1(x
3
1 − 2x2

1x2 + x1x
2
2) = 0,

x2(x
3
2 − 1) = 0.

(3.2)

It is easy to see that both x = (0, 1)T and x = (1, 1)T are the solutions to TCP(q,A)
given by (3.2).

From Example 3.2, we obtain that TCP(q,A) with A being a P tensor does not
possess the GUS-property.

Note that TCP(q,A) with A being a P tensor has a solution for every q ∈ R
n by [3,

Corollary 3.3], and that it is possible that this class of complementarity problems has
more than one solution from Example 3.2. What more can we say about the solution set
of this class of complementarity problems? In the following, we show that the solution
set of TCP(q,A) with A being a P tensor is compact.

Theorem 3.1 For any q ∈ R
n and a P tensor A ∈ Tm,n, the solution set of TCP(q,A)

is nonempty and compact.

Proof. Since A is a P tensor, it follows from [3, Corollary 3.3] that TCP(q,A) has
a solution for every q ∈ R

n. So we only need to show that the solution set of TCP(q,A)
is compact. We divide the proof into two parts.

Part 1. We show the boundedness of the solution set. To this end, we first show
the following result:

R1 If there is a sequence {xk} ⊂ R
n
+ satisfying

‖xk‖ → ∞ and
[−A(xk)m−1 − q]+

‖xk‖ → 0 as k → ∞, (3.3)

then there exists an i ∈ [n] such that xk
i [A(xk)m−1 + q]i > 0 holds for some k ≥ 0.

In the following, we assume that the result R1 does not hold and derive a contradiction.
Given an arbitrary sequence {xk} ⊂ R

n
+ satisfying (3.3), then since the result R1 does

not hold, we have that

xk
i [A(xk)m−1 + q]i ≤ 0 ∀i ∈ [n], ∀k ≥ 0. (3.4)
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Since the sequence { xk

‖xk‖
} is bounded, without loss of generality, we can assume limk→∞

xk

‖xk‖
=

x̄ ∈ R
n. From {xk} ⊂ R

n
+ and ‖xk‖ → ∞ as k → ∞, we obtain that

x̄ ≥ 0, x̄ 6= 0. (3.5)

If i ∈ {i ∈ [n] : [A(xk)m−1 + q]i ≤ 0}, then

[−(A(xk)m−1 + q)i]+ = −[A(xk)m−1 + q]i.

Since limk→∞
qi

‖xk‖
= 0 for all i ∈ [n], we have

0 = lim
k→∞

[−(A(xk)m−1 + q)i]+
‖xk‖ = lim

k→∞

−[A(xk)m−1]i − qi
‖xk‖m−1

= lim
k→∞

−[A(xk)m−1]i
‖xk‖m−1

= −[Ax̄m−1]i;

and if i ∈ {i ∈ [n] : [A(xk)m−1 + q]i ≥ 0}, then

0 ≤ lim
k→∞

[A(xk)m−1 + q]i
‖xk‖m−1

= lim
k→∞

[A(xk)m−1]i
‖xk‖m−1

= [Ax̄m−1]i.

Combining these two situations together, we have

[Ax̄m−1]i ≥ 0, ∀i ∈ [n]. (3.6)

In addition, by using (3.4), we have

x̄i[Ax̄m−1]i = lim
k→∞

xk
i

‖xk‖
[A(xk)m−1]i
‖xk‖m−1

= lim
k→∞

xk
i

‖xk‖
[A(xk)m−1 + q]i

‖xk‖m−1
≤ 0.

By using (3.5) and (3.6), we have x̄i[Ax̄m−1]i ≥ 0. This, together with the above
inequality, implies

x̄i[Ax̄m−1]i = 0, ∀i ∈ [n]. (3.7)

Furthermore, by combining (3.5) with (3.6) and (3.7), we obtain that x̄ is a nonzero
solution of TCP(0,A). However, since every P tensor is a strictly semi-positive tensor;
while if A is strictly semi-positive, then TCP(0,A) has a unique solution 0 (see [4,
Theorem 3.2]). This derives a contradiction. So the result R1 holds.

Now, suppose that the solution set of TCP(q,A) is unbounded. Then there exists an
unbounded solution sequence {xk} of TCP(q,A) such that ‖xk‖ → ∞ as k → ∞, and
for all i ∈ [n], k ≥ 0, it follows that

xk ≥ 0, A(xk)m−1 + q ≥ 0, (xk)T [A(xk)m−1 + q] = 0. (3.8)
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Obviously, [A(xk)m−1 + q]i ≥ 0 implies that

[−(A(xk)m−1 + q)i]+
‖xk‖ → 0 as k → ∞.

Thus, the solution sequence {xk} satisfies (3.3); and furthermore, by using the result R1,
there exist an index i0 and a positive integer k∗ > 0 such that xk∗

i0
[A(xk∗)m−1 + q]i0 > 0,

which is contrary to that xk
i [A(xk)m−1+ q]i = 0 for all i ∈ [n] and k ≥ 0. So the solution

set of TCP(q,A) is bounded.

Part 2. We now show that the solution set of TCP(q,A) is closed. Suppose that
{xk} is a solution sequence of TCP(q,A) and

lim
k→∞

xk = x̄, (3.9)

we need to show that x̄ solves TCP(q,A).

Since Axm−1 + q is continuous, by (3.9) we have

lim
k→∞

[(A(xk)
m−1 + q] = A

(

lim
k→∞

xk

)m−1

+ q = Ax̄m−1 + q. (3.10)

Since {xk} is a solution sequence of TCP(q,A), we have that (3.8) holds. Furthermore,
by using (3.8), (3.9) and (3.10), we can obtain that

x̄ ≥ 0, Ax̄m−1 + q ≥ 0, x̄T (Ax̄m−1 + q) = 0.

So x̄ is a solution of TCP(q,A). Therefore, we obtain that the solution set is closed.

Combining Part 1 with Part 2, we obtain that the solution set of TCP(q,A) is
compact. This completes the proof. ✷

4 Strong P Tensor and Related Properties

In this section, we consider the question: for which kind of tensor, TCP(q,A) has the
GUS-property. For this purpose, we introduce a new class of tensors, called the strong
P tensor, which is defined as follows.

Definition 4.3 Let A = (ai1···im) ∈ Tm,n. We say that A is a strong P tensor iff
F (x) = Axm−1 + q is a P -function.

It is well-known that a matrix A is a P -matrix iff F (x) = Ax + q is a P -function.
Thus, the strong P tensor is a generalization of the P -matrix from matrix to tensor.
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From the definitions of the P tensor and the strong P tensor, it is easy to see that
every strong P tensor must be a P tensor. The strong P tensor is defined with the help
of the P -function, so an advantage of this way is that the related results and methods
associated with the P -function can be applied to study this class of tensors.

The following result comes from [24, Theorem 2.3].

Lemma 4.1 Let F : Rn
+ → Rn be a P -function, then the corresponding CP(F ) has no

more than one solution.

With the help of Lemma 4.1, we show the following result.

Theorem 4.2 Suppose that A ∈ Tm,n is a strong P tensor, then TCP(q,A) has the
GUS-property.

Proof. Since A is a strong P tensor, it follows that A is a P tensor. Furthermore, it
follows from [3, Corollary 3.3] that TCP(q,A) has a solution for every q ∈ R

n. Also since
A is a strong P tensor, it follows that Axm−1+q is a P -function; and hence, from Lemma
4.1 it follows that TCP(q,A) has no more than one solution. Therefore, TCP(q,A) has
a unique solution for every q ∈ R

n, i.e., TCP(q,A) has the GUS-property. ✷

Corollary 4.1 Given A ∈ Tm,n and q ∈ R
n. Suppose that F (x) = Axm−1 + q is a P -

function, then the corresponding CP(F ) has the GUS-property; and m must be an even
number.

In the theory of nonlinear complementarity problems, when the involved function F
is a P -function, one can only obtain that the corresponding CP(F ) has no more than
one solution (see Lemma 4.1); when the involved function F is a uniform P -function,
one can obtain that the corresponding CP(F ) has the GUS-property (see [25, Corollary
3.2]). From the first result of Corollary 4.1, we see that CP(F ) has the GUS-property
when F (x) = Axm−1+q is a P -function. In addition, from the second result of Corollary
4.1, we obtain that a class of functions (i.e., F (x) = Axm−1 + q with m being odd) can
not be in the class of the P -functions.

In the following, we investigate the relationship between the P tensor and the strong
P tensor. Recall that every strong P tensor is a P tensor. The following example
demonstrates that the inverse does not hold.

Example 4.3 Let A = (ai1i2i3i4) ∈ T4,2, where a1111 = 1, a1222 = −1, a1122 = 1, a2222 =
1, a2111 = −1, a2211 = 1 and all other ai1i2i3i4 = 0. Obviously,

Ax3 =

(

x3
1 − x3

2 + x1x
2
2

x3
2 − x3

1 + x2x
2
1

)

,

9



then
x1(Ax3)1 = x4

1 − x1x
3
2 + x2

1x
2
2 and x2(Ax3)2 = x4

2 − x2x
3
1 + x2

1x
2
2.

We consider the following several cases:

• when x1 = x2 6= 0, we have x1(Ax3)1 = x4
1 − x4

1 + x4
1 = x4

1 > 0;

• when only one xi = 0 for any i ∈ {1, 2}, then xj(Ax3)j = x4
j > 0 for j 6= i;

• when x1 > x2 > 0, we have x1(Ax3)1 = x1(x
3
1 − x3

2) + x2
1x

2
2 > 0;

• when x2 > x1 > 0, we have x2(Ax3)2 = x2(x
3
2 − x3

1) + x2
1x

2
2 > 0;

• when 0 > x1 > x2, we have x2(Ax3)2 = x2(x
3
2 − x3

1) + x2
1x

2
2 > 0;

• when 0 > x2 > x1, we have x1(Ax3)1 = x1(x
3
1 − x3

2) + x2
1x

2
2 > 0;

• when x1 > 0 > x2, we have −x2x
3
1 > 0, and so x2(Ax3)2 > 0;

• when x2 > 0 > x1, we have −x1x
3
2 > 0, and so x1(Ax3)1 > 0.

Thus, for any x ∈ R
2\{0}, there exists an index i ∈ {1, 2} such that xi(Ax3)i > 0. So A

is a P tensor. However, A is not a strong P tensor. In fact, if we take x = (2.1,−1.9)T

and y = (2,−2)T , then we have

(x1 − y1)((Ax3)1 − (Ay3)1) = −0.0299 < 0

and
(x2 − y2)((Ax3)2 − (Ay3)2) = −0.0499 < 0.

Thus, by Definition 4.3 we obtain that A is not a strong P tensor.

Example 4.3 demonstrates that the set consists of all strong P tensors is a proper
subset of the set consists of all P tensors.

Many properties of the P tensor have been obtained in the literature. Since every
strong P tensor is a P tensor, we may easily obtain the following properties of strong P
tensor:

Proposition 4.1 If A ∈ Tm,n is a strong P tensor, then

(i) A must be strictly semi-positive;

(ii) A must be an R tensor;

(iii) all of its H-eigenvalues and Z-eigenvalues are positive;
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(iv) all the diagonal entries of A are positive;

(v) every principal sub-tensor of A is still a strong P tensor.

Proof. Since a strong P tensor is a P tensor, the first four results can be easily
obtained from [2, 3]. Now we prove the result (v). Let an arbitrary principal sub-
tensor AJ

r ∈ Tm,r of the strong P tensor A ∈ Tm,n be given. We choose any x =
(xj1 , xj2, · · · , xjr) ∈ R

r \ {0} and y = (yj1, yj2, · · · , yjr) ∈ R
r \ {0} with x 6= y. Then let

x̄ = (x̄1, x̄2, · · · , x̄n) ∈ R
n where x̄i = xji for i ∈ J and x̄i = 0 for i /∈ J . In a similar

way, let ȳ = (ȳ1, ȳ2, · · · , ȳn) ∈ R
n where ȳi = yji for i ∈ J and ȳi = 0 for i /∈ J . Since A

is a strong P tensor, then there exists an index k ∈ [n] such that

0 < max
k∈[n]

(x̄k − ȳk)((Ax̄m−1)k − (Aȳm−1)k)

= max
k∈J

(xk − yk)((AJ
r x

m−1)k − (AJ
r y

m−1)k).

Thus, AJ
r is a strong P tensor. ✷

5 Conclusions

By constructing two counter-examples, we proved that A is a P tensor does not imply
that TCP(q,A) has the GUS-property; and that TCP(q,A) has the GUS-property does
not imply that A is a P tensor. These gave a negative answer to Question 6.3 proposed
in [2]. We also showed that the solution set of TCP(q,A) is nonempty and compact
when A is a P tensor.

In order to investigate that for which kind of tensor, the tensor complementarity
problem has the GUS-property, we introduced the concept of the strong P tensor, and
showed that TCP(q,A) has the GUS-property when A is a strong P tensor. We also
proved that every strong P tensor is a P tensor; and hence, many known results associ-
ated with the P tensor were generalized to the case of the strong P tensor.

Note that the strong P tensor is defined by using the P -function, we believe that
more properties related to the strong P tensor can be further studied with the help of
known methods and results for the P -function.
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