Skip to main content
Log in

Optimal Control of a Linear Unsteady Fluid–Structure Interaction Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider optimal control problems governed by linear unsteady fluid–structure interaction problems. Based on a novel symmetric monolithic formulation, we derive optimality systems and provide regularity results for optimal solutions. The proposed formulation allows for natural application of gradient-based optimization algorithms and for space–time finite element discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bertoglio, C., Barber, D., Gaddum, N., Valverde, I., Rutten, M., Beerbaum, P., Moireau, P., Hose, R., Gerbeau, J.: Identification of artery wall stiffness: in vitro validation and in vivo results of data assimilation procedure applied to a 3D fluid-structure interaction model. J. Biomech. 47(5), 1027–1034 (2014)

    Article  Google Scholar 

  2. Bertoglio, C., Chapelle, D., Fernández, M., Gerbeau, J.F., Moireau, P.: State observers of a vascular fluid-structure interaction model through measurements in the solid. Comput. Methods Appl. mech. Eng. 256, 149–168 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bertoglio, C., Moireau, P., Gerbeau, J.F.: Sequential parameter estimation for fluid-structure problems: application to hemodynamics. Int. J. Numer. Meth. Biomed Eng. 28, 434–455 (2012)

    Article  MathSciNet  Google Scholar 

  4. D’Elia, M., Mirabella, L., Passerini, T., Perego, M., Piccinelli, M.,Vergara, C.,Veneziani, A.: Applications of variational data assimilation in computational hemodynamics. In: Modeling of Physiological Flows. MS&A—Modeling, Simulation and Applications, vol. 5, pp. 363–394. Springer (2012)

  5. Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometric framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29, 741–776 (2013)

    Article  MathSciNet  Google Scholar 

  6. Razzaq, M., Tsotskas, C., Turek, S., Kipouros, T., Savill, M., Hron, J.: Multi-objective optimization of a fluid structure interaction benchmarking. CMES Comput. Model. Eng. Sci. 90(4), 303–337 (2013)

    MathSciNet  Google Scholar 

  7. Degroote, J., Hojjat, M., Stavropoulou, E., Wüchner, R., Bletzinger, K.U.: Partitioned solution of an unsteady adjoint for strongly coupled fluid-structure interactions and application to parameter identification of a one-dimensional problem. Struct. Multidiscip. Optim. 47, 77–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Martin, V., Clément, F., Decoene, A., Gerbeau, J.F.: Parameter identification for a one-dimensional blood flow model. ESAIM Proc. 14, 174–200 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Richter, T., Wick, T.: Optimal control and parameter estimation for stationary fluid–structure interaction problems. SIAM J. Sci. Comput. 35(5), B1085–B1104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertagna, L., D’Elia, M., Perego, M., Veneziani, A.: Data assimilation in cardiovascular fluid-structure interaction problems: an introduction. In: Fluid-Structure Interaction and Biomedical Applications. Advances in Mathematical Fluid Mechanics, pp. 395–481. Springer (2014)

  11. Perego, M., Veneziani, A., Vergara, C.: A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid–structure interaction problem. SIAM J. Sci. Comput. 33(3), 1181–1211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Moubachir, M., Zolesio, J.: Moving Shape Analysis and Control: Applications to Fluid Structure Interaction. Chapmann & Hall/CRC, Boca Raton, FL (2006)

  13. Bucci, F., Lasiecka, I.: Optimal boundary control with critical penalization for a PDE model of fluid–solid interaction. Calc. Var. 37, 217–235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lasiecka, I., Tuffaha, A.: Optimal feedback synthesis for Bolza control problem arising in linearized fluid structure interaction. Int. Ser. Numer. Math. 158, 171–190 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Lasiecka, I., Tuffaha, A.: Riccati theory and singular estimates for a Bolza control problem arising in linearized fluid–structure interaction. Syst. Control Lett. 58, 499–509 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization for viscous flows by reduced basis methods and free-form deformation. Int. J. Numer. Methods Fluids 70, 646–670 (2012)

    Article  MathSciNet  Google Scholar 

  17. Becker, R., Meidner, D., Vexler, B.: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22(5), 813–833 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints. SIAM J. Control Optim. 47(3), 1150–1177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems part II: problems with control constraints. SIAM J. Control Optim. 47(3), 1301–1329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meidner, D., Vexler, B.: A priori error analysis of the Petrov-Galerkin Crank-Nicolson scheme for parabolic optimal control problems. SIAM J. Control Optim. 49(5), 2183–2211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Razzaq, M.: Finite element simulation techniques for incompressible fluid-structure interaction with applications to bio-engineering and optimization. Ph.D. thesis, Technische Universität Dortmund (2011)

  23. Wick, T.: Adaptive finite element simulation of fluid-structure interaction with application to heart-valve dynamics. Ph.D. thesis, University of Heidelberg (2011)

  24. Du, Q., Gunzburger, M.D., Hou, L., Lee, J.: Analysis of a linear fluid–structure interaction problem. Discrete Contin. Dyn. Syst. 9(3), 633–650 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Du, Q., Gunzburger, M.D., Hou, L., Lee, J.: Semidiscrete finite element approximation of a linear fluid–structure interaction problem. SIAM J. Numer. Anal. 42(1), 1–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Avalos, G., Lasiecka, I., Triggiani, R.: Higher regularity of a coupled parabolic-hyperbolic fluid–structure interactive system. Georgian Math. J. 15(3), 403–437 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Avalos, G., Triggiani, R.: The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties. In: Fluids and waves, Contemp. Math., vol. 440, pp. 15–54. Amer. Math. Soc., Providence, RI (2007)

  28. Avalos, G., Triggiani, R.: Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete Contin. Dyn. Syst. Ser. S 2(3), 417–447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Avalos, G., Triggiani, R.: Fluid-structure interaction with and without internal dissipation of the structure: a contrast study in stability. Evol. Equ. Control Theory 2(4), 563–598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Avalos, G., Triggiani, R.: Uniform stabilization of a coupled PDE system arising in fluid–structure interaction with boundary dissipation at the interface. Discrete Contin. Dyn. Syst. 22(4), 817–833 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Avalos, G., Triggiani, R.: Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system. J. Evol. Equ. 9(2), 341–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Avalos, G., Lasiecka, I., Triggiani, R.: Beyond lack of compactness and lack of stability of a coupled parabolic-hyperbolic fluid-structure system. In: Optimal control of coupled systems of partial differential equations, Internat. Ser. Numer. Math., vol. 158, pp. 1–33. Birkhäuser Verlag, Basel (2009)

  33. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness and small data global existence for an interface damped free boundary fluid-structure model. Nonlinearity 27, 467–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, X., Zuazua, E.: Long-time behavior of a coupled heat-wave system arising in fluid–structure interaction. Arch. Rational Mech. Anal. 184, 49–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Existence of the energy-level weak solutions for a nonlinear fluid–structure interaction model. Recent Trends Appl. Anal. 440, 5582 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Barbu, V., Grujic, Z., Lasiecka, I., Tuffaha, A.: Smoothness of weak solutions to a nonlinear fluid–structure interaction model. Indiana Univ. Math. J. 57(3), 1173–1207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a Navier-Stokes-Lamé system on a domain with non-flat boundary. Nonlinearity 24, 159–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions to a nonlinear fluid structure interaction system. J. Differ. Equ. 247, 1452–1478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dunne, T., Rannacher, R., Richter, T.: Numerical simulation of fluid-structure interaction based on monolithic variational formulations. In: G.P. Galdi, R. Rannacher (eds.) Contemporary Challenges in Mathematical Fluid Mechanics. World Scientific (2009)

  40. Richter, T., Wick, T.: Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput. Methods Appl. Mech. Eng. 199, 2633–2642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Johnson, C.: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Method Appl. Mech. 107(1–2), 117–129 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Grisvards, P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub. Program (1985)

  43. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Die Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1972)

    Book  Google Scholar 

  44. Temam, R.: Navier–Stokes equations. Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam (1984)

  45. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, New York (1994)

    MATH  Google Scholar 

  46. Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg+Teubner, Wiesbaden (2009)

    Book  Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the financial support by the Federal Ministry of Education and Research (BMBF) within the Research Grant 05M2013 “ExtremSimOpt: Modeling, Simulation and Optimization of Fluids in Extreme Conditions.” Furthermore, the first author gratefully acknowledges the support from the International Research Training Group IGDK 1754, funded by DFG and FWF, and from the International Graduate School of Science and Engineering at the Technical University of Munich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Vexler.

Additional information

Communicated by Roberto Triggiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Failer, L., Meidner, D. & Vexler, B. Optimal Control of a Linear Unsteady Fluid–Structure Interaction Problem. J Optim Theory Appl 170, 1–27 (2016). https://doi.org/10.1007/s10957-016-0930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0930-1

Keywords

Mathematics Subject Classification

Navigation