Skip to main content
Log in

Stability and Genericity for Semi-algebraic Compact Programs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the class of polynomial optimization problems over semi-algebraic compact sets, in which the objective functions are perturbed, while the constraint functions are kept fixed. Under certain assumptions, we establish some stability properties of the global solution map, of the Karush–Kuhn–Tucker set-valued map, and of the optimal value function for all problems in the class. It is shown that, for almost every problem in the class, there is a unique optimal solution for which the global quadratic growth condition and the strong second-order sufficient conditions hold. Furthermore, under local perturbations to the objective function, the optimal solution and the optimal value function (respectively, the Karush–Kuhn–Tucker set-valued map) vary smoothly (respectively, continuously) and the set of active constraint indices is constant. As a nice consequence, for almost every polynomial optimization problem, there is a unique optimal solution, which can be approximated arbitrarily closely by solving a sequence of semi-definite programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnans, J., Shapiro, A.: Perturbation Analysis of Optimization Problems, Springer Series in Operations Research. Springer, New York (2000)

    Book  MATH  Google Scholar 

  2. Dontchev, A.L., Zolezzi, T.: Well-posed Optimization Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  3. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Nonlinear Parametric Optimization. Akademie, Berlin (1982)

    Book  MATH  Google Scholar 

  4. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  5. Klatte, D.: On the Lipschitz behavior of optimal solutions in parametric problems of quadratic optimization and linear complementarity. Optimization 16, 819–831 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities: A Qualitative Study, Series: Nonconvex Optimization and Its Applications, vol. 78. Springer, New York (2005)

    Google Scholar 

  7. Phu, H.X., Yen, N.D.: On the stability of solutions to quadratic programming problems. Math. Program. 89, 385–394 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tam, N.N., Yen, N.D.: Continuity properties of the Karush–Kuhn–Tucker point set in quadratic programming problems. Math. Program. 85, 193–206 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, G.M., Tam, N.N., Yen, N.D.: Stability of linear-quadratic minimization over Euclidean balls. SIAM J. Optim. 22(3), 936–952 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bolte, J., Daniilidis, A., Lewis, A.S.: Generic optimality conditions for semialgebraic convex programs. Math. Oper. Res. 36(1), 55–70 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Spingarn, J.E., Rockafellar, R.T.: The generic nature of optimality conditions in nonlinear programming. Math. Oper. Res. 4, 425–430 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. thesis, California Institute of Technology, May 2000

  14. Shor, N.Z.: An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetika 5, 102–106 (1987)

    MathSciNet  Google Scholar 

  15. Demmel, J., Nie, J.W., Powers, V.: Representations of positive polynomials on noncompact semi-algebraic sets via KKT ideals. J. Pure Appl. Algebra 209(1), 189–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hà, H.V., Phạm, T.S.: Global optimization of polynomials using the truncated tangency variety and sums of squares. SIAM J. Optim. 19(2), 941–951 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hà, H.V., Phạm, T.S.: Solving polynomial optimization problems via the truncated tangency variety and sums of squares. J. Pure Appl. Algebra 213, 2167–2176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hà, H.V., Phạm, T.S.: Representations of positive polynomials and optimization on noncompact semi-algebraic sets. SIAM J. Optim. 20, 3082–3103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  20. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications, pp. 157–270. Springer, Berlin (2009)

    Chapter  Google Scholar 

  21. Marshall, M.: Positive Polynomials and Sums of Squares, Mathematical Surveys and Monographs 146. American Mathematical Society, Providence, RI (2008)

    Book  Google Scholar 

  22. Nie, J.W., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient ideal. Math. Program. Ser. A 106, 587–606 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17(3), 920–942 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nie, J.W.: Optimality conditions and finite convergence of Lasserre’s hierarchy. Math. Program. Ser. A 146(1–2), 97–121 (2014)

    Article  MATH  Google Scholar 

  25. Van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84, 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ioffe, A.D.: An invitation to tame optimization. SIAM J. Optim. 19, 1894–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Benedetti, R., Risler, J.: Real Algebraic and Semi-algebraic Sets. Hermann, Paris (1991)

    MATH  Google Scholar 

  28. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  29. Đoạt, D.V., Hà, H.V., Phạm., T.S.: Well-posedness in unconstrained polynomial optimization problems (2014, submitted)

  30. Guillemin, V., Pollack, A.: Differential Topology. AMS Chelsea Publishing, Providence, RI (2010). (Reprint of the 1974 original)

    MATH  Google Scholar 

  31. Phạm, T.S.: An explicit bound for the Łojasiewicz exponent of real polynomials. Kodai Math. J. 35(2), 311–319 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kurdyka, K., Spodzieja, S.: Separation of real algebraic sets and the Łojasiewicz exponent. Proc. Am. Math. Soc. 142, 3089–3102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, G., Mordukhovich, B.S., Phạm, T.S.: New fractional error bounds for polynomial systems with applications to Holderian stability in optimization and spectral theory of tensors. Math. Program. Ser. A 153(2), 333–362 (1015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bertsekas, D.P.: Convex Analysis and Optimization. Athena Scientific, Belmont, MA (2003)

    MATH  Google Scholar 

  35. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  36. Schweighofer, M.: Optimization of polynomials on compact semialgebraic sets. SIAM J. Optim. 15(3), 805–825 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lee, G.M., Phạm, T.S.: Generic properties for semialgebraic programs. http://www.optimization-online.org/DB_HTML/2015/06/4957.html

Download references

Acknowledgments

The authors would like to thank the referees for careful reading and constructive comments. A part of this work was performed during a research visit of the second author at Department of Applied Mathematics, Pukyong National University, Busan, Korea. He wishes to thank Gue Myung Lee for his kind hospitality and support. Gue Myung Lee was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2005378). Tiến-Sơn Phạm was supported by the National Foundation for Science and Technology Development (NAFOSTED), Vietnam, Grant 101.04-2013.07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gue Myung Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G.M., Phạm, TS. Stability and Genericity for Semi-algebraic Compact Programs. J Optim Theory Appl 169, 473–495 (2016). https://doi.org/10.1007/s10957-016-0910-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0910-5

Keywords

Mathematics Subject Classification

Navigation