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Abstract

The paper deals with controllability problem for a distributed system governed by the two-

dimensional Gurtin-Pipkin equation. We consider a system with compactly supported distributed

control and show that if the memory kernel is a twice continuously differentiable function, such that

its Laplace transformation has at least one non-zero root, then the system cannot be driven to the

equilibrium in a finite time.
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1 Introduction

Integrodifferential equations with nonlocal terms of the convolution type often arise in applications

such as mechanics of heterogeneous media, the theory of viscoelasticity, thermal physics, kinetic theory

of gases and others.

For example, it was rigorously proved that in the case of heterogeneous two-phase medium, consisting

of viscous fluid and elastic inclusions, the effective equation is integro-differential, and the corresponding

convolution kernel is a finite of infinite sum of decreasing exponential functions.

If the viscosity of the liquid is small (big), the effective equation does contain (does not contain) the

third order terms corresponding to Kelvin-Voigh friction, see [1].

In the theory of viscoelasticity, it is a common practice to approximate the relaxation kernels by the

sum of exponents.

In thermal physics, laws of heat conduction with an integral memory are studied in many papers;

note among them [2].

The presence of integral memory in the law of heat conduction might lead to the appearance of a

thermal front which moves at a finite speed. This makes an important difference with the heat equation

whose solution propagates at infinite speed.

In this paper, we give an outline of the results on the existence and uniqueness of solutions to these

systems and consider the problem of controllability.
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2 Statement of the Problem

In this article, we consider the problem of non controllability of a system governed by the integrodif-

ferential equation

θt(t, x, y)−
t∫

0

K(t− s)∆θ(s, x, y)ds = u(t, x, y), (1)

t > 0, (x, y) ∈ Ω.

θ|t=0 = ξ(x, y), (2)

θ|∂Ω = 0, (3)

hereinafter Ω ⊂ R2 is a bounded domain, K(t) is an arbitrary twice continuously differentiable function

such that K(0) = µ > 0, and u(t, x, y) is a control supported (in x, y) on Ω. The kernel K(t) can be

represented, for example, as a sum of decreasing exponential functions:

K(t) =

N∑
j=1

cje
−γjt,

cj , γj are given positive constants.

For brevity, we write θ(t) and u(t) instead of θ(t, x, y) and u(t, x, y), respectively. This also means

that θ(t), u(t) are functions of t with values in some suitable space.

The goal of the control is to drive this mechanical system to rest in a finite time. We say that the

system (1)—(3) is controllable to rest if for every initial condition ξ we can find a control u with compact

support (in t) such that the corresponding solution θ(t, u) of the problem (1)—(3) has a compact support

(in t). Conversely, the system is uncontrollable to rest if there is the initial condition ξ such that for

every control u (u is in the suitable class of functions) the corresponding solution does not have compact

support (in t).

In this article, we prove that the system governed by two-dimensional Gurtin-Pipkin equation is

uncontrollable to rest if the distributed control is supported on the subdomain which is properly contained

in arbitrary bounded domain with a smooth boundary. This result is some generalization of the analogous

theorem in [3] devoted to the similar one-dimensional problem. The method used in the paper can also

apply to the case where the dimension of Ω is greater than 2. It will be discussed in Section 6.

3 Literature Review

The presence of nonlocal terms of the convolution type in the equations and systems leads to a number

of interesting qualitative effects that are not observed in the case of differential equations and systems of

equations. For instance, the systems of this type exhibit the properties of both parabolic and hyperbolic

equations. In spectral problems for such equations and systems the spectrum is composed of two parts:

real and complex. The former one corresponds to the energy dissipation in the heat equation; the later

corresponds to vibrations. Such equations can be solved by means of the method similar to the Fourier

method.
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In addition, systems of this type are usually uncontrollable to rest, if we apply boundary control or

control which is distributed on the part of the domain. Here we recall the well-known work [4] that deals

with the equation of the vibration of a string. As was proved in this work, if we apply the control to the

end of the string, then the system can be driven to rest. The author used the so-called moment method.

The mentioned results were generalized to the multidimensional case in [5].

At the same time, if we use the control distributed on the whole domain then integral terms of the

convolution type ”facilitate” the process of control. In this case, the control time is significantly reduced.

It should be noted that the spectral method proposed in [6] can be successfully adapted to the case of

systems with nonlocal terms of convolution type, see [7].

The uncontrollability mentioned above was justified in [3] for one-dimensional systems similar to (1).

In most cases the property of controllability to rest is not observed. For example, in [3] it was proved that

a solution to the heat equation with memory cannot be driven to rest in a finite time if some auxiliary

function has roots. This result is valid both for boundary and distributed control. Moreover, the case

of distributed control can be reduced to the case of boundary control. In our paper, we obtain similar

results for the case of two-dimensional domains.

We should also mention the work [8], where the boundary non controllability was justified for the

heat equation with memory.

Positive results on controllability of a one-dimensional wave equation with memory were obtained in

[7]. It was shown that this equation can be driven to rest by applying a bounded distributed control. In

this case, the kernel of the integral term in the equation is the sum of N decreasing exponential functions.

Problems similar to (1)—(3) for integrodifferential equations were widely studied in the existing

literature. Equation (1) was originally derived in [2]. The questions of solvability and asymptotic behavior

of solutions for equations of this type were investigated for example in [9], [10]. In [11] it was proved that

the energy for some dissipative system decays polynomially, when the memory kernel decays exponentially.

Problems of solvability of system (1)—(3) were considered in [12]. It was proved that a solution belongs

to some Sobolev space on the semi-axis (in t) if the kernel K(t) is the sum of exponential functions, each

of them tends to zero as t→ +∞.

Interesting explicit formulas for the solution of (1)—(3) were obtained in [13] under the assumption

that the kernel K(t) is also the sum of decreasing exponential functions. It follows from these formulas

that solutions tend to zero when t → +∞. In all these works it is supposed that the kernels of integral

terms in the studied equations are non increasing functions.

4 Preliminaries

Let A := ∆ be an operator acting on a space D(A) = H2(Ω) ∩ H1
0 (Ω) where Ω ⊂ R2 is a bounded

domain with boundary of class C2. We consider now the control function u(t) ∈ C(0,+∞;L2(Ω)) and

the initial condition ξ ∈ H2(Ω) ∩H1
0 (Ω).

Definition 1. The function

θ(t) ∈ C1(0,+∞;L2(Ω)) ∩ C(0,+∞;H2(Ω) ∩H1
0 (Ω))

is the solution of the problem (1)—(3) if θ(t) satisfies the equation (1) and initial condition (2).
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We note that the boundary condition (3) makes sense because for any t > 0 θ(t) is a continuous (in

x, y) function. There are several theorems of existence and uniqueness dedicated to the problem (1)—(3)

(see [15]).

Let us denote PW+ as the linear space of the Laplace transforms of elements of L2(0,+∞) with

compact support distributed on [0,∞). It is a well known fact that ϕ(λ) ∈ PW+ if and only if it is an

entire function such that

1) there are real numbers C and T such that |ϕ(λ)| ≤ CeT |λ|. Note that C and T depend on ϕ(λ).

2) sup
x≥0

+∞∫
−∞
|ϕ(x+ iy)|2dy < +∞.

5 The main results

Now we consider an auxiliary boundary-value problem

θt(t, x, y)−
t∫

0

K(t− s)∆θ(s, x, y)ds = 0, (4)

t > 0, (x, y) ∈ Ω0 = {(x, y) : x2 + y2 < R2},

θ|t=0 = ξ(x, y), (5)

θ|∂Ω0
= v(t, x, y), (x, y) ∈ ∂Ω0. (6)

In this problem for each T > 0 ξ ∈ H2(Ω0), v ∈ C(0, T ;H
3
2 (∂Ω0)).

Definition 2.

θ(t) ∈ C1(0,+∞;L2(Ω0)) ∩ C(0,+∞;H2(Ω0))

is the solution of the problem (4)—(6) if θ(t) satisfies the equation (4), initial condition (5) and the

boundary condition (6) (in the sense of the trace).

Suppose there is a solution to the problem (4)—(6). We multiply (in the sense of the inner product in

L2(Ω0)) both parts of (4) by the function ϕ such that ϕ ∈ H2(Ω0) ∩H1
0 (Ω0). Hereinafter ν is a normal

vector to the domain boundary ∂Ω0. After that, using Green’s formula we replace the operator A from

θ(t) to ϕ.

d

dt
〈θ(t), ϕ〉 −

t∫
0

K(t− s)

〈θ(s),∆ϕ〉 − ∫
∂Ω0

v(s)
∂ϕ

∂ν
dσ

 ds = 0, (7)

where 〈·, ·〉 is the inner product in L2(Ω0).

The orthonormalized system of eigenvectors of A are the functions ϕnm(x, y) which in polar coordi-

nates x = r cosα, y = r sinα have the form

ϕ̃nm(r, α) =
Jm
(
µmn

r
R

)
eimα

√
πRJ ′m(µmn )

, m = 0, 1, 2, ..., n = 1, 2, ...,

where Jm are Bessel functions, µmn are positive roots of Jm. It is a well-known fact that this system is a

basis for L2(Ω0). We substitute ϕ = ϕnm in (7). Then using the notation θnm(t) = 〈θ(t), ϕnm〉 we obtain

dθnm(t)

dt
+ λ2

nm

t∫
0

K(t− s)θnm(s)dσds = −
t∫

0

K(t− s)

 ∫
∂Ω0

v(s)
∂ϕnm
∂ν

 dσds (8)
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where λnm are the corresponding eigenvalues. If we use polar coordinates we have

λ2
nm =

(µmn )
2

R2
.

Let us make the Laplace transformation for both parts of (8) and express θ̂nm(λ):

θ̂nm(λ) =

−K̂(λ)
∫
∂Ω

v̂(λ)∂ϕnm

∂ν dσ + ξnm

λ+ λ2
nmK̂(λ)

. (9)

Lemma 1. If in the problem (4)—(6) K̂(λ) has at least one root λ0 6= 0 in the domain of holomor-

phism (we require that this domain exists) then controllability to rest is impossible; that is, there exists the

initial condition ξ ∈ H2(Ω0)∩H1
0 (Ω0) such that for any T > 0 and for every control v ∈ C(0, T ;H

3
2 (∂Ω0))

the corresponding solution does not have compact support (in t).

Proof. Let us use the polar coordinates in the integral of the equality (9). Then the equality (9)

takes the form:

θ̂nm(λ) =

−µmn K̂(λ)
2π∫
0

v̂0(λ, α)eimαdα+ ξnm

√
πR
(
λ+ λ2

nmK̂(λ)
) , (10)

where v̂0(λ, α) := v̂(λ,R cosα,R sinα).

The system of functions {eimα}m∈Z is an orthogonal basis in L2(0, 2π). Thus we can expand

v̂0(λ, α) =

+∞∑
j=−∞

v̂0,j(λ)eijα,

where

v̂0,j(λ) =
1

2π

2π∫
0

e−ijαv̂0(λ, α)dα.

Hence we obtain

θ̂nm(λ) =
−µmn K̂(λ)2πv̂0,−m(λ) + ξnm

λ+ λ2
nmK̂(λ)

. (11)

We note that if the system is controllable to rest then θnm(t), v0,−m(t) have compact support. Thus

θ̂nm(λ) and v̂0,−m(λ) are in PW+.

As it follows from the definition of PW+, θ̂nm(λ) is an entire function then it can not have singularities

at the roots of the denominator λ + λ2
nmK̂(λ). Thus the control function v̂0,−m(λ) has to satisfy the

following equalities:

v̂0,−m(λ) = − 1

2π

λ2
nmξnm
µmn λ

(12)

when λ 6= 0 is a root of the equation λ+ λ2
nmK̂(λ) = 0. As λ2

nm = (µmn )
2
/R2 then (12) can be rewritten

as follows

v̂0,−m(λ) = − 1

2π

µmn ξnm
R2λ

. (13)

We note that equalities (13) can be presented in the following form:

T∫
0

v0,−m(t)e−λtdt = − 1

2π

µmn ξnm
R2λ

.
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The latter equalities are the so-called moment problem.

We record now index m. Let m, for example, be equal to 1 and n changes from 1 to +∞. We get the

subsystem of equalities for values of the function v̂0,−1(λ) at such points λ that λ+ λ2
n1K̂(λ) = 0:

v̂0,−1(λ) = − 1

2π

µ1
nξn1

R2λ
., n = 1, 2, ... . (14)

We note that K̂(λ) has a root λ0 6= 0 (if K(t) is a series of decreasing exponentials then K̂(λ) has a

countable number of roots, see [14]). Then applying methods used in [3] (in which Rouche’s theorem was

used) we can prove that there exists a sequence {λn 6= 0} of zeros of

λ+
(µ1
n)2

R2
K̂(λ)

and it is important that this sequence is convergent to the non-zero complex number. Let us choose

ξ2j+1,1 = 0. Hence v̂0,−1(λ2n+1) = 0. As the sequence of zeros is convergent and v̂0,1(λ) is an entire

function, then v̂0,−1(λ) ≡ 0. We get that for any n all ξ2n,1 have to be zero. But we can always take some

of them as non-zero numbers. Thus we come to the conclusion that there exists such initial condition ξ

that for any control function v controllability to rest is impossible. Lemma is proved.

We consider the problem (1)—(3). The following theorem is the main result of this article.

Theorem. If the control function u ∈ C(0, T ;L2(Ω)) in the equation (1) has compact support (in

x, y) on Ω and K̂(λ) has at least one root λ0 6= 0 in the domain of holomorphism then controllability to

rest is impossible; that is, there exists the initial condition ξ ∈ H2(Ω) ∩H1
0 (Ω) such that for any T > 0

and for every control u ∈ C(0, T ;L2(Ω)) (with compact support on Ω) the corresponding solution does

not have compact support (in t).

Proof. Let u(t, x, y) at each time t > 0 be an arbitrary function in L2(Ω) with compact support D.

As support of u is a closed and bounded set then we can consider a circle Ω0 which is properly contained

in Ω and does not intersect D (see figure 1). At each time t > 0 the solution θ(t) ∈ H2(Ω) ∩H1
0 (Ω). We

restrict the solution θ(t) to Ω0 (in this case θ(t) ∈ H2(Ω0)) and consider a new initial boundary-value

problem on Ω0. In this problem the boundary condition is equal to the restriction (in the sense of the

trace theorem) of the solution on the boundary of Ω0. As θ(t) ∈ H2(Ω0) this restriction can be computed

and at the each time t > 0 is an element of H
3
2 (∂Ω0). We can consider the restriction of the solution to

∂Ω0 as the control. Thus we obtain the boundary control problem on the circle Ω0. The solution of this

problem exists automatically. Using the previous lemma we have proved that if controllability to rest of

this new problem is impossible then it is impossible, to stop oscillations of the origin problem (1)—(3).

The theorem is proved.

6 Some Generalization and Related Topics

To obtain analogous result for Gurtin-Pipkin equation in the case where the dimension of Ω is greater

than 2, it is necessary to use the orthonormalized system of eigenvectors of A defined in Ω0, where Ω0 is

a ball. These eigenvectors, for example in R3, are constructed by means of spherical harmonics

Y lm(α,ϕ), 0 ≤ α ≤ π, 0 ≤ ϕ < 2π, m = 0, 1, ..., l = 0,±1,±2, ...,±m,

while we use functions eimα, 0 ≤ α < 2π, m = 0, 1, ..., in case of two-dimensional domains. Using

orthogonal property of spherical harmonics Y lm on the unit sphere we expand v̂0(λ) and after that all
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steps of the proof remain unchanged (see proof of the lemma 1). We choose R2 in present paper as the

clearest and evident way to demonstrate the idea of the proof.

Most likely, it can be proved that if

K(t) =

N∑
j=1

cje
−γjt

and the control function does not have compact support properly contained in Ω, then the problem

(1)—(3) is controllable to rest. We note that if K(t) = C > 0 then the equation (1) is a classical wave

equation and K̂(λ) does not have a null, and it is a well-known fact that using a control contained in

a subdomain the system is controllable to rest. If K(t) = qe−γt, q, γ > 0 then the equation (1) can be

reduced to the equation

θtt(t, x, y)− q∆θ(t, x, y) + γθt(t, x, y) = P (t, x, y),

where

P (t, x, y) =
du(t, x, y)

dt
+ γu(t, x, y)

and P can be considered as a new control. The latter equation is a damped wave equation. Let us

consider the one-dimensional case then, instead of the Laplace operator ∆, we write the second derivative
d2

dx2 :

θtt(t, x)− qθxx(t, x) + γθt(t, x) = P (t, x). (15)

It is proved (will be published later) that oscillations of the string governed by the equation (15) (let

P (t, x) ≡ 0) can be stopped if we apply the control to the end of the string, the second end being fixed.

Apparently, using this fact it can be proved (but it is not proved), that by means of a control P (t, x)

contained in a subsegment (in x), the system is also controllable to rest.

Finally, we also note a link between stability and controllability for the one-dimensional case. If we

consider equation

θtt − αθxx − qθxx ∗ e−γt = 0,

where ∗ is convolution and α > 0, then solutions of this equation are stable if the parameter q ∈ [0, αγ],

and unstable if q < 0 or q > αγ. Furthermore, if q = 0 or q = αγ then the system is controllable to rest.

7 Conclusions

In this article, we have proved that the system governed by the two-dimensional Gurtin-Pipkin equa-

tion is uncontrollable to rest if the distributed control is supported on the subdomain which is properly

contained in arbitrary bounded domain with a smooth boundary. In this case, the memory kernel is a

twice continuously differentiable function, such that its Laplace transformation has at least one non-zero

root.

7



Figure 1:
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