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ABSTRACT

Stochastic Perron for Stochastic Target Problems

by
Jiaqi Li

Chairs: Erhan Bayraktar and Uday Rajan

This thesis is devoted to the application of stochastic Perron’s method in stochastic

target problems. In Chapters II-V, we study different stochastic target problems

in various setup. For each target problem, stochastic Perron’s method produces a

viscosity sub-solution and super-solution to its associated Hamilton-Jacobi-Bellman

(HJB) equation. We then characterize the value function in each problem as the

unique viscosity solution to the associated HJB equation using a comparison result.

In Chapter II, we investigate stochastic target problems in a jump diffusion setup,

where the controls are unbounded. Since classical control problems can be analyzed

under the framework of stochastic target problems, we use our results to generalize

the results of Bayraktar and Ŝırbu (SIAM J Control Optim 51(6): 4274-4294, 2013)

to problems with controlled jumps.

In Chapter III, we study stochastic target problems with a stopper under the

setup as in Chapter II. We prove that the target problem with a cooperative stopper

(resp. with a non-cooperative stopper) can be expressed in terms of a cooperative

controller-stopper problem (resp. a controller-stopper game).

In Chapter IV, we analyze the framework of stochastic target games, in which one

vii



player tries to find a strategy such that the state processes reach a given target at

a deterministic time no matter which action is chosen by the other player (Nature).

Besides obtaining the PDE characterization of the value function, we also prove the

dynamic programming principle as a corollary.

In Chapter V, we study two types of stochastic target games with a stopper under

the framework of Chapter IV. We show that the value function in each problem is

the unique viscosity solution of a variational HJB equation. We also compare the

value functions and prove that they coincide when the control set of Nature is a

singleton.
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CHAPTER I

Introduction

Introduced by the seminal papers [31], [32] and [33], the stochastic target problem

is a new type of optimal control problem. Unlike in the usual stochastic control

problem, the goal in a stochastic target problem is to drive a controlled process

to a given target at a pre-specified time almost surely by choosing an appropriate

admissible control. Thus, these problems are viewed as generalizations of the super-

hedging problems in mathematical finance. Later, the previous work in [31, 32, 33]

are generalized in [12, 25] (to jump diffusions), [14] (to unbounded controls), [15]

(to stochastic target games with controlled loss) and [16] (to stochastic target games

with almost sure target). These papers provide a characterization of the associated

value function as a viscosity solution to a non-linear HJB equation using dynamic

programming principle. However, the rigorous proof of the dynamic programming

principle is often difficult and contains subtle technical issues.

In this thesis, we will investigate stochastic target problems with various setup

using a new methodology, namely stochastic Perron’s method. This method was first

introduced in [8] for analyzing linear problems, in [10] for Dynkin games involving

free-boundary games, and in [9] for stochastic control problems. More recently, it

was adjusted to solve exit time problems in [28], state constraint problems in [27],

1
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singular control problems in [2], stochastic games in [30], and control problems with

model uncertainty in [29] and [3].

Stochastic Perron’s method is a verification approach in that it does not use

the dynamic programming principle to show that the value function is a viscosity

solution. The main difficulty of this approach as well as the conceptual contribution

is to construct two classes of functions that envelope the value function and that

are stable under pairwise minimization and maximization, respectively. Once this is

established, the technical contribution is to demonstrate that the supremum over the

first class is a lower semi-continuous (LSC) viscosity super-solution and the infimum

over the second class (the functions larger than the value function) is an upper

semi-continuous (USC) viscosity sub-solution. Assuming that a comparison principle

holds, we show that the infimum over the second class and the supremum over the first

class (which sandwich the value function) are equal, and hence, the value function is

the unique viscosity solution. Since we only work with the envelopes, not the value

function itself, we never use the dynamic programming principle. Our result can be

seen as an elementary alternative based only on Itô’s Lemma and the comparison

principle, which also has to be proved to identify the value function as the unique

viscosity solution of the HJB partial differential equation.

In each of Chapters II-IV, stochastic Perron’s method produces a viscosity sub-

solution and super-solution of an HJB equation. The value function is then char-

acterized as the unique viscosity solution to the associated HJB equation using a

comparison result.

In Chapter II, we consider a stochastic target problem with a general stochastic

target setup from [25]. Our controls are unbounded and the controlled processes are

jump diffusions. The main reason for using unbounded controls is that we are able
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convert an ordinary control problem into a stochastic target problem with unbounded

admissible controls, using the embedding result of [13]. With such a result, we

generalize [9] to the setting of controlled jumps.

We also generalize our earlier result in [6] in the sense that we consider unbounded

controls and controlled jumps. The presence of the jumps and the unbounded control

set brings new technical difficulties: in contrast to [6], the relaxed semi-limits are

introduced for the PDE characterization, which have a nontrivial impact on the

formulation of the associated PDEs and the derivation of viscosity properties of

the value function using stochastic Perron’s method, especially at the boundary.

Of particular importance is the relaxation with respect to the test function, which

appears because we consider jumps. This chapter is based on [7].

In Chapter III, we study two types of stochastic target problems with a stop-

per in the jump diffusion model as presented in Chapter II. One type of the target

problems involves a cooperative stopper (Section 3.3), while the other involves a non-

cooperative stopper, which might play against the controller in a non-anticipative

way (Section 3.4). Besides the PDE characterization, another major contribution

in this chapter is the we are able to establish the “equivalence” between a coopera-

tive controller-stopper problem (resp. a controller-stopper game) and the stochastic

target problem with a cooperative stopper (resp. with a non-cooperative stopper)

introduced in this chapter. We show that

1. The HJB equations associated to a (semi) controller-stopper game can be de-

duced from a stochastic target problem with a non-cooperative stopper.

2. Any cooperative controller-stopper problem admits a natural representation in

terms of a stochastic target problem with a cooperative stopper.

Such equivalence results, along with the analysis in stochastic target problems in
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this chapter, provide us with an alternative to solve the cooperative controller-

stopper problem and controller-stopper game. For the discussion about the cooper-

ative controller-stopper problem and controller-stopper game, we refer the readers

to [19, 21] and [22, 23, 24, 17, 11]. This chapter is based on a working paper by

Bayraktar and Li.

In Chapter IV, we will analyze a stochastic game where a controller tries to find a

strategy such that the controlled state process almost-surely reaches a given target at

a pre-specified time, no matter which control is chosen by an adverse player (Nature).

More precisely, the controller has access to a filtration generated by a Brownian

motion and can observe and react to nature, who may choose a parametrization of

the model to be totally adverse to the controller, in a non-anticipative way. This

stochastic target game was introduced and analyzed in [16].

With stochastic Perron’s method, we obtain the PDE characterization of the value

function without going through the geometric dynamic programming principle first.

This enables us to avoid using Krylov’s method of shaken coefficients which requires

the concavity of the Hamiltonian. This way, we provide a more elementary proof

to the results in [16] and obtain dynamic programming principle as a byproduct.

This chapter is based on [6]. Parts of the work have been presented at the Finan-

cial/Actuarial Mathematics Seminar, University of Michigan, September 3, 2014.

In Chapter V, we study two types of stochastic target games with a stopper. In

the first type of the target games, both Nature and the stopper might be totally

adverse to the controller in a non-anticipative way. The controller aims to drive the

controlled processes to a target no matter what action is chosen by Nature or when

the game is stopped. However, in the other type, the controller’s goal is to beat

the target by applying both a control strategy and a stopping strategy, regardless of
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Nature’s action. With such a formulation, Nature’s control can be interpreted as a

parametrization of the model. Thus, the first problem can be interpreted as super-

hedging American options with model uncertainty in the context of mathematical

finance, while the other can be understood as sub-hedging American options with

model uncertainty. Besides obtaining the PDE characterization of the value func-

tions, we also compare the two value functions without proving any duality results

and verify that they coincide when the control set of Nature is a singleton. This

chapter is based on a working paper by Bayraktar and Li.



CHAPTER II

Stochastic Perron for Stochastic Target Problems in a Jump
Diffusion Model

2.1 Outline of this chapter

In this chapter, we analyze a stochastic target problem in a general stochastic

target setup from [25]. In Section 2.2, the setup of the problem, the related HJB

equation and the definitions of the stochastic semi-solutions are first introduced. In

Sections 2.3 and 2.4, we prove the viscosity properties in the parabolic interior and

at the boundary, respectively. In Section 2.5, we use the comparison principle to

close the gap between the viscosity super-solution and sub-solution and demonstrate

the uniqueness of the viscosity solution to the associated HJB equation. In Section

2.6, we see how an optimal control problem can be converted into a stochastic target

problem. Some technical results are delegated to the appendix (Section 2.7). Our

main results are Theorems 2.3.3, 2.4.1, 2.5.5 and 2.6.2.

2.2 The setup

Throughout this thesis, the superscript > stands for transposition, | · | for the

Euclidean norm of a vector in Rn and ‖ · ‖ for the Frobenius norm of a matrix. For

a subset of O of Rn, we denote by Int(O) its interior. We also denote the open ball

of radius r > 0 centered at x ∈ Rn by Br(x) and the set of n × n matrices (resp.

6
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symmetric matrices) by Mn (resp. Sn). Inequalities and inclusion between random

variables and random sets, respectively, are in the almost sure sense unless otherwise

stated.

Given a complete probability space (Ω,F ,P), let {λi(·, de)}Ii=1 be a collection of

independent integer-valued E-marked right-continuous point processes defined on

this space. Here, E is a Borel subset of R equipped with the Borel sigma field E .

Let λ = (λ1, λ2, · · · , λI)>and W = {Ws}0≤s≤T be a d-dimensional Brownian motion

defined on the same probability space such that W and λ are independent. Given

t ∈ [0, T ], let Ft = {F ts, t ≤ s ≤ T} be P-completed filtration generated by W· −Wt

and λ([0, ·], de) − λ([0, t], de). Set F ts = F tt for 0 ≤ s < t. We will use Tt to denote

the set of Ft-stopping times valued in [t, T ]. Given τ ∈ Tt, the set of Ft-stopping

times valued in [τ, T ] will be denoted by Tτ .

Assumption 2.2.1. λ satisfies the following:

1. λ(ds, de) has intensity kernel m(de)ds such that mi is a Borel measure on (E, E)

for any i = 1, · · · , I and m̂(E) < ∞, where m = (m1, · · · ,mI)
> and m̂ =∑I

i=1mi.

2. E = supp(mi) for all i = 1, 2, · · · , I. Here, supp(mi) := {e ∈ E : e ∈ Ne ∈

TE =⇒ mi(Ne) > 0}, where TE is the topology on E induced by the Euclidean

topology.

3. There exists a constant C > 0 such that

P
({
λ̂({s}, E) ≤ C for all s ∈ [0, T ]

})
= 1, where λ̂ =

I∑
i=1

λi.

The above assumption implies that there are a finite number of jumps during

any finite time interval. Let λ̃(ds, de) := λ(ds, de) − m(de)ds be the associated

compensated random measure.
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Let U t1 be the collection of all the Ft-predictable processes in L2(Ω × [0, T ],F ⊗

B[0, T ],P ⊗ λL;U1), where λL is the Lebesgue measure on R and U1 ⊂ Rq for some

q ∈ N. Define U t2 to be the collection of all the maps ν2 : Ω× [0, T ]×E → Rn which

are P t ⊗ E measurable such that

‖ν2‖Ut2 :=

(
E
[∫ T

t

∫
E

|ν2(s, e)|2m̂(de)ds

]) 1
2

<∞,

where P t is the Ft-predictable sigma-algebra on Ω×[0, T ]. ν = (ν1, ν2) ∈ U t0 := U t1×U t2

takes value in the set U := U1 × L2(E, E , m̂;Rn). Let

D = [0, T ]× Rd, Di = [0, T )× Rd and DT = {T} × Rd.

Given z = (x, y) ∈ Rd × R, t ∈ [0, T ] and ν ∈ U t0, we consider the stochastic

differential equations (SDEs)

dX(s) = µX(s,X(s), ν(s))ds+ σX(s,X(s), ν(s))dWs

+

∫
E

β(s,X(s−), ν1(s), ν2(s, e), e)λ(ds, de),

dY (s) = µY (s, Z(s), ν(s))ds+ σ>Y (s, Z(s), ν(s))dWs

+

∫
E

b>(s, Z(s−), ν1(s), ν2(s, e), e)λ(ds, de),

(2.2.1)

with (X(t), Y (t)) = (x, y). Here, Z = (X, Y ). In (2.2.1),

µX : D× U → Rd, σX : D× U → Rd×d, β : D× U1 × Rn × E → Rd×I ,

µY : D× R× U → R, σY : D× R× U → Rd, b : D× R× U1 × Rn × E → RI .

Assumption 2.2.2. Let z = (x, y) and u = (u1, u2) ∈ U = U1 × L2(E, E , m̂;Rn).

We use the notation ‖u‖U := |u1|+ ‖u2‖m̂ and u(e) := (u1, u2(e)) for the rest of this

chapter.

1. µX , σX , µY and σY are all continuous;
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2. µX , σX , µY , σY are Lipschitz in z and locally Lipschitz in other variables. In

addition,

|µX(t, x, u)|+ |σX(t, x, u)| ≤ L(1 + |x|+ ‖u‖U),

|µY (t, x, y, u)|+ |σY (t, x, y, u)| ≤ L(1 + |y|+ ‖u‖U).

3. b and β are Lipschitz and grow linearly in all variables except e, but uniformly

in e.

Remark 2.2.3. Assumptions 2.2.1 and 2.2.2 guarantee that there exists a unique

strong solution (Xν
t,x, Y

ν
t,x,y) to (2.2.1) for any ν ∈ U t0. Moreover, the processes (Xν

t,x,

Y ν
t,x,y) are càdlàg.

Besides the measurability and the integrability conditions for U t0, we impose an-

other condition on the admissible control set. Let U t be the admissible control set,

which consists of all ν ∈ U t0 such that for any compact set C ⊂ Rd × R, there exists

a constant KC,ν > 0 such that

(2.2.2)

∣∣∣∣∫
E

b>(τ, x, y, ν1(τ), ν2(τ, e), e)λ({τ}, e)
∣∣∣∣ ≤ KC,ν for (x, y) ∈ C, τ ∈ Tt.

We now define the value function of the stochastic target problem. Let g : Rd → R

be a measurable function with polynomial growth. The value function of the target

problem is defined by

(2.2.3) u(t, x) := inf
{
y : ∃ν ∈ U t s.t. Y ν

t,x,y(T ) ≥ g(Xν
t,x(T )) P− a.s.

}
.

2.2.1 The Hamilton-Jacobi-Bellman equation

Denote b = (b1, b2, · · · , bI)> and β = (β1, β2, · · · , βI). For a given ϕ ∈ C(D), we

define the relaxed semi-limits

(2.2.4) H∗(Θ, ϕ) := lim sup
ε↘0, Θ

′→Θ

η↘0, ψ
u.c.−→ϕ

Hε,η(Θ
′
, ψ) and H∗(Θ, ϕ) := lim inf

ε↘0, Θ
′→Θ

η↘0, ψ
u.c.−→ϕ

Hε,η(Θ
′
, ψ).1

1The convergence ψ
u.c.−→ ϕ is understood in the sense that ψ converges uniformly on compact subsets to ϕ.
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Here, for Θ = (t, x, y, p, A) ∈ D× R× Rd ×Md, ϕ ∈ C(D), ε ≥ 0 and η ∈ [−1, 1],

Hε,η(Θ, ϕ) := sup
u∈Nε,η(t,x,y,p,ϕ)

Lu(Θ), where,

Lu(Θ) : = µY (t, x, y, u)− µ>X(t, x, u)p− 1

2
Tr[σXσ

>
X(t, x, u)A],

Nu(t, x, y, p) : = σY (t, x, y, u)− σ>X(t, x, u)p,

∆u,e(t, x, y, ϕ) : = min
1≤i≤I

{bi(t, x, y, u(e), e)− ϕ(t, x+ βi(t, x, u(e), e)) + ϕ(t, x)},

Nε,η(t, x, y, p, ϕ) : = {u ∈ U : |Nu(t, x, y, p)| ≤ ε, ∆u,e(t, x, y, ϕ) ≥ η m̂-a.s. e ∈ E}.

For our later use, we also define the following:

Ju,ei (t, x, y, ϕ) := bi(t, x, y, u(e), e)− ϕ(t, x+ βi(t, x, u(e), e)) + ϕ(t, x),

J
u,e

(t, x, y, ϕ) := (Ju,e1 (t, x, y, ϕ), · · · , Ju,eI (t, x, y, ϕ))>,

L uϕ(t, x) := ϕt(t, x) + µ>X(t, x, u)Dϕ(t, x) + 1
2
Tr[σXσ

>
X(t, x, u)D2ϕ(t, x)].

Remark 2.2.4. For simplicity, we denote H∗(t, x, ϕ(t, x), Dϕ(t, x), D2ϕ(t, x), ϕ) by

H∗ϕ(t, x) for ϕ ∈ C1,2(D). For ϕ ∈ C2(Rd), denote H∗(T, x, ϕ(x), Dϕ(x), D2ϕ(x), ϕ)

by H∗ϕ(x). We will use similar notation for H∗ and other operators in later sections.

Later, we will produce a viscosity super-solution and sub-solution, respectively,

to

−∂tϕ(t, x) +H∗ϕ(t, x) ≥ 0 in Di and(2.2.5)

−∂tϕ(t, x) +H∗ϕ(t, x) ≤ 0 in Di.(2.2.6)

2.2.2 Stochastic solutions

Before we introduce the definitions of the stochastic semi-solutions, we define the

concatenation of the admissible controls.

Definition 2.2.5 (Concatenation). Let ν1, ν2 ∈ U t, τ ∈ Tt. The concatenation of ν1

and ν2 at τ is defined as ν1 ⊗τ ν2 := ν11[0,τ) + ν21[τ,T ] ∈ U t.2
2This can be easily checked.
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Definition 2.2.6 (Stochastic super-solutions). A continuous function w : D→ R is

called a stochastic super-solution if

1. w(T, x) ≥ g(x) and for some C > 0 and n ∈ N,3 |w(t, x)| ≤ C(1 + |x|n) for all

(t, x) ∈ D.

2. Given (t, x, y) ∈ D×R, for any τ ∈ Tt and ν ∈ U t, there exists ν̃ ∈ U t such that

Y (ρ) ≥ w(ρ,X(ρ)) P− a.s. on {Y (τ) ≥ w(τ,X(τ))}

for all ρ ∈ Tτ , where X := Xν⊗τ ν̃
t,x and Y := Y ν⊗τ ν̃

t,x,y .

Definition 2.2.7 (Stochastic sub-solutions). A continuous function w : D → R is

called a stochastic sub-solution if

1. w(T, x) ≤ g(x) and for some C > 0 and n ∈ N, |w(t, x)| ≤ C(1 + |x|n) for all

(t, x) ∈ D.

2. Given (t, x, y) ∈ D× R, for any τ ∈ Tt and ν ∈ U t, we have

P(Y (ρ) < w(ρ,X(ρ))|B) > 0

for all ρ ∈ Tτ and B ⊂ {Y (τ) < w(τ,X(τ))} satisfying B ∈ F tτ and P(B) > 0.

Here, we use the notation X := Xν
t,x and Y := Y ν

t,x,y.

Denote the sets of stochastic super-solutions and sub-solutions by U+ and U−,

respectively.

Assumption 2.2.8. U+ and U− are not empty.

Remark 2.2.9. Let u+ := infw∈U+ w. For any stochastic super-solution w, choose

τ = t and ρ = T . Then there exists ν̃ ∈ U t such that Y ν̃
t,x,y(T ) ≥ w

(
T,X ν̃

t,x(T )
)
≥

g
(
X ν̃
t,x(T )

)
P − a.s. if y ≥ w(t, x). Hence, y ≥ w(t, x) implies that y ≥ u(t, x) from

3C and N may depend on w and T . This also applies to Definition 2.2.7
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(2.2.3). This means that w ≥ u and u+ ≥ u. By the definition of U+, we know that

u+(T, x) ≥ g(x) for all x ∈ Rd.

Remark 2.2.10. Let u− := supw∈U− w. For any stochastic sub-solution w, if y <

w(t, x), by choosing τ = t and ρ = T , we get that for any ν ∈ U t,

P
(
Y ν
t,x,y(T ) < g(Xν

t,x(T ))
)
≥ P

(
Y ν
t,x,y(T ) < w(T,Xν

t,x(T ))
)
> 0.

Therefore, from (2.2.3), y < w(t, x) implies that y ≤ u(t, x). This means that w ≤ u

and u− ≤ u. By the definition of U−, it holds that u−(T, x) ≤ g(x) for all x ∈ Rd.

In short,

(2.2.7) u− = sup
w∈U−

w ≤ u ≤ inf
w∈U+

w = u+.

We will provide sufficient conditions which guarantee Assumption 2.2.8 in the Ap-

pendix A. As in [12] and [25], the proof of the sub-solution property requires a

regularity assumption on the set-valued map N0,η(·, ψ).

Assumption 2.2.11. For ψ ∈ C(D), η > 0, let B be a subset of D × R × Rd

such that N0,η(·, ψ) 6= ∅ on B. Then for every ε > 0, (t0, x0, y0, p0) ∈ Int(B) and

u0 ∈ N0,η(t0, x0, y0, p0, ψ), there exists an open neighborhood B′ of (t0, x0, y0, p0) and a

locally Lipschitz continuous map ν̂ defined on B′ such that ‖ν̂(t0, x0, y0, p0)−u0‖U ≤ ε

and ν̂(t, x, y, p) ∈ N0,η(t, x, y, p, ψ).

2.3 Viscosity property in Di

In this section, we state and prove the theorem which characterizes u+ (resp.

u−) as a viscosity sub-solution (resp. super-solution) of (2.2.6) (resp. (2.2.5)). The

boundary conditions will be discussed in Theorem 2.4.1. Before we give the main

result, we state two preparatory lemmas without proof. These two lemmas are easy

to check and we refer the readers to [6] for their proofs.
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Lemma 2.3.1. U+ and U− are closed under pairwise minimization and maximiza-

tion, respectively. That is,

1. If w1, w2 ∈ U+, then w1 ∧ w2 ∈ U+; 2. If w1, w2 ∈ U−, then w1 ∨ w2 ∈ U−.

Lemma 2.3.2. There exists a non-increasing sequence {wn}∞n=1 ⊂ U+ such that

wn ↘ u+ and a non-decreasing sequence {vn}∞n=1 ⊂ U− such that vn ↗ u−.

Theorem 2.3.3. Under Assumptions 2.2.1, 2.2.2, 2.2.8 and 2.2.11, u+ is a USC

viscosity sub-solution of (2.2.6). On the other hand, under Assumptions 2.2.1, 2.2.2

and 2.2.8, u− is an LSC viscosity super-solution of (2.2.5).

Proof. Step 1 (u+ is a viscosity sub-solution). Assume, on the contrary, that for

some (t0, x0) ∈ Di and ϕ ∈ C1,2(D) satisfying 0 = (u+ −ϕ)(t0, x0) = maxDi(u
+ −ϕ),

we have

(2.3.1) 4η := −∂tϕ(t0, x0) +H∗ϕ(t0, x0) > 0.

From Lemma 2.3.2, there exists a non-increasing sequence U+ 3 wk ↘ u+. Fix

such a sequence {wk}∞k=1 and an arbitrary stochastic sub-solution w−. Let ϕ̃(t, x) =

ϕ(t, x) + ι|x− x0|n0 .4 We can choose n0 ≥ 2 such that for any ι > 0,

(2.3.2) min
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→∞ as |x| → ∞.

We can do this because ϕ(t, x) is bounded from below by w− (which has polynomial

growth in x) and w1 has polynomial growth in x. Since (Nε,η)ε≥0 is non-decreasing

in ε, we know

H∗(Θ, ϕ) = lim inf
Θ
′→Θ,ψ

u.c.−→ϕ
η↘0

H0,η(Θ
′
, ψ).

By (2.2.4) and (2.3.1), we can find ε > 0, η > 0 and ι > 0 such that for all

(t, x, y) satisfying (t, x) ∈ Bε(t0, x0) and |y− ϕ̃(t, x)| ≤ ε, µY (t, x, y, u)−Luϕ̃(t, x) ≥
4Since we will fix n0 and ι later, we still use the notation ϕ̃ when without ambiguity despite the fact that the

function depends on n0 and ι.
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2η for some u ∈ N0,η(t, x, y,Dϕ̃(t, x), ϕ̃). Fix ι. Note that (t0, x0) is still a strict

maximizer of u+ − ϕ̃ over Di. For ε sufficiently small, Assumption 2.2.11 implies

that there exists a locally Lipschitz map ν̂ such that

ν̂(t, x, y,Dϕ̃(t, x)) ∈ N0,η(t, x, y,Dϕ̃(t, x), ϕ̃) and(2.3.3)

µY (t, x, y, ν̂(t, x, y,Dϕ̃(t, x)))− Lν̂(t,x,y,Dϕ̃(t,x))ϕ̃(t, x) ≥ η

for all (t, x, y) ∈ Di × R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ̃(t, x)| ≤ ε.

(2.3.4)

In the arguments above, choose ε small enough such that Bε(t0, x0) ∩ DT = ∅.

Since (2.3.2) holds, there exists R0 > ε such that ϕ̃ > w1 + ε ≥ wk + ε on O :=

D− [0, T ]×BR0(x0) for all k. On the compact set T := [0, T ]×BR0(x0)−Bε/2(t0, x0),

we know that ϕ̃ > u+ and the minimum of ϕ̃ − u+ is attained since u+ is USC.

Therefore, ϕ̃ > u+ + 2α on T for some α > 0. By a Dini-type argument, for large

enough n, we have ϕ̃ > wn + α on T and ϕ̃ > wn − ε on Bε/2(t0, x0). For simplicity,

fix such an n and set w = wn. In short,

(2.3.5) ϕ̃ > w + ε on O, ϕ̃ > w + α on T and ϕ̃ > w − ε on Bε/2(t0, x0).

For κ ∈ (0, ε ∧ α), define

wκ :=

 (ϕ̃− κ) ∧ w on Bε(t0, x0),

w outside Bε(t0, x0).

Observing that wκ(t0, x0) = ϕ̃(t0, x0)−κ < u+(t0, x0), we could obtain a contradiction

if we could show that wκ ∈ U+. Obviously, wκ is continuous, has polynomial growth

in x and wκ(T, x) ≥ g(x) for all x ∈ Rd.

Fix (t, x, y) ∈ Di × R, ν ∈ U t and τ ∈ Tt.5 Now our goal is to construct an

admissible control ν̃ such that wκ and the processes (X, Y ) controlled by ν ⊗τ ν̃

satisfy the property in the definition of stochastic super-solutions.
5Here we choose (t, x) ∈ Di since the case (t, x) ∈ DT is trivial.
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Let A = {wκ(τ,Xν
t,x(τ)) = w(τ,Xν

t,x(τ))}. On A, let ν̃ be ν̃1, which is “optimal”

for w starting at τ . We get the existence of ν̃1 since w ∈ U+. On Ac, by an argument

similar to that in [6] (see Step 1.1 of Theorem 3.1’s proof), we can construct an

admissible control ν0 ∈ U t such that

ν0(s) := ν̂
(
s,Xν⊗τν0

t,x (s), Y ν⊗τν0
t,x,y (s), Dϕ̃(s,Xν⊗τν0

t,x (s)
)

for τ ≤ s < θ := θ1 ∧ θ2,

where θ1 := inf
{
s ∈ [τ, T ] : (s,Xν⊗τν0

t,x (s)) /∈ Bε/2(t0, x0)
}
∧ T,

θ2 := inf
{
s ∈ [τ, T ] :

∣∣Y ν⊗τν0
t,x,y (s)− ϕ̃(s,Xν⊗τν0

t,x (s))
∣∣ ≥ ε

}
∧ T.

In the construction of ν0, we take advantage of Assumption 2.2.2 and the Lipschitz

continuity of ν̂ which guarantee the existence of Xν⊗τν0
t,x and Y ν⊗τν0

t,x,y . Since Xν⊗τν0
t,x

and Y ν⊗τν0
t,x,y are càdlàg, it is easy to check that θ ∈ Tτ . We also see that

(θ1, X
ν⊗τν0
t,x (θ1)) /∈ Bε/2(t0, x0),

∣∣Y ν⊗τν0
t,x,y (θ2)− ϕ̃(θ2, X

ν⊗τν0
t,x (θ2))

∣∣ ≥ ε,(2.3.6)

(θ1, X
ν⊗τν0
t,x (θ1−)) ∈ Bε/2(t0, x0),

∣∣Y ν⊗τν0
t,x,y (θ2−)− ϕ̃(θ2, X

ν⊗τν0
t,x (θ2−))

∣∣ ≤ ε.(2.3.7)

Let ν̃θ be the “optimal” control for w starting at θ. We define ν̃ on Ac by ν0 ⊗θ ν̃θ.

In short,

ν̃ :=
(
1Aν̃1 + 1Ac(ν01[t,θ[ + 1[θ,T ]ν̃

θ)
)
1[τ,T ].

It is not difficult to check that ν̃ ∈ U t. To prove that the above construction works,

we next show that

Y (ρ) ≥ wκ(ρ,X(ρ)) on B := {Y (τ) ≥ wκ(τ,X(τ))},

where X := Xν⊗τ ν̃
t,x and Y := Y ν⊗τ ν̃

t,x,y . Corresponding to the construction of ν̃ on A

and Ac, we consider the following two cases:

(i) On the set A ∩ B. We have Y (τ) ≥ w(τ,X(τ)). From the definition of ν on A

and the fact that w ∈ U+, we know

Y (ρ) = Y ν⊗τ ν̃1
t,x,y (ρ) ≥ w(ρ,Xν⊗τ ν̃1

t,x (ρ)) ≥ wκ(ρ,X(ρ)) on A ∩B.
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(ii) On the set Ac ∩ B. Letting Γ(s) := Y (s) − ϕ̃(s,X(s)), we use Itô’s formula

and the definition of ν0 to obtain

Γ(· ∧ θ) = Γ(τ) +

∫ ·∧θ
τ

∫
E

J
ν0(s),e

(s, Z(s−), ϕ̃)> λ(ds, de)

+

∫ ·∧θ
τ

(
µY (s, Z(s), ν0(s))−L ν0(s)ϕ̃(s,X(s))

)
ds on Ac ∩B

Therefore, by (2.3.3), (2.3.4), (2.3.7) and the definition of θ, we know that Γ(· ∧ θ)

is non-decreasing on [τ, T ]. This implies that

(2.3.8) Y (θ)− ϕ̃(θ,X(θ)) + κ ≥ Y (τ)− ϕ̃(τ,X(τ)) + κ ≥ 0 on Ac ∩B.

Since (θ1, X(θ1)) /∈ Bε/2(t0, x0), we know from (2.3.5)

(2.3.9) 0 ≤ Y (θ1)− ϕ̃(θ1, X(θ1))+κ ≤ Y (θ1)−w(θ1, X(θ1)) on {θ1 ≤ θ2}∩Ac∩B.

On the other hand, due to (2.3.6) and (2.3.8), it holds that

Y (θ2)− ϕ̃(θ2, X(θ2)) ≥ ε on {θ1 > θ2} ∩ Ac ∩B.

Therefore, since ϕ̃ > w − ε on Bε/2(t0, x0) and (2.3.7) holds,

Y (θ2)− w(θ2, X(θ2)) ≥ ε+ ϕ̃(θ2, X(θ2))− w(θ2, X(θ2)) > 0 on {θ1 > θ2} ∩Ac ∩B.

Combining the equation above and (2.3.9), we obtain Y (θ) − w(θ,X(θ)) ≥ 0 on

Ac ∩B. Therefore, from the definition of ν̃θ,

(2.3.10) Y (ρ∨θ)−wκ(ρ∨θ,X(ρ∨θ)) ≥ Y (ρ∨θ)−w(ρ∨θ,X(ρ∨θ)) ≥ 0 on Ac∩B.

Also, the monotonicity of Γ(· ∧ θ) implies that

Y (ρ ∧ θ)− ϕ̃(ρ ∧ θ,X(ρ ∧ θ)) + κ ≥ 0 on Ac ∩B

This means that

(2.3.11) 1{ρ<θ} (Y (ρ)− wκ(ρ,X(ρ))) ≥ 0 on Ac ∩B.
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From (2.3.10) and (2.3.11), we get Y (ρ)− wκ(ρ,X(ρ)) ≥ 0 on Ac ∩B.

Step 2 (u− is a viscosity super-solution). Let (t0, x0) ∈ Di satisfy 0 = (u− −

ϕ)(t0, x0) = minDi(u
− − ϕ) for some ϕ ∈ C1,2(D). For the sake of contradiction,

assume that

(2.3.12) −2η := −∂tϕ(t0, x0) +H∗ϕ(t0, x0) < 0.

Let {wk}∞k=1 be a sequence in U− such that wk ↗ u− and ϕ̃(t, x) := ϕ(t, x) − ι|x −

x0|n0 , where we choose n0 ≥ 2 such that for all ι > 0,

(2.3.13) max
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→ −∞ and max
0≤t≤T

ϕ̃(t, x)→ −∞ as |x| → ∞.6

By (2.3.12), the upper semi-continuity of H∗ and the fact that ϕ̃
u.c.−→ ϕ as ι→ 0, we

can find ε > 0, η > 0 and ι > 0 such that

(2.3.14)
µY (t, x, y, u)−L uϕ̃(t, x) ≤ −η for all u ∈ Nε,−η(t, x, y,Dϕ̃(t, x), ϕ̃)

and (t, x, y) ∈ Di × R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ̃(t, x)| ≤ ε.

Fix ι. Note that (t0, x0) is still a strict minimizer of u− − ϕ̃. Since (2.3.13) holds,

there exists R0 > ε such that

ϕ̃ < w1 − ε ≤ wk − ε on O := D− [0, T ]×BR0(x0).

On the compact set T := [0, T ]× BR0(x0)− Bε/2(t0, x0), we know that ϕ̃ < u− and

the maximum of ϕ̃ − u− is attained since u− is LSC. Therefore, ϕ̃ < u− − 2α on T

for some α > 0. By a Dini-type argument, for large enough n, we have ϕ̃ < wn − α

on T and ϕ̃ < wn + ε on Bε/2(t0, x0). For simplicity, fix such an n and set w = wn.

In short,

(2.3.15) ϕ̃ < w − ε on O, ϕ̃ < w − α on T and ϕ̃ < w + ε on Bε/2(t0, x0).

6The existence of n0 follows as in Step1.
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For κ ∈ (0, α ∧ ε), define

wκ :=

 (ϕ̃+ κ) ∨ w on Bε(t0, x0),

w outside Bε(t0, x0).

Noticing that wκ(t0, x0) ≥ ϕ̃(t0, x0) + κ > u−(t0, x0), we will obtain a contradiction

if we show that wκ ∈ U−. Obviously, wκ is continuous, has polynomial growth in x

and wκ(T, x) ≤ g(x) for all x ∈ Rd. Fix (t, x, y) ∈ Di × R, ν ∈ U t and τ ∈ Tt. Our

goal is to show that

P(Y (ρ) < wκ(ρ,X(ρ))|B) > 0

for all ρ ∈ Tτ and B ⊂ {Y (τ) < wκ(τ,X(τ))} satisfying B ∈ F tτ and P(B) > 0,

where X := Xν
t,x and Y := Y ν

t,x,y. Let A = {wκ(τ,X(τ)) = w(τ,X(τ))} and set

E = {Y (τ) < wκ(τ,X(τ))}, E0 = E ∩ A, E1 = E ∩ Ac,

G = {Y (ρ) < wκ(ρ,X(ρ)}, G0 = {Y (ρ) < w(ρ,X(ρ)}.

Then E = E0 ∪ E1, E0 ∩ E1 = ∅ and G0 ⊂ G. To prove that wκ ∈ U−, it suffices

to show that P(G ∩B) > 0. As in [33], we will show

P(B ∩ E0) > 0 =⇒ P(G ∩B ∩ E0) > 0, P(B ∩ E1) > 0 =⇒ P(G ∩B ∩ E1) > 0.

This, together with the facts P(B) = P(B ∩ E0) + P(B ∩ E1) > 0 and P(G ∩ B) =

P(G ∩B ∩ E0) + P(G ∩B ∩ E1), implies that P(G ∩B) > 0.

(i)Assume that P(B ∩ E0) > 0. Since B ∩ E0 ⊂ {Y (τ) < w(τ,X(τ))} and

B ∩ E0 ∈ F tτ , P(G0|B ∩ E0) > 0 from the definition of U−. This further implies

that P(G ∩B ∩ E0) ≥ P(G0 ∩B ∩ E0) > 0.

(ii)Assume that P(B ∩ E1) > 0. Let θ = θ1 ∧ θ2, where

θ1 := inf
{
s ∈ [τ, T ] : (s,X(s)) /∈ Bε/2(t0, x0)

}
∧ T,

θ2 := inf {s ∈ [τ, T ] : |Y (s)− ϕ̃(s,X(s))| ≥ ε} ∧ T.



19

Since X and Y are càdlàg processes, we know that θ ∈ Tτ . The following also hold:

(θ1, X(θ1)) /∈ Bε/2(t0, x0), |Y (θ2)− ϕ̃(θ2, X(θ2))| ≥ ε,(2.3.16)

(θ1, X(θ1−)) ∈ Bε/2(t0, x0), |Y (θ2−)− ϕ̃(θ2, X(θ2−))| ≤ ε.(2.3.17)

Let

a(s) = µY (s,X(s), Y (s), ν(s))−L ν(s)ϕ̃(s,X(s)),

cei (s) = Ju,ei (s,X(s−), Y (s−), ϕ̃), di(s) =

∫
E

cei (s)mi(de), d(s) =
I∑
i=1

di(s),

π(s) = N ν(s)(s,X(s), Y (s), Dϕ̃(s,X(s))), A0 = {s ∈ [τ, θ] : |π(s)| ≤ ε} ,

A1 = {s ∈ [τ, θ] : cei (s) ≥ −η for m̂− a.s. e ∈ E for all i = 1, · · · , I} , A2 = (A1)c,

A3,i = {(s, e) ∈ [τ, θ]× E : cei (s) ≤ −η/2} .

We then set

L(·) := E
(∫ ·∧θ

t

∫
E

∑
δei (s)λ̃i(ds, de) +

∫ ·∧θ
t

α>(s)dWs

)
,

where E(·) denotes the Doléans-Dade exponential and

x+ := max{0, x}, x− := max{0,−x}, α(s) := −a(s)+d(s)
|π(s)|2 π(s)1Ac0(s),

Mi(s) :=
∫
E
1A3,i

(s, e)mi(de), Ki(s, e) :=


1A3,i

(s,e)

Mi(s)
if Mi(s) = 0

0 otherwise

δei (s) :=
(

η
2(1+|d(s)|) − 1 + 1A2(s) ·

2a(s)++η
η

·Ki(s, e)
)
1A0(s).

If s ∈ A2, then it follows from Assumption 2.2.1 and definitions of A2 and A3,i that

(2.3.18) Mi0(s) > 0 for some i0 ∈ {1, 2, · · · , I}.

Obviously, L is a nonnegative local martingale on [t, T ]. Therefore, it is a super-
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martingale. Let Γ(s) := Y (s)− ϕ̃(s,X(s))− κ. Applying Itô’s formula, we get

Γ(· ∧ θ)L(· ∧ θ) = Γ(τ)L(τ) +

∫ ·∧θ
τ

L(s) (π(s) + Γ(s)α(s))> dWs

+

∫ ·∧θ
τ

∫
E

∑
L(s) {cei (s) + Γ(s)δei (s) + cei (s)δ

e
i (s)} λ̃(ds, de)

+

∫ ·∧θ
τ

L(s)

{
(a(s) + d(s))1A0(s) +

∫
E

∑
cei (s)δ

e
i (s)mi(de)

}
ds

By the definition of δei and the fact that 1A1 + 1A2 = 1 on [τ, θ], the last integral in

the equation above is∫ ·∧θ
τ

L(s)

{(
a(s) +

ηd(s)

2(|d(s)|+ 1)

)
1A0∩A1(s) + 1A0∩A2(s)

×
(
a(s) +

ηd(s)

2(|d(s)|+ 1)
+

2a(s)+ + η

η

∫
E

∑
cei (s)Ki(s, e)mi(de)

)}
ds.

By (2.3.14), a(s) ≤ −η on A0 ∩ A1. Then,

(2.3.19)

(
a(s) +

ηd(s)

2(|d(s)|+ 1)

)
1A0∩A1(s) ≤

(
−η +

η

2

)
1A0∩A1(s) ≤ 0.

By the definition of A3,i and (2.3.18), it holds that

1A0∩A2(s)

(
a(s) +

ηd(s)

2(|d(s)|+ 1)
+

2a(s)+ + η

η

∫
E

∑
cei (s)Ki(s, e)mi(de)

)
≤1A0∩A2(s)

(
a(s) +

η

2
− 2a(s)+ + η

η
· η

2

)
= −1A0∩A2(s)a(s)−.

(2.3.20)

Therefore, (2.3.19) and (2.3.20) imply that ΓL is a local super-martingale on [τ, θ].

Note that

Γ(θ)− Γ(θ−) =

∫
E

J
ν(θ),e

(θ,X(θ−), Y (θ−), ϕ̃)> λ({θ}, de).

Since ϕ̃ ∈ C(D) and (2.3.13) holds, ϕ̃ is locally bounded and globally bounded from

above. This, together with (2.3.17) and the admissibility condition (2.2.2), implies

that Γ(θ)−Γ(θ−) ≥ −K almost surely for some K > 0 (K may depend on (t0, x0), ε,

ν and ϕ̃). Since Γ(s) = Y (s) − ϕ̃(s,X(s)) − κ ≥ −(ε + κ) on [τ, θ), ΓL is bounded
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from below by a sub-martingale −(ε + κ + K)L on [τ, θ]. This further implies that

ΓL is a super-martingale by Fatou’s Lemma. Since Γ(τ)L(τ) < 0 on B ∩ E1, the

super-martingale property implies that there exists F ⊂ B ∩ E1 such that F ∈ F tτ

and Γ(θ ∧ ρ)L(θ ∧ ρ) < 0 on F . The non-negativity of L then yields Γ(θ ∧ ρ) < 0.

Therefore,

Y (θ1) < ϕ̃(θ1, X(θ1)) + κ on F ∩ {θ1 ≤ θ2, θ < ρ},

Y (θ2) < ϕ̃(θ2, X(θ2)) + κ on F ∩ {θ1 > θ2, θ < ρ},

Y (ρ)− (ϕ̃(ρ,X(ρ)) + κ) < 0 on F ∩ {θ ≥ ρ}.(2.3.21)

Since (θ1, X(θ1)) /∈ Bε/2(t0, x0), it follows from the first two inequalities in (2.3.15)

that

(2.3.22) Y (θ1) < ϕ̃(θ1, X(θ1)) + κ < w(θ1, X(θ1)) on F ∩ {θ1 ≤ θ2, θ < ρ}.

On the other hand, since Y (θ2) < ϕ̃(θ2, X(θ2)) + κ on F ∩ {θ1 > θ2, θ < ρ} and

(2.3.16) holds,

Y (θ2)− ϕ̃(θ2, X(θ2)) ≤ −ε on F ∩ {θ1 > θ2, θ < ρ}.

Observing that (θ2, X(θ2)) ∈ Bε/2(t0, x0) on {θ1 > θ2}, we get from the last inequality

of (2.3.15) that

(2.3.23) Y (θ2) ≤ ϕ̃(θ2, X(θ2))− ε < w(θ2, X(θ2)) on F ∩ {θ1 > θ2, θ < ρ}.

From (2.3.22) and (2.3.23), we get that Y (θ) < w(θ,X(θ)) on F ∩{θ < ρ}. Therefore,

from the definition of U−,

(2.3.24) P(G0|F ∩ {θ < ρ}) > 0 if P(F ∩ {θ < ρ}) > 0.

From (2.3.21), it holds that

(2.3.25) P(G|F ∩ {θ ≥ ρ}) > 0 if P(F ∩ {θ ≥ ρ}) > 0.
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Since G0 ⊂ G, (2.3.24) and (2.3.25) imply that P(G ∩ F ) > 0. Therefore,

P(G ∩B ∩ E1) > 0.

2.4 Boundary conditions

In this section, we discuss the boundary conditions at T . From the definition of the

value function u, it holds that u(T, x) = g(x) for all x ∈ Rd. However, u+ and u−

may not satisfy this boundary condition. Define

N(t, x, y, p, ψ) := {(r, s) : ∃u ∈ U s.t. r = Nu(t, x, y, p), s ≤ ∆u,e(t, x, y, ψ) m̂-a.s.}

and δ := dist(0,Nc)−dist(0,N), where dist denotes the Euclidean distance. It holds

that

(2.4.1) 0 ∈ int(N(t, x, y, p, ψ)) iff δ(t, x, y, p, ψ) > 0.

The upper (resp. lower) semi-continuous envelope of δ is denoted by δ∗ (resp. δ∗).

Let

u+(T−, x) = lim sup
(t<T,x′)→(T,x)

u−(t, x′), u−(T−, x) = lim inf
(t<T,x′)→(T,x)

u−(t, x′).

The following theorem is an adaptation of the results in [32, 33, 12, 13].

Theorem 2.4.1. Under Assumptions 2.2.1, 2.2.2, 2.2.8 and 2.2.11, if g is USC,

then u+(T−, ·) is a USC viscosity sub-solution of

min{ϕ(x)− g(x), δ∗ϕ(x)} ≤ 0 on Rd.

On the other hand, under Assumptions 2.2.1, 2.2.2 and 2.2.8, if g is LSC, u−(T−, ·)

is an LSC viscosity super-solution of

min{(ϕ(x)− g(x))1{H∗ϕ(x)<∞}, δ
∗ϕ(x)} ≥ 0 on Rd.



23

Proof Step 1 (The sub-solution property on DT ). For the sake of contradiction,

we assume that for some x0 ∈ Rd and ϕ ∈ C2(Rd) satisfying 0 = u+(T−, x0)−ϕ(x0) =

maxx∈Rd(u
+(T−, x)− ϕ(x)), it holds that

ϕ(x0)− g(x0) > 2η and δ∗ϕ(x0) > 2η for some η > 0.

Let {wk}∞k=1 be a sequence in U+ such that wk ↘ u+. Set ϕ̃(t, x) = ϕ(x) + ι|x −

x0|n0 + ι
√
T − t for ι > 0, where ι will be fixed later and n0 satisfies

min
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→∞ as |x| → ∞ for any ι > 0.

By the lower semi-continuity of δ∗ and the upper semi-continuity of g, we can find

ι > 0 and ε > 0 such that for (t, x) ∈ [T − ε, T ] × Bε(x0) and y ∈ R satisfying

|y − ϕ̃(t, x)| ≤ ε

ϕ̃(t, x)− g(x) > η and(2.4.2)

δ∗(t, x, y,Dϕ̃(t, x), ϕ̃) ≥ η.(2.4.3)

By Assumption 2.2.11, the fact that δ ≥ δ∗, (2.4.1) and (2.4.3), we can find a locally

Lipschitz map ν̂ such that

(2.4.4)
ν̂(t, x, y,Dϕ̃(t, x)) ∈ N0,η(t, x, y, ϕ̃(t, x), ϕ̃) for all

(t, x, y) ∈ D× R s.t. (t, x) ∈ [T − ε, T ]×Bε(x0)) and |y − ϕ̃(t, x)| ≤ ε.

In (2.4.4), we may need to choose smaller values of ε, ι and η. Fix ι. Since ∂tϕ̃(t, x)→

−∞ as t→ T , by the continuity of µY , µX , σX and ν,

(2.4.5)
µY (t, x, y, ν̂(t, x, y,Dϕ̃(t, x)))− Lν̂(t,x,y,Dϕ̃(t,x))ϕ̃(t, x) ≥ η for

(t, x) ∈ [T − ε, T ]×Bε(x0) and y ∈ R such that |y − ϕ̃(t, x)| ≤ ε.

Here we may need to shrink ε > 0 again. Since u+ is USC and ϕ̃(T, x0) = u+(T−, x0),

there exists α > 0 such that ϕ̃ > u+ − 2α on [T − ε, T ) × Bε/2(x0)) after possibly
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shrinking ε another time. Since wk ↘ u+, there exists n0 ∈ N such that

(2.4.6) ϕ̃ > wn0 − α on [T − ε, T ) × Bε/2(x0).

Since min0≤t≤T (ϕ̃(t, x)− w1(t, x))→∞ as |x| → ∞, we can find R0 > ε such that

(2.4.7) ϕ̃ > wn0 + ε on O := [T − ε, T ]× (Rd −BR0(x0)).

Notice that ϕ̃(T, ·)−u+(T−, ·) is strictly positive on the compact set T∗ := BR0(x0)−

Bε/2(x0). Hence, by the upper semi-continuity of u+(T−, ·), there exists ζ > 0 such

that

(2.4.8) ϕ̃(T, ·) > u+(T−, ·) + 4ζ on T∗.

From (2.4.8), we conclude that there exists σ > 0 such that

(2.4.9) ϕ̃ > u+ + 2ζ on [T − σ, T ) × T∗.

More precisely, if (2.4.9) does not hold for any σ > 0, then there exists a sequence

(tn, xn) ∈ Di such that tn → T , xn ∈ T∗ and ϕ̃(tn, xn) ≤ u+(tn, xn) + 2ζ. The

compactness of T∗ implies that there is a subsequence of (tn, xn) which converges

to (T, x′) for some x′ ∈ T∗. By taking the lim sup of the above equation over the

subsequence, we get ϕ̃(T, x′) ≤ u+(T−, x′) + 2ζ. This contradicts (2.4.8). Therefore,

(2.4.9) holds.

In (2.4.9), we choose σ < ε. By a Dini-type argument, there exists n1 ≥ n0 such

that

(2.4.10) ϕ̃ > wn1 + ζ on [T − σ, T )× T∗.

Set w = wn1 . For κ ∈ (0, ε ∧ α ∧ ζ), define

wκ :=

 (ϕ̃− κ) ∧ w on [T − σ, T ]×Bε(x0),

w outside [T − σ, T ]×Bε(x0).
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Since w(T, x) ≥ g(x) and (2.4.2) holds, we get that wκ(T, x) ≥ g(x) for all x ∈ Rd.

We also notice that

(2.4.11) wκ(T, x0) ≤ ϕ(x0)− κ < u+(T−, x0) ≤ u+(T, x0).

Using (2.4.4), (2.4.5), (2.4.6), (2.4.7) and (2.4.10) in a manner that is similar to Step

1 in Theorem 2.3.3’s proof, we can show that wκ is a stochastic super-solution, which

contradicts (2.4.11).

Step 2 (The super-solution property on DT ). We will divide the proof into two

steps:

Step 2.A. We will show that u−(T−, ·) is a viscosity super-solution of

(ϕ(x)− g(x))1{H∗ϕ(x)<∞} ≥ 0 on Rd.

Let x0 ∈ Rd and ϕ ∈ C2(Rd) be such that

0 = (u−(T−, x0)− ϕ(x0)) = min
x∈Rd

(u−(T−, x)− ϕ(x)).

Assuming that H∗ϕ(x0) = C < ∞ and that g(x0) > u−(T−, x0) = ϕ(x0), we will

work towards a contradiction. Let {wk}∞1 be a sequence in U− such that wn ↗ u−.

Let ϕ̃(t, x) = ϕ(x)− ι|x− x0|n0 − (C + 2)(T − t) and ϕ̃′(x) = ϕ(x)− ι|x− x0|n0 for

ι > 0, where ι will be fixed later. n0 ≥ 2 is chosen such that for any ι > 0,

(2.4.12) max
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→ −∞, max
0≤t≤T

ϕ̃(t, x)→ −∞ as |x| → ∞.

Note that Dϕ̃′(x) = Dϕ̃(t, x) and D2ϕ̃′(x) = D2ϕ̃(t, x). From g(x0) > ϕ(x0) =

ϕ̃(T, x0) = u−(T−, x0) and the lower semi-continuity of g and u−, we can find ε > 0

and η ∈ (0, 1) such that

(2.4.13)
g(x)− ϕ̃(t, x) > ε for (t, x) ∈ Bε(T, x0),

ϕ̃ < u− + 2η on [T − ε, T ) × Bε/2(x0).
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By the locally boundedness of µX , σX , µY , b and β, and H∗ϕ(x0) = C, there exists

ι > 0 such that

µY (t, x, y, u)− µ>X(t, x, u)Dϕ̃(t, x)− 1
2
Tr[σXσ

>
X(t, x, u)D2ϕ̃(t, x)] ≤ C + 1 for all

(t, x) ∈ [T − ε, T ]×Bε(x0), (y, u) ∈ R× R such that |y − ϕ̃(t, x)| ≤ ε and

u ∈ Nε,−η(t, x, y,Dϕ̃(t, x), ϕ̃′)

Here, we may need to choose smaller values of ε and η. Therefore, by the definition

of ∆u,e,

µY (t, x, y, u)−L uϕ̃(t, x) ≤ C + 1− C − 2 ≤ −η for (t, x, y) ∈ D× R× U s.t.

(t, x) ∈ [T − ε, T ]×Bε(x0), |y − ϕ̃(t, x)| ≤ ε and u ∈ Nε,−η(t, x, y,Dϕ̃(t, x), ϕ̃).

Fix ι. Since wk ↗ u−, there exists n0 ∈ N such that

ϕ̃ < wn0 + η on [T − ε, T )×Bε/2(x0)

due to (2.4.13). By (2.4.12), there exists R0 > ε such that

ϕ̃(t, x) < wn0(t, x) + ε ≤ wn(t, x) + ε on O for n ≥ n0,

where O := [T − ε, T ]× (Rd−BR0(x0)). Since ϕ̃(T, x) ≤ ϕ(x), u−(T−, ·)− ϕ̃(T, ·) is

strictly positive on the compact set T∗ := BR0(x0) − Bε/2(x0). Hence, by the lower

semi-continuity of u−(T−, ·), there exists α > 0 such that

ϕ̃(T, ·) < u−(T−, ·)− 4α on T∗.

Similar to Step 1 in this proof, we can find σ ∈ (0, ε) and n1 ≥ n0 such that

ϕ̃ < wn1 − α on [T − σ, T )× T∗. Set w = wn1 . For κ ∈ (0, ε ∧ δ ∧ α), define

wκ :=

 (ϕ̃+ κ) ∨ w on [T − σ, T ]×Bε(x0),

w outside [T − σ, T ]×Bε(x0).
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As in Step 2 of Theorem 2.3.3’s proof, we can show that wκ ∈ U−, which yields a

contradiction.

Step 2.B: In this step, we prove that u−(T−, ·) is a viscosity super-solution of

δ∗ϕ(x) ≥ 0. Let x0 ∈ Rd and ϕ ∈ C2(Rd) be such that

0 = (u−(T−, x0)− ϕ(x0)) = min
Rd

(u−(T−, x)− ϕ(x)).

Let (sn, ξn) be a sequence in Di satisfying (sn, ξn) → (T, x0) and u−(sn, ξn) →

u−(T−, x0) = ϕ(x0). For all n ∈ N, k ≥ 0 and ι ≥ 0, define

ϕk,ιn (t, x) = ϕ(x)− ι|x− x0|4 + k
T − t

(T − sn)
, ϕι(x) = ϕ(x)− ι|x− x0|4.

Notice that

lim
ι→0

lim
k→0

lim sup
n→∞

sup
(t,x)∈[sn,T ]×B1(x0)

|ϕk,ιn (t, x)− ϕ(x)| = 0.

Let (tk,ιn , x
k,ι
n ) be the minimizer of u− − ϕk,ιn on [sn, T ] × B1(x0). We claim that for

any k > 0 and ι > 0, there exists Nk,ι ∈ N such that

(2.4.14) sn ≤ tk,ιn < T for all n ≥ Nk,ι, and xk,ιn → x0 as n→∞.

We now prove (2.4.14). Since (sn, ξn)→ (T, x0), we can find Nk,ι ∈ N such that for

n ≥ Nk,ι,

(2.4.15) (u− − ϕk,ιn )(sn, ξn) = u−(sn, ξn)− ϕ(ξn) + ι|ξn − x0|4 −
1

k
≤ − 1

2k
< 0.

On the other hand,

(2.4.16) lim inf
t↑T,x′→x

(u−−ϕk,ιn )(t, x′) = u−(T−, x)−ϕ(x)+ι|x−x0|4 ≥ 0 for |x−x0| ≤ 1.

By (2.4.15) and (2.4.16), the first part of (2.4.14) holds. By an argument similar to

Step 4 in Theorem 3.1’s proof in [9], we know that the second part of (2.4.14) also

holds. From (2.4.14) and the definition of ϕk,ιn , we also see that

(2.4.17) ϕk,ιn (tk,ιn , x
k,ι
n )→ u−(T−, x0) = ϕ(x0) as n→∞, then k → 0, ι→ 0.
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By (2.4.14), (2.4.17) and the facts that lim inf(t<T,x)→(T,x0) u
−(t, x) = u−(T−, x0)

and u−(tk,ιn , x
k,ι
n ) ≤ ϕk,ιn (tk,ιn , x

k,ι
n ), it holds that u−(tk,ιn , x

k,ι
n ) → u−(T−, x0) = ϕ(x0)

as n→∞ then k → 0, ι→ 0. Since for all k > 0, ι > 0 and n ≥ Nk,ι, (tk,ιn , x
k,ι
n ) is a

local minimizer of u− − ϕk,ιn and tk,ιn < T , we get

−∂tϕk,ιn (tk,ιn , x
k,ι
n ) +H∗(tk,ιn , x

k,ι
n , u

−(tk,ιn , x
k,ι
n ), Dϕk,ιn (tk,ιn , x

k,ι
n ), D2ϕk,ιn (tk,ιn , x

k,ι
n )) ≥ 0

from Theorem 2.3.3. By the definition of H∗, for any k > 0, ι > 0 and n ≥ Nk,ι
n ,

there exists a sequence {(εm, ηm,Θm, ϕm)} ⊂ R+× [−1, 1]×D×R×Rd×Md×C(D)7

such that (εm, ηm)→ (0, 0),

ϕm
u.c.−→ ϕk,ιn , Θm → (·, u−(·), Dϕk,ιn (·), D2ϕk,ιn (·))(tk,ιn , xk,ιn ) and(2.4.18)

Hεm,ηm(Θm, ϕm)→ H∗(·, u−(·), Dϕk,ιn (·), D2ϕk,ιn (·), ϕk,ιn )(tk,ιn , x
k,ι
n ) > −∞.

This implies that Nεm,ηm(tm, xm, ym, pm, ϕm) 6= ∅ since sup ∅ = −∞. By the defini-

tion of δ, it holds that δ(tm, xm, ym, pm, ϕm) ≥ −
√
ε2
m + η2

m. From (2.4.18) and the

definition of δ∗, we get

δ∗(tk,ιn , x
k,ι
n , u

−(tk,ιn , x
k,ι
n ), Dϕk,ιn (tk,ιn , x

k,ι
n ), ϕk,ιn ) ≥ lim sup

m→∞
δ(tm, xm, ym, pm, ϕm) ≥ 0.

By the definition of ∆u,e in the set-valued map N, the equation above implies that

(2.4.19) δ∗(·, u−(·), Dϕk,ιn (·), ϕι)(tk,ιn , xk,ιn ) = δ∗(·, u−(·), Dϕk,ιn (·), ϕk,ιn )(tk,ιn , x
k,ι
n ) ≥ 0.

Note that ϕι
u.c.−→ ϕ as ι → 0. Moreover, for ι > 0, u−(tk,ιn , x

k,ι
n ) → ϕ(x0) and

Dϕk,ιn (tk,ιn , x
k,ι
n )→ Dϕ(x0) as n→∞ then k → 0. Taking the lim sup of (2.4.19) by

first sending n→∞ then k → 0 and ι→ 0, we have

δ∗ϕ(x0) = δ∗ϕ(T, x0, ϕ(x0), Dϕ(x0), ϕ) ≥ 0

from the upper semi-continuity of δ∗,
7Θm := (tm, xm, ym, pm, Am) takes value in D× R× Rd ×Md
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2.5 Verification by comparison

We now carry out the verification for non-smooth functions assuming the comparison

principle as in [9].

Assumption 2.5.1. Let H = H∗. Assume that H = H∗ on the set {H < ∞} and

that there exists an LSC function G : D××R× Rd ×Md × C(D)→ R such that

(a) H(t, x, y, p, A, ϕ) <∞ =⇒ G(t, x, y, p, A, ϕ) ≤ 0,

(b) G(t, x, y, p, A, ϕ) < 0 =⇒ H(t, x, y, p, A, ϕ) <∞.

Proposition 2.5.2. Under Assumptions 2.2.1, 2.2.2, 2.2.8, 2.2.11 and 2.5.1, u+

(resp. u−) is a USC (resp. an LSC) viscosity sub-solution (resp. super-solution) of

max {−∂tϕ(t, x) +Hϕ(t, x), Gϕ(t, x)} = 0 on Di.

Moreover, if g is USC, u+(T−, ·) is a USC viscosity sub-solution of

min {max{ϕ(x)− g(x), Gϕ(x)}, δ∗ϕ(x)} ≤ 0 on Rd.

If g is LSC, u−(T−, ·) is an LSC viscosity super-solution of

min {max{ϕ(x)− g(x), Gϕ(x)}, δ∗ϕ(x)} ≥ 0 on Rd.

Proof (1) The sub-solution property in Di. Suppose

0 = (u+ − ϕ)(t0, x0) = max
Di

(u+ − ϕ) for some (t0, x0) ∈ Di and ϕ ∈ C1,2(D).

Then −∂tϕ(t0, x0)+Hϕ(t0, x0) = −∂tϕ(t0, x0)+H∗ϕ(t0, x0) ≤ 0 from Theorem 2.3.3.

From (a) in Assumption 2.5.1, Gϕ(t0, x0) ≤ 0. Therefore, the sub-solution property

holds for u+ in the parabolic interior.

(2) The super-solution property in Di. Suppose

0 = (u− − ϕ)(t0, x0) = min
Di

(u− − ϕ) for some (t0, x0) ∈ Di and ϕ ∈ C1,2(D).
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If Hϕ(t0, x0) < ∞, −∂tϕ(t0, x0) + Hϕ(t0, x0) = −∂tϕ(t0, x0) + H∗ϕ(t0, x0) ≥ 0

from Assumption 2.5.1 and Theorem 2.3.3. On the other hand, if Hϕ(t0, x0) = ∞,

Gϕ(t0, x0) ≥ 0 from (b) in Assumption 2.5.1. Therefore, the viscosity super-solution

property holds for u− in the parabolic interior.

(3) The sub-solution property on DT . From Theorem 2.4.1, we know that

u+(T−, ·) is viscosity sub-solution of

min{ϕ(x)− g(x), δ∗ϕ(x)} ≤ 0 on Rd.

Therefore, it suffices to show that Gu+(T−, ·) ≤ 0 in the viscosity sense. Let x0 ∈ Rd

and ϕ ∈ C2(Rd) be such that

0 = (u+(T−, x0)− ϕ(x0)) = max
x∈Rd

(u+(T−, x)− ϕ(x)).

Let (sn, ξn) be a sequence in Di satisfying (sn, ξn) → (T, x0) and u+(sn, ξn) →

u+(T−, x0). For all n ∈ N, k ≥ 0 and ι ≥ 0, define

ϕk,ιn (t, x) = ϕ(x) + ι|x− x0|4 − k
T − t

(T − sn)
, ϕι(x) = ϕ(x) + ι|x− x0|4.

Let (tk,ιn , x
k,ι
n ) be the maximizer of u+ − ϕk,ιn on [sn, T ] × B1(x0). Similar to the

arguments in Step 2B of Theorem 2.4.1’s proof, we can show that

lim
k→0,ι→0

lim
n→∞

u+(tk,ιn , x
k,ι
n ) = ϕ(x0).

We also know that for any k > 0 and ι > 0, there exists Nk,ι ∈ N such that

sn ≤ tk,ιn < T for all n ≥ Nk,ι and xk,ιn → x0 as n → ∞. Therefore, for all k > 0,

ι > 0 and n ≥ Nk,ι, (tk,ιn , x
k,ι
n ) is a maximizer of u+ − ϕk,ιn on [sn, T ]×B1(x0). From

Theorem 2.3.3,

−∂tϕ(tk,ιn , x
k,ι
n ) +H∗(t

k,ι
n , x

k,ι
n , u

+(tk,ιn , x
k,ι
n ), Dϕk,ιn (tk,ιn , x

k,ι
n ), D2ϕk,ιn (tk,ιn , x

k,ι
n ), ϕk,ιn ) ≤ 0.
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Hence, the H∗-term in the above equation is less than ∞. From the definition of

∆u,e, we get

H∗(t
k,ι
n , x

k,ι
n , u

+(tk,ιn , x
k,ι
n ), Dϕk,ιn (tk,ιn , x

k,ι
n ), D2ϕk,ιn (tk,ιn , x

k,ι
n ), ϕι) <∞,

which further implies by Assumption 2.5.1 that

Gϕ(tk,ιn , x
k,ι
n , u

+(tk,ιn , x
k,ι
n ), Dϕk,ιn (tk,ιn , x

k,ι
n ), D2ϕk,ιn (tk,ιn , x

k,ι
n ), ϕι) ≤ 0.

Using an argument similar to that in Step 2B of Theorem 2.4.1’s proof, we conclude

that Gϕ(x0) ≤ 0.

(4) The super-solution property on DT . It suffices to show that u−(T−, ·) is a

viscosity super-solution of

(2.5.1) max{ϕ(x)− g(x), Gϕ(x)} ≥ 0 on Rd.

Let x0 ∈ Rd and ϕ ∈ C2(Rd) be such that

0 = (u−(T−, x0)− ϕ(x0)) = min
x∈Rd

(u−(T−, x)− ϕ(x)).

From Theorem 2.4.1, one of the following two scenarios must hold:

ϕ(x0) ≥ g(x0), H∗ϕ(x0) <∞ or(2.5.2)

H∗ϕ(x0) =∞.(2.5.3)

(2.5.2) implies (2.5.1); on the other hand, if (2.5.3) holds, then Hϕ(x0) =∞, which

means that Gϕ(x0) ≥ 0 from (b) in Assumption 2.5.1. Therefore, (2.5.1) holds.

Assumption 2.5.3. Assume that δ∗ = δ∗, g is continuous and a comparison prin-

ciple holds between USC sub-solutions and LSC super-solutions for

(2.5.4) min{max{ϕ(x)− g(x), Gϕ(x)}, δϕ(x)} = 0 on Rd.
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In the presence of jumps, it is nontrivial to check this assumption. When there

are no jumps in the controlled processes, the comparison principle can be proved in

certain classes of functions (see the discussion above Assumption 2.2 in [14]). Also, in

Section 2.6, δ drops out in the corresponding PDE and there are comparison results

available for fully non-linear equations with jumps (see [1]).

Lemma 2.5.4. Under Assumptions 2.2.1, 2.2.2, 2.2.8, 2.2.11, 2.5.1 and 2.5.3,

u−(T−, ·) = u+(T−, ·) = ĝ(·),

where ĝ is the unique continuous viscosity solution to (2.5.4).

Proof It follows from their definitions that u− ≤ u+. Since u+ is USC and u− is

LSC, then

u−(T−, x) = lim inf
(t<T,x′)→(T,x)

u−(t, x′) ≤ lim sup
(t<T,x′)→(T,x)

u+(t, x′) = u+(T−, x).

Moreover, u+(T−, ·) is a viscosity sub-solution and u−(T−, ·) is a viscosity super-

solution to (2.5.4) due to Theorem 2.4.1. Therefore, the claim holds by Assumption

2.5.3.

Theorem 2.5.5. Suppose that there is a comparison principle for

(2.5.5) max{−∂tϕ(t, x) +Hϕ(t, x), Gϕ(t, x)} = 0 on Di

and that Assumptions 2.2.1, 2.2.2, 2.2.8, 2.2.11, 2.5.1 and 2.5.3 hold. Then there

exists a unique continuous viscosity solution V to (2.5.5) with terminal condition

V (T, ·) = ĝ(·) and u(t, x) = u−(t, x) = u+(t, x) = V (t, x) for (t, x) ∈ Di.

Proof Define

û+(t, x) :=

 u+(t, x), (t, x) ∈ Di

ĝ(x), t = T, x ∈ Rd
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and

û−(t, x) :=

 u−(t, x), (t, x) ∈ Di,

ĝ(x), t = T, x ∈ Rd.

From Proposition 2.5.2, û− is an LSC viscosity super-solution and û+ is a USC viscos-

ity sub-solution of (2.5.5). Since û+(T, ·) = û−(T, ·), û+ ≤ û− on D by comparison.

Hence, û+ = û− on D from (2.2.7). Define V := û+ = û−. It is a continuous viscosity

solution of (2.5.5) satisfying V (T, x) = ĝ(x). Uniqueness follows directly from the

comparison principle.

2.6 Stochastic control as a stochastic target problem

In this section, we show how the HJB equation associated to an optimal control

problem in standard form can be deduced from a stochastic target problem. Given

a bounded continuous function g : Rd → R, we define an optimal control problem by

u(t, x) := inf
ν∈Ut

E[g(Xν
t,x(T ))].

We follow the setup of Section 2.2 with one exception: U t is the collection of all

Ft-predictable processes in L2(Ω× [0, T ],F ⊗B[0, T ],P⊗ λL;U), where U ⊂ Rd and

X follows the SDE

dX(s) = µX(s,X(s), ν(s))ds+σX(s,X(s), ν(s))dWs+

∫
E

β(s,X(s−), ν(s), e)λ(ds, de).

To convert the control problem to its stochastic target counterpart, we need the

following lemma, which is an adaptation of a result in [13].

Lemma 2.6.1. Suppose Assumptions 2.2.1 and 2.2.2 hold. Define a stochastic target

problem as follows:

u(t, x) := inf{y ∈ R : ∃(ν, α, γ) ∈ U t ×At × Γt s.t. Y α,γ
t,y (T ) ≥ g(Xν

t,x(T ))},where

Y α,γ
t,y (·) := y +

∫ ·
t

α>(s)dWs +

∫ ·
t

∫
E

γ>(s, e)λ̃(ds, de)
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and At and Γt are the collections of Rd-valued and L2(E, E , m̂;RI)-valued processes,

respectively, satisfying the admissibility conditions in Section 2.2. Then u = u on D.

Proof Since At and Γt satisfy the admissibility conditions, this stochastic target

problem is well defined. In view of Lemma 2.1 in [13], it suffices to check that

(2.6.1)

{
g(Xν

t,x(T ), ν ∈ U t
}
⊂ {M(T ),M ∈M} ,

where M :=
{
Y α,γ
t,y (·) : y ∈ R, α ∈ At, γ ∈ Γt

}
.

In fact, by the martingale representation theorem, for any ν ∈ U t, E[g(Xν
t,x(T ))|F t· ]

can be represented in the form of Y α,γ
t,y for some α ∈ At and γ ∈ Γt0, where Γt0 is

the collection of L2(E, E , m̂;RI)-valued processes satisfying all of the admissibility

conditions except for (2.2.2). In particular, g(Xν
t,x(T )) = Y α,γ

t,y (T ). Assume, contrary

to (2.6.1), that there exists ν0 ∈ U t such that

E[g(Xν0
t,x(T ))|F t· ] = y +

∫ ·
t

α>0 (s)dWs +

∫ ·
t

∫
E

γ>0 (s, e)λ̃(ds, de)

for some y ∈ R, α0 ∈ At and γ0 ∈ Γt0, but (2.2.2) does not hold. In the equation

above, E[g(Xν0
t,x(T ))|F t· ] can be chosen to be càdlàg, thanks to Theorem 1.3.13 in

[20]. Then for K > 2‖g‖∞, there exists τ0 ∈ Tt such that

P
(∣∣∣∣∫

E

γ>(τ0, e)λ({τ0}, de)
∣∣∣∣ > K

)
> 0.

Suppose that

P
(∫

E

γ>(τ0, e)λ({τ0}, de) > K

)
> 0.8

Let M0(·) = E
[
g(Xν0

t,x(T ))|F t·
]
. Therefore,

M0(τ0)−M0(τ0−) =

∫
E

γ>(τ0, e)λ({τ0}, de) > K with positive probability.

8If this does not hold, the integral is less than −K with positive probability. Noticing this, we can carry out the
proof in a similar manner when this assumption does not hold.
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Since |M0| is bounded by ‖g‖∞ < K/2, we obtain a contradiction.

Let H∗ be the USC envelope of the map H : D× Rd ×Md × C(D)→ R defined by

H : (t, x, p, A, ϕ)→ supu∈U{−I[ϕ](t, x, u)− µ>X(t, x, u)p− 1
2
Tr[σXσ

>
X(t, x, u)A]},

where I[ϕ](t, x, u) =
∑

1≤i≤I
∫
E

(ϕ(t, x+ βi(t, x, u, e))− ϕ(t, x))mi(de).

Theorem 2.6.2. Under Assumptions 2.2.1 and 2.2.2, u+ is a USC viscosity sub-

solution of

−∂tϕ(t, x) + Hϕ(t, x) ≤ 0 on Di

and u+(T−, x) ≤ g(x) for all x ∈ Rd. On the other hand, u− is an LSC viscosity

super-solution of

−∂tϕ(t, x) + H∗ϕ(t, x) ≥ 0 on Di

and u−(T−, ·) is an LSC viscosity super-solution of

(ϕ(x)− g(x))1{H∗ϕ(x)<∞} ≥ 0 on Rd.

Proof It is easy to check Assumption 2.2.11 for the stochastic target problem. Since

g is bounded, we can check that all of the assumptions in the Appendix A are

satisfied, which implies that Assumption 2.2.8 holds. From Theorem 2.3.3, u+ is a

USC viscosity sub-solution of −∂tϕ(t, x) + H∗ϕ(t, x) ≤ 0 on Di and u− is an LSC

viscosity super-solution of −∂tϕ(t, x) + H∗ϕ(t, x) ≥ 0 on Di. From Proposition 3.1

in [13], H∗ ≤ H∗ and H∗ ≥ H. This implies that the viscosity properties in the

parabolic interior hold.

Also, by Theorem 2.4.1, u+(T−, ·) is a USC viscosity sub-solution of

min{ϕ(x)− g(x), δ∗ϕ(x)} ≤ 0 on Rd

and u−(T−, ·) is an LSC viscosity super-solution of

min{(ϕ(x)− g(x))1{H∗ϕ(x)<∞}, δ
∗ϕ(x)} ≥ 0 on Rd,
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where δ = dist(0,Nc)− dist(0,N) and

N(t, x, y, p, ϕ) =

{(q, s) : ∃(u, a, r) ∈ U × Rd × L2(E, E , m̂;RI) s.t. q = a− σ>X(t, x, u)p

and s ≤ min
1≤i≤I

{ri(e)− ϕ(t, x+ βi(t, x, u, e)) + ϕ(t, x)} m̂− a.s. e ∈ E }.

Obviously, N = Rd × R. Therefore, δ =∞ and the boundary conditions hold.

The following two corollaries show that u is the unique viscosity solution to its

associated HJB equation. We omit the proof, since it is the same as the proofs of

Proposition 2.5.2 and Theorem 2.5.5.

Corollary 2.6.3. Suppose that Assumptions 2.2.1 and 2.2.2 hold, H = H∗ on {H <

∞} and there exists an LSC function G : D× R× Rd ×Md × C(D)→ R such that

(a) H(t, x, y, p,M, ϕ) <∞ =⇒ G(t, x, y, p,M, ϕ) ≤ 0,

(b) G(t, x, y, p,M, ϕ) < 0 =⇒ H(t, x, y, p,M, ϕ) <∞.

Then u+ (resp. u−) is a USC (resp. an LSC) viscosity sub-solution (resp. super-

solution) of

max{−∂tϕ(t, x) + Hϕ(t, x),Gϕ(t, x)} = 0 on Di

and u+(T−, ·) (resp. u−(T−, ·)) is a USC (resp. an LSC) viscosity sub-solution

(resp. super-solution) of

max{ϕ(x)− g(x),Gϕ(x)} = 0 on Rd.

Corollary 2.6.4. Suppose that all of the assumptions in Corollary 2.6.3 hold. Addi-

tionally, assume that there is a comparison principle between USC sub-solutions and

LSC super-solutions for the PDE

(2.6.2) max{ϕ(x)− g(x),Gϕ(x)} = 0 on Rd.
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Then u+(T−, x) = u−(T−, x) = ĝ(x), where ĝ is the unique viscosity solution to

(2.6.2). Furthermore, if the comparison principle holds for

(2.6.3) max{−∂tϕ(t, x) + Hϕ(t, x), Gϕ(t, x)} = 0 on Di,

then there exists a unique continuous viscosity solution V to (2.6.3) with terminal

condition V(T, x) = ĝ(x) and u(t, x) = u(t, x) = u+(t, x) = u−(t, x) = V(t, x) for

(t, x) ∈ Di.

2.7 Appendix: the nonemptiness of U+ and U−.

Assumption 2.7.1. g is bounded.

Assumption 2.7.2. There exists u0 ∈ U such that

σY (t, x, y, u0) = 0 and b(t, x, y, u0(e), e) = 0

for all (t, x, y, e) ∈ D× R× E.

Remark 2.7.3. In the context of super-hedging in mathematical finance, the assump-

tion above is equivalent to restricting trading to the riskless assets.

Proposition 2.7.4. Under Assumptions 2.2.1, 2.2.2, 2.7.1 and 2.7.2, U+ is not

empty.

Proof. Step 1. In this step we assume that µY is non-decreasing in its y-variable.

We will show that w(t, x) = γ − ekt is a stochastic super-solution for some choice of

k and γ.

By the linear growth condition on µY in Assumption 2.2.2, there exists L > 0

such that |µY (t, x, y, u0)| ≤ L(1 + |y|), where u0 is the element in U in Assumption

2.7.2. Choose k ≥ 2L and γ such that −ekT + γ ≥ ‖g‖∞. Then w(T, x) ≥ g(x). It
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suffices to show that for any (t, x, y) ∈ D× R, τ ∈ Tt, ν ∈ U t and ρ ∈ Tτ ,

(2.7.1) Y (ρ) ≥ w(ρ,X(ρ)) P-a.s. on {Y (τ) ≥ w(τ,X(τ))},

where X := Xν⊗τu0
t,x , Y := Y ν⊗τu0

t,x,y . Let A = {Y (τ) > w(τ,X(τ))}, V (s) = w(s,X(s))

and Γ(s) = (V (s)− Y (s))1A. Therefore,

Γ(s) = 1A

∫ s

τ

(ξ(q) + ∆(q))dq for s ≥ τ,(2.7.2)

where

∆(s) := −keks − µY (s,X(s), Y (s), u0) ≤ −keks − µY (s,X(s),−eks, u0)

≤ −keks + L(1 + eks) ≤ 0,

ξ(s) := µY (s,X(s), V (s), u0)− µY (s,X(s), Y (s), u0).

Therefore, from (2.7.2) it holds that

Γ(s) ≤ 1A

∫ s

τ

ξ(q)dq and Γ+(s) ≤ 1A

∫ s

τ

ξ+(q)dq for s ≥ τ.

From the Lipschitz continuity of µY in y-variable in Assumption 2.2.2,

Γ+(s) ≤ 1A

∫ s

τ

ξ+(q)dq ≤
∫ s

τ

L0Γ+(q)dq for s ≥ τ,

where L0 is the Lipschitz constant of µY with respect to y. Note that we use the

assumption that µY is non-decreasing in its y-variable to obtain the second inequality.

Since Γ+(τ) = 0, an application of Grönwall’s Inequality implies that Γ+(ρ) ≤ 0,

which further implies that (2.7.1) holds.

Step 2. We get rid of our assumption on µY from Step 1 by following a proof similar

to those in [16]. For c > 0, define Ỹ ν
t,x,y as the strong solution of

dỸ (s) = µ̃Y (s,Xν
t,x(s), Ỹ (s), ν(s))ds+ σ̃>Y (s,Xν

t,x(s), Ỹ (s), ν(s))dWs

+

∫
E

b̃>(s,Xν
t,x(s−), Ỹ (s−), ν1(s), ν2(s, e), e)λ(ds, de)
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with initial data Ỹ (t) = y, where

µ̃Y (t, x, y, u) := cy + ectµY (t, x, e−cty, u),

σ̃Y (t, x, y, u) := ectσY (t, x, e−cty, u),

b̃(t, x, y, u(e), e) := ectb(t, x, e−cty, u(e), e).

Therefore,

Ỹ ν
t,x,y(s)e

−cs = Y ν
t,x,ye−ct(s), t ≤ s ≤ T.

Let ũ(t, x) = inf{y ∈ R : ∃ ν ∈ U t, s.t. Ỹ ν
t,x,y(T ) ≥ g̃(Xν

t,x(T )) -a.s.}, where g̃(x) =

ecTg(x). Therefore, ũ(t, x) = ectu(t, x). Since µY is Lipschitz in y, we can choose

c > 0 so that

µ̃Y : (t, x, y, u) 7→ cy + ectµY (t, x, e−cty, u)

is non-decreasing in y. Moreover, all the properties of µ̃Y , σ̃Y and b̃ in Assumption

2.2.2 still hold. We replace µY , σY and b in all of the equations and definitions in

Section 2.2 with µ̃Y , σ̃Y and b̃, we get H̃∗ and H̃∗. Let Ũ+ be the set of stochastic

super-solutions of

−∂tϕ(t, x) + H̃∗ϕ(t, x) ≥ 0 on Di.

It is easy to see that w ∈ U+ if and only if w̃(t, x) := ectw(t, x) ∈ Ũ+. From Step 1,

Ũ+ is not empty. Thus, U+ is not empty.

Assumption 2.7.5. There is C ∈ R such that for all (t, x, y, u, e) ∈ D×R×U ×E,∣∣∣∣µY (t, x, y, u) +

∫
E

b>(t, x, y, u(e), e)m(de)

∣∣∣∣ ≤ C(1 + |y|).

Proposition 2.7.6. Under Assumptions 2.2.1, 2.2.2, 2.7.1 and 2.7.5, U− is not

empty.

Proof Assume that

µY (t, x, y, u) +

∫
E

b>(t, x, y, u(e), e)m(de)
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is non-decreasing in its y-variable. We could remove this assumption by using the ar-

gument from previous proposition. Choose k ≥ 2C (C is the constant in Assumption

2.7.5) and γ > 0 such that ekT −γ < −‖g‖∞. Let w(t, x) = ekx−γ. Notice that w is

continuous, has polynomial growth in x and w(T, ·) ≤ g(·). It suffices to show that

for any (t, x, y) ∈ D×R, τ ∈ Tt and ν ∈ U t, it holds that P(Y (ρ) < w(ρ,X(ρ))|B) > 0

for all ρ ∈ Tτ and B ⊂ {Y (τ) < w(τ,X(τ))} satisfying B ∈ F tτ and P(B) > 0, where

X := Xν
t,x and Y := Y ν

t,x,y. Define

M(·) = Y (·)−
∫ ·
τ

K(s)ds, V (s) = w(s,X(s)),

A = {Y (τ) < w(τ,X(τ))}, Γ(s) = (Y (s)− V (s))1A,

where

K(s) := µY (s,X(s), Y (s), ν(s)) +

∫
E

b>(s,X(s−), Y (s−), ν1(s), ν2(s, e), e)m(de),

K̃(s) := µY (s,X(s), V (s), ν(s)) +

∫
E

b>(s,X(s−), V (s−), ν1(s), ν2(s, e), e)m(de).

It is easy to see that M is a martingale after τ. Due to the facts that A ∈ F tτ and

dV (s) = keksds, we further know

(2.7.3) 1A

(
Y (·)− V (·) +

∫ ·
τ

keks −K(s)ds

)
is a super-martingale after τ.

Since Assumption 2.7.5 holds and µY (t, x, y, u) +
∫
E
b>(t, x, y, u(e), e)m(de) is non-

decreasing in y,

K̃(s) ≤ µY (s,X(s), eks, ν(s)) +

∫
E

b>(s,X(s−), eks, ν1(s), ν2(s, e), e)m(de) ≤ 2Ceks.

Therefore, it follows from (2.7.3) and the inequality above that

(2.7.4) M̃(·) := 1A

(
Y (·)− V (·)−

∫ ·
τ

ξ(s)ds)

)
is a super-martingale after τ,

where ξ(s) := K(s)− K̃(s). Since M̃(τ) < 0 on B, there exists a non-null set F ⊂ B

such that M̃(ρ) < 0 on F . By the definition of M̃ in (2.7.4), we get

(2.7.5) Γ(ρ) < 1A

∫ ρ

τ

ξ(s)ds on F.
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Therefore,

(2.7.6) Γ+(ρ) ≤ 1A

∫ ρ

τ

ξ+(s)ds ≤
∫ ρ

τ

L0Γ+(s)ds on F.

By Grönwall’s Inequality, Γ+(τ) = 0 implies that Γ+(ρ) = 0 on F . More precisely,

for ω ∈ F (P − a.s.), Γ+(s)(ω) = 0 for s ∈ [τ(ω), ρ(ω)]. This implies that we can

replace the inequalities with equalities in (2.7.6). Therefore, by (2.7.5), Γ(ρ) < 0 on

F , which yields P(Y (ρ) < w(ρ,X(ρ))|B) > 0.



CHAPTER III

Stochastic Perron for Stochastic Target Problems with a
Stopper in a Jump Diffusion Model

3.1 Outline of this chapter

In this chapter, we study stochastic target problems with a stopper in a jump

diffusion model as in Chapter II. In Section 3.2, two types of the target problems (one

with a cooperative stopper and the other with a non-cooperative stopper) and their

associated HJB equations are introduced. In Sections 3.3 and 3.4, we analyze the

stochastic target problem with a non-cooperative stopper and a cooperative stopper,

resectively. More specifically, for the target problem with a non-cooperative stopper,

we prove the viscosity properties in the parabolic interior and at the boundary,

respectively in Subsections 3.3.1 and 3.3.2. In Subsection 3.3.3, we verify that the

value function is the uniqueness viscosity solution to the associated HJB equation

using comparison results. In Subsection 3.3.4, we see how a controller-stopper game

can be converted into a target problem with a non-cooperative stopper. (A similar

outline applies to Section 3.4.) Some technical results are given in the appendix

(Section 3.5).

42
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3.2 The setup

Given a complete probability space (Ω,F ,P), let {λi(·, de)}Ii=1 be a collection of

independent integer-valued E-marked right-continuous point processes defined on

this space. Here, E is a Borel subset of R equipped with the Borel sigma field E .

Let λ = (λ1, λ2, · · · , λI)>and W = {Ws}0≤s≤T be a d-dimensional Brownian motion

defined on the same probability space such that W and λ are independent. Given

t ∈ [0, T ], let Ft = {F ts, t ≤ s ≤ T} be P-augmented filtration generated by W· −Wt

and λ([0, ·], de) − λ([0, t], de). Set F ts = F tt for 0 ≤ s < t. We will use Tt to denote

the set of Ft-stopping times valued in [t, T ]. Given τ ∈ Tt, the set of Ft-stopping

times valued in [τ, T ] will be denoted by Tτ .

Assumption 3.2.1. λ satisfies the following:

1. λ(ds, de) has intensity kernel m(de)ds such that mi is a Borel measure on (E, E)

for any i = 1, · · · , I and m̂(E) < ∞, where m = (m1, · · · ,mI)
> and m̂ =∑I

i=1mi.

2. E = supp(mi) for all i = 1, 2, · · · , I. Here, supp(mi) := {e ∈ E : e ∈ Ne ∈

TE =⇒ mi(Ne) > 0}, where TE is the topology on E induced by the Euclidean

topology.

3. There exists a constant C > 0 such that

P
({
λ̂({s}, E) ≤ C for all s ∈ [0, T ]

})
= 1, where λ̂ =

I∑
i=1

λi.

The above assumption implies that there are a finite number of jumps during

any finite time interval. Let λ̃(ds, de) := λ(ds, de) − m(de)ds be the associated

compensated random measure.

Let U t1 be the collection of all the Ft-predictable processes in L2(Ω × [0, T ],F ⊗

B[0, T ],P ⊗ λL;U1), where λL is the Lebesgue measure on R and U1 ⊂ Rq for some



44

q ∈ N. Define U t2 to be the collection of all the maps ν2 : Ω× [0, T ]×E → Rn which

are P t ⊗ E measurable such that

‖ν2‖Ut2 :=

(
E
[∫ T

t

∫
E

|ν2(s, e)|2m̂(de)ds

]) 1
2

<∞,

where P t is the Ft-predictable sigma-algebra on Ω × [0, T ]. ν = (ν1, ν2) ∈ U t0 :=

U t1 × U t2 takes value in the set U := U1 × L2(E, E , m̂;Rn). Let D = [0, T ] × Rd,

Di = [0, T ) × Rd and DT = {T} × Rd. Given z = (x, y) ∈ Rd × R, t ∈ [0, T ] and

ν ∈ U t0, we consider the following SDEs.

dX(s) = µX(s,X(s), ν(s))ds+ σX(s,X(s), ν(s))dWs

+

∫
E

β(s,X(s−), ν1(s), ν2(s, e), e)λ(ds, de),

dY (s) = µY (s, Z(s), ν(s))ds+ σ>Y (s, Z(s), ν(s))dWs

+

∫
E

b>(s, Z(s−), ν1(s), ν2(s, e), e)λ(ds, de),

(3.2.1)

with (X(t), Y (t)) = (x, y). Here, Z = (X, Y ). In (3.2.1),

µX : D× U → Rd, σX : D× U → Rd×d, β : D× U1 × Rn × E → Rd×I ,

µY : D× R× U → R, σY : D× R× U → Rd, b : D× R× U1 × Rn × E → RI .

Let U tunco be the admissible control set for the stochastic target problem with a

non-cooperative stopper, which consists of all ν ∈ U t0 such that for any compact set

C ⊂ Rd × R and τ ∈ Tt, there exists a constant KC,ν,τ
unco > 0 such that

(3.2.2)

∫
E

b>(τ, x, y, ν1(τ), ν2(τ, e), e)λ({τ}, e) ≥ −KC,ν,τ
unco for all (x, y) ∈ C.

Let U tco be the admissible control set for the stochastic target problem with a cooper-

ative stopper, which consists of all ν ∈ U t0 such that for any compact set C ⊂ Rd×R

and τ ∈ Tt, there exists a constant KC,ν,τ
co > 0 such that

(3.2.3)

∫
E

b>(τ, x, y, ν1(τ), ν2(τ, e), e)λ({τ}, e) ≤ KC,ν,τ
co for all (x, y) ∈ C.
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Assumption 3.2.2. Let z = (x, y) and u = (u1, u2) ∈ U = U1 × L2(E, E , m̂;Rn).

We use the notation ‖u‖U := |u1|+ ‖u2‖m̂ and u(e) := (u1, u2(e)) for the rest of this

chapter.

1. µX , σX , µY and σY are all continuous;

2. µX , σX , µY , σY are Lipschitz in z and locally Lipschitz in other variables. In

addition,

|µX(t, x, u)|+ |σX(t, x, u)| ≤ L(1 + |x|+ ‖u‖U),

|µY (t, x, y, u)|+ |σY (t, x, y, u)| ≤ L(1 + |y|+ ‖u‖U).

3. b and β are Lipschitz and grow linearly in all variables except e, but uniformly

in e.

Remark 3.2.3. Assumptions 3.2.1 and 3.2.2 guarantee that there exists a unique

strong solution (Xν
t,x, Y

ν
t,x,y) to (3.2.1) for any ν ∈ U t0. Moreover, the processes (Xν

t,x,

Y ν
t,x,y) are càdlàg.

We now define the value function of the stochastic target problems. Let g : Rd →

R be a continuous function with polynomial growth. The value functions of the

target problems with a non-cooperative stopper and with a cooperative stopper are

defined, respectively, by

uunco(t, x) := inf
{
y : ∃ν ∈ U tunco s.t. Y ν

t,x,y(ρ) ≥ g(Xν
t,x(ρ)) for all ρ ∈ Tt

}
.(3.2.4)

uco(t, x) := sup
{
y : ∃ν ∈ U tco and ρ ∈ Tt s.t. Y ν

t,x,y(ρ) ≤ g(Xν
t,x(ρ))

}
.(3.2.5)
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3.2.1 The Hamilton-Jacobi-Bellman equation

Denote b = (b1, b2, · · · , bI)> and β = (β1, β2, · · · , βI). For a given ϕ ∈ C(D), we

define the relaxed semi-limits

(3.2.6) H∗(Θ, ϕ) := lim sup
ε↘0, Θ

′→Θ

η↘0, ψ
u.c.−→ϕ

Hε,η(Θ
′
, ψ) and H∗(Θ, ϕ) := lim inf

ε↘0, Θ
′→Θ

η↘0, ψ
u.c.−→ϕ

Hε,η(Θ
′
, ψ), 1

(3.2.7) F ∗(Θ, ϕ) := lim sup
ε↘0, Θ

′→Θ

η↘0, ψ
u.c.−→ϕ

Fε,η(Θ
′
, ψ) and F∗(Θ, ϕ) := lim inf

ε↘0, Θ
′→Θ

η↘0, ψ
u.c.−→ϕ

Fε,η(Θ
′
, ψ).

Here, for Θ = (t, x, y, p, A) ∈ D× R× Rd ×Md, ϕ ∈ C(D), ε ≥ 0 and η ∈ [−1, 1],

Hε,η(Θ, ϕ) := sup
u∈Nε,η(t,x,y,p,ϕ)

Lu(Θ), Fε,η(Θ, ϕ) := inf
u∈Mε,η(t,x,y,p,ϕ)

Lu(Θ),where,

Lu(Θ) : = µY (t, x, y, u)− µ>X(t, x, u)p− 1

2
Tr[σXσ

>
X(t, x, u)A],

Nu(t, x, y, p) : = σY (t, x, y, u)− σ>X(t, x, u)p,

∆u,e(t, x, y, ϕ) := min
1≤i≤I

{bi(t, x, y, u(e), e)− ϕ(t, x+ βi(t, x, u(e), e)) + ϕ(t, x)},

Πu,e(t, x, y, ϕ) := max
1≤i≤I

{bi(t, x, y, u(e), e)− ϕ(t, x+ βi(t, x, u(e), e)) + ϕ(t, x)},

Nε,η(t, x, y, p, ϕ) : = {u ∈ U : |Nu(t, x, y, p)| ≤ ε and ∆u,e(t, x, y, ϕ) ≥ η m̂-a.s.},

Mε,η(t, x, y, p, ϕ) : = {u ∈ U : |Nu(t, x, y, p)| ≤ ε and Πu,e(t, x, y, ϕ) ≤ η m̂-a.s.}.

For our later use, we also define the following:

Ju,ei (t, x, y, ϕ) := bi(t, x, y, u(e), e)− ϕ(t, x+ βi(t, x, u(e), e)) + ϕ(t, x),

J
u,e

(t, x, y, ϕ) := (Ju,e1 (t, x, y, ϕ), · · · , Ju,eI (t, x, y, ϕ))>,

L uϕ(t, x) := ϕt(t, x) + µ>X(t, x, u)Dϕ(t, x) + 1
2
Tr[σXσ

>
X(t, x, u)D2ϕ(t, x)].

Definition 3.2.4 (Concatenation). Let ν1, ν2 ∈ U tunco (resp. U tco ), τ ∈ Tt. The

concatenation of ν1 and ν2 at τ is defined as ν1 ⊗τ ν2 := ν11[0,τ [ + ν21[τ,T ] ∈ U tunco

(resp. U tco).2

1The convergence ψ
u.c.−→ ϕ is understood in the sense that ψ converges uniformly on compact subsets to ϕ.

2This can be easily checked.
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3.3 The stochastic target problem with a non-cooperative stopper

Definition 3.3.1 (Stochastic super-solutions). A continuous function w : D→ R is

called a stochastic super-solution if

1. w(t, x) ≥ g(x) and for some C > 0 and n ∈ N,3 |w(t, x)| ≤ C(1 + |x|n) for all

(t, x) ∈ D.

2. Given (t, x, y) ∈ D × R, for any τ ∈ Tt and ν ∈ U tunco, there exists ν̃ ∈ U tunco

such that

Y (ρ) ≥ w(ρ,X(ρ)) P-a.s. on {Y (τ) ≥ w(τ,X(τ))}

for all ρ ∈ Tτ , where X := Xν⊗τ ν̃
t,x and Y := Y ν⊗τ ν̃

t,x,y .

Denote the sets of stochastic super-solutions by U+
unco.

Definition 3.3.2 (Stochastic sub-solutions). A continuous function w : D → R is

called a stochastic sub-solution if

1. w(T, x) ≤ g(x) and for some C > 0 and n ∈ N, |w(t, x)| ≤ C(1 + |x|n) for all

(t, x) ∈ D.

2. Given (t, x, y) ∈ D×R, for any τ ∈ Tt, ν ∈ U tunco and B ⊂ {Y (τ) < w(τ,X(τ))}

satisfying B ∈ F tτ and P(B) > 0, there exists ρ ∈ Tτ such that

P(Y (ρ) < g(X(ρ))|B) > 0.

Here, we use the notation X := Xν
t,x and Y := Y ν

t,x,y.

Denote the sets of stochastic sub-solutions by U−unco.

Assumption 3.3.3. U+
unco and U−unco are not empty.

3C and N may depend on w and T . This also applies to Definition 3.3.2, 3.4.1 and 3.4.2.
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We will provide sufficient conditions which guarantee Assumption 3.3.3 in Sub-

section 3.5.1. When the assumption above holds, by similar arguments as in Remark

2.2.9 and 2.2.10, we get that

(3.3.1) u−unco := sup
w∈U−unco

w ≤ uunco ≤ inf
w∈U+

unco

w =: u+
unco.

3.3.1 Viscosity property in Di

In this subsection, we state and prove the theorem which characterizes u−unco as a

viscosity super-solution of

(3.3.2) min{ϕ(t, x)− g(x),−∂tϕ(t, x) +H∗ϕ(t, x)} ≥ 0 in Di

and u+
unco as a viscosity sub-solution of

(3.3.3) min{ϕ(t, x)− g(x),−∂tϕ(t, x) +H∗ϕ(t, x)} ≤ 0 in Di.

The boundary conditions will be discussed in Theorem 3.3.8. The same assumption

as Assumption 2.2.11 is needed for the sub-solution property of u−unco.

Assumption 3.3.4. For ψ ∈ C(D), η > 0, let B be a subset of D × R × Rd such

that N0,η(·, ψ) 6= ∅ on B. Then for every ε > 0, (t0, x0, y0, p0) ∈ Int(B) and u0 ∈

N0,η(t0, x0, y0, p0, ψ), there exists an open neighborhood B′ of (t0, x0, y0, p0) and a

locally Lipschitz continuous map ν̂ defined on B′ such that ‖ν̂(t0, x0, y0, p0)−u0‖U ≤ ε

and ν̂(t, x, y, p) ∈ N0,η(t, x, y, p, ψ).

Lemma 3.3.5. U+
unco and U−unco are closed under pairwise minimization and maxi-

mization, respectively.

Lemma 3.3.6. There exists a non-increasing sequence {wn}∞n=1 ⊂ U+
unco such that

wn ↘ u+
unco and a non-decreasing sequence {vn}∞n=1 ⊂ U−unco such that vn ↗ u−unco.
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Theorem 3.3.7. Under Assumptions 3.2.1, 3.2.2, 3.3.3 and 3.3.4, u+
unco is a USC

viscosity sub-solution of (3.3.3). On the other hand, under Assumptions 3.2.1, 3.2.2

and 3.3.3, u−unco is an LSC viscosity super-solution of (3.3.2).

Proof. Step 1 (u+
unco is a viscosity sub-solution). Assume, on the contrary,

that for some (t0, x0) ∈ Di and ϕ ∈ C1,2(D) satisfying 0 = (u+
unco − ϕ)(t0, x0) =

maxDi(u
+
unco − ϕ), we have

(3.3.4) 4η := −∂tϕ(t0, x0) +H∗ϕ(t0, x0) > 0 and ϕ(t0, x0) > g(x0).

From Lemma 3.3.6, there exists a non-increasing sequence U+
unco 3 wk ↘ u+

unco. Fix

such a sequence {wk}∞k=1 and an arbitrary stochastic sub-solution w−. Let ϕ̃(t, x) =

ϕ(t, x) + ι|x− x0|n0 .4 We can choose n0 ≥ 2 such that for any ι > 0,

(3.3.5) min
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→∞ as |x| → ∞.

We can do this because ϕ is bounded from below by w− (which has polynomial

growth in x) and w1 has polynomial growth in x. Since (Nε,η)ε≥0 is non-decreasing

in ε, we know

H∗(Θ, ϕ) = lim inf
Θ
′→Θ,ψ

u.c.−→ϕ
η↘0

H0,η(Θ
′
, ψ).

By (3.2.6) and (3.3.4), we can find ε > 0, η > 0 and ι > 0 such that for all

(t, x, y) satisfying (t, x) ∈ Bε(t0, x0) and |y− ϕ̃(t, x)| ≤ ε, µY (t, x, y, u)−Luϕ̃(t, x) ≥

2η for some u ∈ N0,η(t, x, y,Dϕ̃(t, x), ϕ̃) and ϕ̃(t, x) > g(x) + ε. Fix ι. Note that

(t0, x0) is still a strict maximizer of u+
unco − ϕ̃ over Di. For ε sufficiently small,

4Since we will fix n0 and ι later, we still use the notation ϕ̃ when without ambiguity despite the fact that the
function depends on n0 and ι.
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Assumption 3.3.4 implies that there exists a locally Lipschitz map ν̂ such that

ν̂(t, x, y,Dϕ̃(t, x)) ∈ N0,η(t, x, y,Dϕ̃(t, x), ϕ̃) and(3.3.6)

µY (t, x, y, ν̂(t, x, y,Dϕ̃(t, x)))− Lν̂(t,x,y,Dϕ̃(t,x))ϕ̃(t, x) ≥ η

for all (t, x, y) ∈ Di × R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ̃(t, x)| ≤ ε.

(3.3.7)

In the arguments above, choose ε small enough such that Bε(t0, x0) ∩ DT = ∅.

Since (3.3.5) holds, there exists R0 > ε such that ϕ̃ > w1 + ε ≥ wk + ε on O :=

D− [0, T ]×BR0(x0) for all k. On the compact set T := [0, T ]×BR0(x0)−Bε/2(t0, x0),

we know that ϕ̃ > u+
unco and the minimum of ϕ̃−u+

unco is attained since u+
unco is USC.

Therefore, ϕ̃ > u+
unco + 2α on T for some α > 0. By a Dini-type argument, for large

enough n, we have ϕ̃ > wn + α on T and ϕ̃ > wn − ε on Bε/2(t0, x0). For simplicity,

fix such an n and set w = wn. In short,

(3.3.8) ϕ̃ > w + ε on O, ϕ̃ > w + α on T and ϕ̃ > w − ε on Bε/2(t0, x0).

For κ ∈ (0, ε ∧ α), define

wκ :=

 (ϕ̃− κ) ∧ w on Bε(t0, x0),

w outside Bε(t0, x0).

Observing that wκ(t0, x0) = ϕ̃(t0, x0)−κ < u+
unco(t0, x0), we could obtain a contradic-

tion if we could show that wκ ∈ U+
unco. Obviously, wκ is continuous, has polynomial

growth in x and wκ(t, x) ≥ g(x) for all (t, x) ∈ D. Fix (t, x, y) ∈ Di × R, ν ∈ U tunco

and τ ∈ Tt.5 It suffices to construct a ν̃ ∈ Ut
unco such that wκ and the processes

(X, Y ) controlled by ν⊗τ ν̃ satisfy the property in Definition 3.3.1. The construction

of such ν̃ follows from the same arguments in Step 1 of Theorem 2.3.3’s proof.

Step 2 (u−unco is a viscosity super-solution).

Step A: We show in this step that u−unco(t, x) ≥ g(x) for all (t, x) ∈ D. Assume, on

5Here we choose (t, x) ∈ Di since the case (t, x) ∈ DT is trivial.
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the contrary, that for some (t0, x0) ∈ D, there exists η > 0 such that

(3.3.9) 2η = g(x0)− u−unco(t0, x0) > 0.

Choose an arbitrary w ∈ U−unco. By the definition of U−unco and lower semi-continuity

of g, there exists ε > 0 such that for all (t, x) ∈ Bε(t0, x0).

g(x)− w(t, x) > η, g(x)− g(x0) > −η
2
, |w(t, x)− w(t0, x0)| ≤ η

2
.

Define

w′(t, x) :=


w(t, x), for (t, x) /∈ Bε(t0, x0),

w(t, x) + (g(x0)− η − w(t0, x0))

(
1− dist((t, x), (t0, x0))

ε

)
, otherwise.

Obviously, w′ ≥ w and w′ is continuous with polynomial growth. In addition,

(3.3.10) {(t, x) : w(t, x) < w′(t, x)} = Bε(t0, x0) and

(3.3.11) w′(t, x) ≤ w(t, x) + (g(x0)− η − w(t0, x0)) < g(x) for (t, x) ∈ Bε(t0, x0).

The equation above, along with the fact that w ∈ U−unco, implies that w′(T, x) ≤ g(x)

for all x ∈ Rd. Noting that w′(t0, x0) = g(x0) − η > u−unco(t0, x0) due to (3.3.9), we

would obtain a contradiction if we could show w′ ∈ U−unco.

To prove that w′ ∈ U−unco, fix (t, x, y) ∈ Di × R, τ ∈ Tt and ν ∈ U tunco. For

w ∈ U−unco, let ρw,τ,ν ∈ Tτ be the “optimal” stopping time satisfying the second

item in Definition 3.3.2. In order to show that w′ ∈ U−unco, we want to construct

an “optimal” stopping time ρ which works in the sense of Definition 3.3.2. Let

A = {w(τ,X(τ)) = w′(τ,X(τ))} ∈ F tτ and

ρ = 1Aρ
w,τ,ν + 1Acτ.
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Obviously, ρ ∈ Tτ . It suffices to show P(Y (ρ) < g(X(ρ))|B) > 0 for any B ⊂

{Y (τ) < w′(τ,X(τ))} satisfying P(B) > 0 and B ∈ F tτ . The following two scenarios

together will yield the desired result.

(i) If P(B∩A) > 0 : We know that B∩A ⊂ {Y (τ) < w(τ,X(τ))} and B∩A ∈ F tτ .

From the fact w ∈ U−unco and the definition of ρ on A, it holds that

P(Y (ρ) < g(X(ρ))|B ∩ A) = P(Y (ρw,τ,ν) < g(X(ρw,τ,ν))|B ∩ A) > 0.

(ii) If P(B ∩ Ac) > 0: (τ,X(τ)) ∈ Bε(t0, x0) on Ac from (3.3.10), which implies

w′(τ,X(τ)) < g(X(τ)) from (3.3.11). Since ρ = τ on Ac,

P(Y (ρ) < g(X(ρ))|B ∩ Ac) ≥ P(Y (τ) < w′(τ,X(τ))|B ∩ Ac) = P(B ∩ Ac) > 0.

Step B: Let (t0, x0) ∈ Di satisfy 0 = (u−unco − ϕ)(t0, x0) = minDi(u
−
unco − ϕ) for some

ϕ ∈ C1,2(D). For the sake of contradiction, assume that

(3.3.12) −2η := −∂tϕ(t0, x0) +H∗ϕ(t0, x0) < 0.

Let {wk}∞k=1 be a sequence in U−unco such that wk ↗ u−unco. Let ϕ̃(t, x) := ϕ(t, x) −

ι|x− x0|n0 , where we choose n0 ≥ 2 such that for all ι > 0,

(3.3.13) max
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→ −∞ and max
0≤t≤T

ϕ̃(t, x)→ −∞ as |x| → ∞.6

By (3.3.12), the upper semi-continuity of H∗ and the fact that ϕ̃
u.c.−→ ϕ as ι→ 0, we

can find ε > 0, η > 0 and ι > 0 such that

(3.3.14)
µY (t, x, y, u)−L uϕ̃(t, x) ≤ −η for all u ∈ Nε,−η(t, x, y,Dϕ̃(t, x), ϕ̃)

and (t, x, y) ∈ Di × R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ̃(t, x)| ≤ ε.

Fix ι. Note that (t0, x0) is still a strict minimizer of u−unco − ϕ̃. Since (3.3.13) holds,

there exists R0 > ε such that

ϕ̃ < w1 − ε ≤ wk − ε on O := D− [0, T ]×BR0(x0).
6The existence of n0 follows as in Step1.
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On the compact set T := [0, T ]×BR0(x0)−Bε/2(t0, x0), we know that ϕ̃ < u−unco and

the maximum of ϕ̃−u−unco is attained since u−unco is LSC. Therefore, ϕ̃ < u−unco−2α on

T for some α > 0. By a Dini-type argument, for large enough n, we have ϕ̃ < wn−α

on T and ϕ̃ < wn + ε on Bε/2(t0, x0). For simplicity, fix such an n and set w = wn.

In short,

(3.3.15) ϕ̃ < w − ε on O, ϕ̃ < w − α on T and ϕ̃ < w + ε on Bε/2(t0, x0).

For κ ∈ (0, α ∧ ε), define

wκ :=

 (ϕ̃+ κ) ∨ w on Bε(t0, x0),

w outside Bε(t0, x0).

Noticing that wκ(t0, x0) ≥ ϕ̃(t0, x0)+κ > u−unco(t0, x0), we will obtain a contradiction

if we show that wκ ∈ U−unco. Obviously, wκ is continuous, has polynomial growth in

x and wκ(T, x) ≤ g(x) for all x ∈ Rd. Fix (t, x, y) ∈ Di × R, ν ∈ U tunco and τ ∈ Tt.

Let X = Xν
t,x, Y = Y ν

t,x,y and θ = θ1 ∧ θ2, where

θ1 := inf
{
s ∈ [τ, T ] : (s,X(s)) /∈ Bε/2(t0, x0)

}
∧ T,

θ2 := inf {s ∈ [τ, T ] : |Y (s)− ϕ̃(s,X(s))| ≥ ε} ∧ T.

Since X and Y are càdlàg processes, we know that θ ∈ Tτ and the following hold:

(θ1, X(θ1)) /∈ Bε/2(t0, x0), |Y (θ2)− ϕ̃(θ2, X(θ2))| ≥ ε,(3.3.16)

(θ1, X(θ1−)) ∈ Bε/2(t0, x0)), |Y (θ2−)− ϕ̃(θ2, X(θ2−))| ≤ ε.(3.3.17)

Let A = {wκ(τ,X(τ)) = w(τ,X(τ))} and

ρ = 1Aρ
w,τ,ν + 1Acρ

w,θ,ν ,

where ρw,τ,ν (resp. ρw,θ,ν) is the “optimal” stopping time in Definition 3.3.2 for w

given τ(resp. θ) and ν. To prove that wκ ∈ U−unco, it suffices to show that

P(Y (ρ) < g(X(ρ))|B) > 0
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for B ⊂ {Y (τ) < wκ(τ,X(τ))} satisfying B ∈ F tτ and P(B) > 0. Let

E = {Y (τ) < wκ(τ,X(τ))}, E0 = E ∩ A, E1 = E ∩ Ac, G = {Y (ρ) < g(X(ρ)}.

Then E = E0∪E1 and E0∩E1 = ∅. Therefore, we want to show that P(G∩B) > 0.

We will show

P(B ∩ E0) > 0 =⇒ P(G ∩B ∩ E0) > 0 and

P(B ∩ E1) > 0 =⇒ P(G ∩B ∩ E1) > 0.

This, together with the facts P(B) = P(B ∩ E0) + P(B ∩ E1) > 0 and P(G ∩ B) =

P(G ∩B ∩ E0) + P(G ∩B ∩ E1), implies that P(G ∩B) > 0.

(i)Assume that P(B ∩ E0) > 0. Since B ∩ E0 ⊂ {Y (τ) < w(τ,X(τ))} and

B ∩ E0 ∈ F tτ , P(G|B ∩ E0) > 0 from the fact w ∈ U−unco and the definition of ρ

on A. This further implies that P(G ∩B ∩ E0) > 0.

(ii)Assume that P(B ∩ E1) > 0. Let Γ(s) := Y (s) − ϕ̃(s,X(s)) − κ. From the

arguments in Step 2 of Theorem 2.3.3’s proof, we know that ΓL is a super-martingale,

where L(·) is a positive local martingale. Since Γ(τ)L(τ) < 0 on B ∩ E1, the super-

martingale property of ΓL implies that there exists F ⊂ B∩E1 such that F ∈ F tτ and

Γ(θ)L(θ) < 0 on F . The non-negativity of L then yields Γ(θ) < 0 on F . Therefore,

Y (θ1) < ϕ̃(θ1, X(θ1)) + κ on F ∩ {θ1 ≤ θ2},

Y (θ2) < ϕ̃(θ2, X(θ2)) + κ on F ∩ {θ1 > θ2}.

Since (θ1, X(θ1)) /∈ Bε/2(t0, x0), it follows from the first two inequalities in (3.3.15)

that

(3.3.18) Y (θ1) < ϕ̃(θ1, X(θ1)) + κ < w(θ1, X(θ1)) on F ∩ {θ1 ≤ θ2}.

On the other hand, since Y (θ2) < ϕ̃(θ2, X(θ2))+κ on F∩{θ1 > θ2} and (3.3.16) holds,

Y (θ2)−ϕ̃(θ2, X(θ2)) ≤ −ε on F∩{θ1 > θ2}. Observing that (θ2, X(θ2)) ∈ Bε/2(t0, x0)
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on {θ1 > θ2}, we get from the last inequality of (3.3.15) that

(3.3.19) Y (θ2) < ϕ̃(θ2, X(θ2))− ε < w(θ2, X(θ2)) on F ∩ {θ1 > θ2}.

From (3.3.18) and (3.3.19), we get that Y (θ) < w(θ,X(θ)) on F. Therefore, from the

fact w ∈ U−unco and the definition of ρ on Ac,

(3.3.20) P(G|F ) > 0.

Therefore, P(G ∩B ∩ E1) ≥ P(G ∩ F ) > 0 > 0.

3.3.2 Boundary conditions

In this subsection, we discuss the boundary conditions at T . From the definition of

the value function uunco, it holds that uunco(T, x) = g(x) for all x ∈ Rd. However,

u+
unco and u−unco may not satisfy this boundary condition. Define

N(t, x, y, p, ψ) := {(r, s) : ∃u ∈ U, s.t. r = Nu(t, x, y, p) and s ≤ ∆u,e(t, x, y, ψ) }

and δ := dist(0,Nc)−dist(0,N), where dist denotes the Euclidean distance. It holds

that

(3.3.21) 0 ∈ int(N(t, x, y, p, ψ)) iff δ(t, x, y, p, ψ) > 0.

The upper (resp. lower) semi-continuous envelope of δ is denoted by δ∗ (resp. δ∗).

Let

u+
unco(T−, x) = lim sup

(t<T,x′)→(T,x)

u−unco(t, x′), u−unco(T−, x) = lim inf
(t<T,x′)→(T,x)

u−unco(t, x′).

The following theorem is an adaptation of the results in [32, 33, 12, 13].

Theorem 3.3.8. Under Assumptions 3.2.1, 3.2.2, 3.3.3 and 3.3.4, u+
unco(T−, ·) is a

USC viscosity sub-solution of

min{ϕ(x)− g(x), δ∗ϕ(x)} ≤ 0 on Rd.
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On the other hand, under Assumptions 3.2.1, 3.2.2 and 3.3.3, u−unco(T−, ·) is an LSC

viscosity super-solution of

min{ϕ(x)− g(x), δ∗ϕ(x)} ≥ 0 on Rd.

Proof. Step 1 (The sub-solution property on DT ). For the sake of contradiction,

we assume that for some x0 ∈ Rd and ϕ ∈ C2(Rd) satisfying

0 = u+
unco(T−, x0)− ϕ(x0) = max

x∈Rd
(u+

unco(T−, x)− ϕ(x)),

it holds that

ϕ(x0)− g(x0) > 2η and δ∗ϕ(x0) > 2η for some η > 0.

Let {wk}∞k=1 be a sequence in U+
unco such that wk ↘ u+

unco. Set ϕ̃(t, x) = ϕ(x) + ι|x−

x0|n0 + ι
√
T − t for ι > 0, where ι will be fixed later and n0 satisfies

min
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→∞ as |x| → ∞ for any ι > 0.

By the lower semi-continuity of δ∗ and the upper semi-continuity of g, we can find

ι > 0 and ε > 0 such that for all (t, x) ∈ [T − ε, T ] × Bε(x0) and y ∈ R such that

|y − ϕ̃(t, x)| ≤ ε,

ϕ̃(t, x)− g(x) > η and(3.3.22)

δ∗(t, x, y,Dϕ̃(t, x), ϕ̃) ≥ η.(3.3.23)

By Assumption 3.3.4, the fact that δ ≥ δ∗, (3.3.21) and (3.3.23), we can find a locally

Lipschitz map ν̂ such that

(3.3.24)

ν̂(t, x, y,Dϕ̃(t, x)) ∈ N0,η(t, x, y, ϕ̃(t, x), ϕ̃)

for all (t, x, y) ∈ D×R s.t. (t, x) ∈ [T − ε, T ]×Bε(x0) and |y − ϕ̃(t, x)| ≤ ε.
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In (3.3.24), we may need to choose smaller values of ε, ι and η. Fix ι. Since

∂tϕ̃(t, x)→ −∞ as t→ T , by the continuity of µY , µX , σX and ν,

(3.3.25)
µY (t, x, y, ν̂(t, x, y,Dϕ̃(t, x)))− Lν̂(t,x,y,Dϕ̃(t,x))ϕ̃(t, x) ≥ η for all

(t, x, y) ∈ D×R s.t. (t, x) ∈ [T − ε, T ]×Bε(x0) and |y − ϕ̃(t, x)| ≤ ε.

Here we may need to shrink ε > 0 again. Since u+
unco is USC and ϕ̃(T, x0) =

u+
unco(T−, x0), there exists α > 0 such that ϕ̃ > u+

unco − 2α on [T − ε, T )× Bε/2(x0)

after possibly shrinking ε another time. Since wk ↘ u+
unco, there exists n0 ∈ N such

that

(3.3.26) ϕ̃ > wn0 − α on [T − ε, T )× Bε/2(x0).

Since min0≤t≤T (ϕ̃(t, x)− w1(t, x))→∞ as |x| → ∞, we can find R0 > ε such that

(3.3.27) ϕ̃ > wn0 + ε on O := [T − ε, T ]× (Rd −BR0(x0)).

Notice that ϕ̃(T, ·) − u+
unco(T−, ·) is strictly positive on the compact set T∗ :=

BR0(x0)−Bε/2(x0). Hence, by the upper semi-continuity of u+
unco(T−, ·), there exists

ζ > 0 such that

(3.3.28) ϕ̃(T, ·) > u+
unco(T−, ·) + 4ζ on T∗.

From (3.3.28), we conclude that there exists σ > 0 such that

(3.3.29) ϕ̃ > u+
unco + 2ζ on [T − σ, T )× T∗.

More precisely, if (3.3.29) does not hold for any σ > 0, then there exists a sequence

(tn, xn) ∈ Di such that tn → T , xn ∈ T∗ and ϕ̃(tn, xn) ≤ u+
unco(tn, xn) + 2ζ. The

compactness of T∗ implies that there is a subsequence of (tn, xn) which converges to

(T, x′) for some x′ ∈ T∗. By taking the lim sup of the above equation over the sub-

sequence, we get ϕ̃(T, x′) ≤ u+
unco(T−, x′) + 2ζ. This contradicts (3.3.28). Therefore,
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(3.3.29) holds.

In (3.3.29), we choose σ < ε. By a Dini-type argument, there exists n1 ≥ n0 such

that

(3.3.30) ϕ̃ > wn1 + ζ on [T − σ, T )× T∗.

Set w = wn1 . For κ ∈ (0, ε ∧ α ∧ ζ ∧ η), define

wκ :=

 (ϕ̃− κ) ∧ w on [T − σ, T ]×Bε(x0),

w outside [T − σ, T ]×Bε(x0).

Since w(t, x) ≥ g(x) and (3.3.22) holds, we get that wκ(t, x) ≥ g(x) for all (t, x) ∈ D.

We also notice that

(3.3.31) wκ(T, x0) ≤ ϕ(x0)− κ < u+
unco(T−, x0) ≤ u+

unco(T, x0).

Using (3.3.24), (3.3.25), (3.3.26), (3.3.27) and (3.3.30) in a manner that is similar to

Step 1 in Theorem 3.3.7’s proof, we can show that wκ is a stochastic super-solution,

which contradicts (3.3.31).

Step 2 (The super-solution property on DT ). We’ve already proved that

u−unco(t, x) ≥ g(x) for (t, x) ∈ D. Therefore, u−unco(T−, x) ≥ g(x). It remains to

prove that u−unco(T−, ·) is a viscosity super-solution of δ∗ϕ(x) ≥ 0. Let x0 ∈ Rd and

ϕ ∈ C2(Rd) be such that 0 = (u−unco(T−, x0)−ϕ(x0)) = minRd(u
−
unco(T−, x)−ϕ(x)).

Let (sn, ξn) be a sequence in Di satisfying (sn, ξn) → (T, x0) and u−unco(sn, ξn) →

u−unco(T−, x0) = ϕ(x0). For all n ∈ N, k ≥ 0 and ι ≥ 0, define

ϕk,ιn (t, x) = ϕ(x)− ι|x− x0|4 + k
T − t

(T − sn)
, ϕι(x) = ϕ(x)− ι|x− x0|4.

Notice that

lim
ι→0

lim
k→0

lim sup
n→∞

sup
(t,x)∈[sn,T ]×B1(x0)

|ϕk,ιn (t, x)− ϕ(x)| = 0.
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Let (tk,ιn , x
k,ι
n ) be the minimizer of u− − ϕk,ιn on [sn, T ] × B1(x0). We claim that for

any k > 0 and ι > 0, there exists Nk,ι ∈ N such that

(3.3.32) sn ≤ tk,ιn < T for all n ≥ Nk,ι, and xk,ιn → x0 as n→∞.

We now prove (3.3.32). Since (sn, ξn)→ (T, x0), we can find Nk,ι ∈ N such that for

n ≥ Nk,ι,

(3.3.33) (u−unco − ϕk,ιn )(sn, ξn) = u−unco(sn, ξn)− ϕ(ξn) + ι|ξn − x0|4 −
1

k
≤ − 1

2k
< 0.

On the other hand,

(3.3.34)

lim inf
t↑T,x′→x

(u−unco − ϕk,ιn )(t, x′) = u−unco(T−, x)− ϕ(x) + ι|x− x0|4 ≥ 0 for |x− x0| ≤ 1.

By (3.3.33) and (3.3.34), the first part of (3.3.32) holds. By an argument similar to

Step 4 in Theorem 3.1’s proof in [9], we know that the second part of (3.3.32) also

holds.

From (3.3.32) and the definition of ϕk,ιn , we also see that

(3.3.35) ϕk,ιn (tk,ιn , x
k,ι
n )→ u−unco(T−, x0) = ϕ(x0) as n→∞, then k → 0, ι→ 0.

By (3.3.32), (3.3.35) and the facts that lim inf(t<T,x)→(T,x0) u
−
unco(t, x) = u−unco(T−, x0)

and u−unco(tk,ιn , x
k,ι
n ) ≤ ϕk,ιn (tk,ιn , x

k,ι
n ), it holds that u−unco(tk,ιn , x

k,ι
n ) → u−unco(T−, x0) =

ϕ(x0) as n→∞ then k → 0, ι→ 0. Since for all k > 0, ι > 0 and n ≥ Nk,ι, (tk,ιn , x
k,ι
n )

is a local minimizer of u−unco − ϕk,ιn and tk,ιn < T , we get

−∂tϕk,ιn (tk,ιn , x
k,ι
n ) +H∗(tk,ιn , x

k,ι
n , u

−
unco(tk,ιn , x

k,ι
n ), Dϕk,ιn (tk,ιn , x

k,ι
n ), D2ϕk,ιn (tk,ιn , x

k,ι
n )) ≥ 0

from Theorem 3.3.7. For any k > 0, ι > 0 and n ≥ Nk,ι
n , from the definition of H∗,

there exists a sequence {(εm, ηm,Θm, ϕm)} ⊂ R+× [−1, 1]×D×R×Rd×Md×C(D)
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such that (εm, ηm)→ (0, 0),

(3.3.36)

ϕm
u.c.−→ ϕk,ιn , Θm → (·, u−unco(·), Dϕk,ιn (·), D2ϕk,ιn (·))(tk,ιn , xk,ιn ),

Hεm,ηm(Θm, ϕm)→ H∗(·, u−unco(·), Dϕk,ιn (·), D2ϕk,ιn (·), ϕk,ιn )(tk,ιn , x
k,ι
n ) > −∞.

This implies that Nεm,ηm(tm, xm, ym, pm, ϕm) 6= ∅ since sup ∅ = −∞. By the defini-

tion of δ, it holds that δ(tm, xm, ym, pm, ϕm) ≥ −
√
ε2
m + η2

m. From (3.3.36) and the

definition of δ∗, we get

δ∗(tk,ιn , x
k,ι
n , u

−
unco(tk,ιn , x

k,ι
n ), Dϕk,ιn (tk,ιn , x

k,ι
n ), ϕk,ιn ) ≥ lim sup

m→∞
δ(tm, xm, ym, pm, ϕm) ≥ 0.

By the definition of ∆u,e in the set-valued map N, the equation above implies that

(3.3.37)

δ∗(·, u−unco(·), Dϕk,ιn (·), ϕι)(tk,ιn , xk,ιn ) = δ∗(·, u−unco(·), Dϕk,ιn (·), ϕk,ιn )(tk,ιn , x
k,ι
n ) ≥ 0.

Note that ϕι
u.c.−→ ϕ as ι → 0. Moreover, for ι > 0, u−unco(tk,ιn , x

k,ι
n ) → ϕ(x0) and

Dϕk,ιn (tk,ιn , x
k,ι
n )→ Dϕ(x0) as n→∞ then k → 0. Taking the lim sup of (3.3.37) by

first sending n→∞ then k → 0 and ι→ 0, we have

δ∗ϕ(x0) = δ∗ϕ(T, x0, ϕ(x0), Dϕ(x0), ϕ) ≥ 0

from the upper semi-continuity of δ∗,

3.3.3 Verification by comparison

We now carry out the verification for non-smooth functions assuming the comparison

principle as in the previous chapter.

Assumption 3.3.9. Let H = H∗. Assume that H = H∗ on the set {H < ∞} and

that there exists an LSC function G : D× R× Rd ×Md × C(D)→ R such that

(a) H(t, x, y, p, A, ϕ) <∞ =⇒ G(t, x, y, p, A, ϕ) ≤ 0,

(b) G(t, x, y, p, A, ϕ) < 0 =⇒ H(t, x, y, p, A, ϕ) <∞.
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Proposition 3.3.10. Under Assumptions 3.2.1, 3.2.2, 3.3.3, 3.3.4 and 3.3.9, u+
unco

(resp. u−unco) is a USC (resp. an LSC) viscosity sub-solution (resp. super-solution)

of

min {ϕ(t, x)− g(x),max {−∂tϕ(t, x) +Hϕ(t, x), Gϕ(t, x)}} = 0 on Di.

Proof. This proposition follows from similar arguments to those in Proposition 2.5.2.

Assumption 3.3.11. Assume that δ∗ = δ∗ and a comparison principle holds between

USC sub-solutions and LSC super-solutions for

(3.3.38) min{ϕ(x)− g(x), δϕ(x)} = 0 on Rd.

In the presence of jumps, it is nontrivial to check this assumption. When there

are no jumps in the controlled processes, the comparison principle can be proved in

certain classes of functions (see the discussion above Assumption 2.2 in [14]). Also,

in Section 3.3.4, δ drops out in the corresponding PDE and there are comparison

results available for fully non-linear equations with jumps (see [1]).

Lemma 3.3.12. Under Assumptions 3.2.1, 3.2.2, 3.3.3, 3.3.4, 3.3.9 and 3.3.11,

u−unco(T−, ·) = u+
unco(T−, ·) = ĝ(·), where ĝ is the unique continuous viscosity solution

to (3.3.38).

Proof. It follows from their definitions that u−unco ≤ u+
unco. Since u+

unco is USC and

u−unco is LSC, then

u−unco(T−, x) = lim inf
(t<T,x′)→(T,x)

u−unco(t, x′) ≤ lim sup
(t<T,x′)→(T,x)

u+
unco(t, x′) = u+

unco(T−, x).

Moreover, u+
unco(T−, ·) is a viscosity sub-solution and u−unco(T−, ·) is a viscosity super-

solution to (3.3.38) due to Theorem 3.3.8. Therefore, the claim holds by Assumption

3.3.11.
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Theorem 3.3.13. Suppose that there is a comparison principle for

(3.3.39) min {ϕ(t, x)− g(x),max{−∂tϕ(t, x) +Hϕ(t, x), Gϕ(t, x)}} = 0 on Di

and that Assumptions 3.2.1, 3.2.2, 3.3.3, 3.3.4, 3.3.9 and 3.3.11 hold. Then there

exists a unique continuous viscosity solution Vunco to (3.3.39) with terminal condition

Vunco(T, x) = ĝ(x) and uunco(t, x) = u−unco(t, x) = u+
unco(t, x) = Vunco(t, x) for (t, x) ∈

Di.

Proof. Define

û+
unco(t, x) :=

 u+
unco(t, x), (t, x) ∈ Di,

ĝ(x), t = T, x ∈ Rd.

and

û−unco(t, x) :=

 u−unco(t, x), (t, x) ∈ Di,

ĝ(x), t = T, x ∈ Rd.

From Proposition 3.3.10, û−unco is an LSC viscosity super-solution and û+
unco is a USC

viscosity sub-solution of (3.3.39). Since û+
unco(T, ·) = û−unco(T, ·), û+

unco ≤ û−unco on D by

comparison. Hence, û+
unco = û−unco on D from (3.3.1). Define Vunco := û+

unco = û−unco. It

is a continuous viscosity solution of (3.3.39) satisfying Vunco(T, x) = ĝ(x). Uniqueness

follows directly from the comparison principle.

3.3.4 Stochastic controller-stopper game as a stochastic target problem with a non-
cooperative stopper

In this subsection, we show how the HJB equation associated to a (semi) controller-

stopper game can be deduced from a stochastic target problem with a non-cooperative

stopper. Given a bounded continuous function g : Rd → R, we define a (semi)

controller-stopper game by

uunco(t, x) := inf
ν∈Ut

sup
ρ∈Tt

E[g(Xν
t,x(ρ))].
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We follow the setup of Section 3.2 with one exception: U t is the collection of all the

Ft-predictable processes in L2(Ω× [0, T ],F ⊗B[0, T ],P⊗ λL;U), where U ⊂ Rd and

X follows the SDE

dX(s) = µX(s,X(s), ν(s))ds+σX(s,X(s), ν(s))dWs+

∫
E

β(s,X(s−), ν(s), e)λ(ds, de).

To convert the controller-stopper game to its stochastic target counterpart, we need

the following lemma, whose proof relies crucially on the technical result Lemma 3.5.6.

Lemma 3.3.14. Suppose Assumptions 3.2.1 and 3.2.2 hold. Define a stochastic

target problem as follows:

uunco(t, x) := inf{y ∈ R : ∃(ν, α, γ) ∈ U t ×At × Γtunco

s.t. Y α,γ
t,y (ρ) ≥ g(Xν

t,x(ρ)) for all ρ ∈ Tt},

where

Y α,γ
t,y (·) := y +

∫ ·
t

α>(s)dWs +

∫ ·
t

∫
E

γ>(s, e)λ̃(ds, de).

Here, At and Γtunco are the collections of Rd-valued and L2(E, E , m̂;RI)-valued pro-

cesses, respectively, satisfying the admissibility conditions in Section 3.2. Then

uunco = uunco on D.

Proof. For fixed ν ∈ U t, let

Aν(s) := esssup
τ∈Ts

E[g(Xν
t,x(τ))|Fs], s ≥ t.

Then Aν is the snell envelope (starting at t) of g(Xν
t,x) and thus a super-martingale.

Moreover,

esssup
τ∈Tt

E[Gν(τ)|Ft] + Aν(ρ)− Aν(t) ≥ Gν(ρ) for all ρ ∈ Tt.

By Doob-Meyer Decomposition Theorem, Aνs = Mν
s −Cν

s for s ∈ [t, T ], where Mν is a

martingale on [t, T ] and Cν is an increasing adapted process with Cν
t = 0. Therefore,

esssup
τ∈Tt

E[Gν(τ)|Ft] +Mν(ρ)−Mν(t) ≥ Gν(ρ) for all ρ ∈ Tt.
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Denote Munco = {Mν : ν ∈ U t}. In view of Lemma 3.5.6, it suffices to check that

(3.3.40) Munco ⊂M :=
{
Y α,γ
t,y (·) : y ∈ R, α ∈ At, γ ∈ Γtunco

}
.

In fact, by the martingale representation theorem, for any ν ∈ U t, Mν can be repre-

sented in the form of Y α,γ
t,y for some α ∈ At and γ ∈ Γt0, where Γt0 is the collection of

L2(E, E , m̂;RI)-valued processes satisfying all of the admissibility conditions except

for (3.2.2). Assume, contrary to (3.3.40), that there exists ν0 ∈ U t such that

Mν0(·) = y +

∫ ·
t

α>0 (s)dWs +

∫ ·
t

∫
E

γ>0 (s, e)λ̃(ds, de)

for some y ∈ R, α0 ∈ At and γ0 ∈ Γt0, but (3.2.2) does not hold. This means that for

K > 2‖g‖∞, there exists τ0 ∈ Tt such that

P
(∫

E

γ>0 (τ0, e)λ({τ0}, de) ≤ −K
)
> 0.

Therefore,

Mν0(τ0)−Mν0(τ0−) =

∫
E

γ>0 (τ0, e)λ({τ0}, de) ≤ −K with positive probability,

which further implies that

Aν0(τ0)− Aν0(τ0−) ≤ −K with positive probability.

This contradicts the fact that Aν0 is (strictly) bounded by K
2

.

Let H∗ be the USC envelope of the LSC map H : D × Rd ×Md × C(D) → R

defined by

H : (t, x, p, A, ϕ)→ supu∈U{−I[ϕ](t, x, u)− µ>X(t, x, u)p− 1
2
Tr[σXσ

>
X(t, x, u)A]},

where I[ϕ](t, x, u) =
∑

1≤i≤I
∫
E

(ϕ(t, x+ βi(t, x, u, e))− ϕ(t, x))mi(de).
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Theorem 3.3.15. Under Assumptions 3.2.1 and 3.2.2, u+
unco is a USC viscosity

sub-solution of

min{ϕ(t, x)− g(x),−∂tϕ(t, x) + Hϕ(t, x)} ≤ 0 on Di

and u+
unco(T−, x) ≤ g(x) for all x ∈ Rd. On the other hand, u−unco is an LSC viscosity

super-solution of

min{ϕ(t, x)− g(x),−∂tϕ(t, x) + H∗ϕ(t, x)} ≥ 0 on Di

and u−unco(T−, ·) ≥ g(x) for all x ∈ Rd.

Proof. It is easy to check Assumption 3.3.4 for the stochastic target problem. Since g

is bounded, we can check that all of the assumptions in the Section 3.5 are satisfied,

which implies that Assumption 3.3.3 holds. From Theorem 3.3.7, u+
unco is a USC

viscosity sub-solution of

min{ϕ(t, x)− g(x),−∂tϕ(t, x) +H∗ϕ(t, x)} ≤ 0 on Di

and u−unco is an LSC viscosity super-solution of

min{ϕ(t, x)− g(x),−∂tϕ(t, x) +H∗ϕ(t, x)} ≥ 0 on Di

From Proposition 3.1 in [13], H∗ ≤ H∗ and H∗ ≥ H. This implies that the viscosity

properties in the parabolic interior hold. Note that δ = dist(0,Nc) − dist(0,N),

where

N(t, x, y, p, ϕ) =

{(q, s) : ∃(u, a, r) ∈ U × Rd × L2(E, E , m̂;RI) s.t. q = a− σ>X(t, x, u)p

and s ≤ min
1≤i≤I

{ri(e)− ϕ(t, x+ βi(t, x, u, e)) + ϕ(t, x)} m̂− a.s. e ∈ E }.

Obviously, N = Rd × R. Therefore, δ =∞ and the boundary conditions hold.
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The following two corollaries show that uunco is the unique viscosity solution to its

associated HJB equation. We omit the proof, since it is the same as the proofs of

Proposition 3.3.10 and Theorem 3.3.13.

Corollary 3.3.16. Suppose that Assumptions 3.2.1 and 3.2.2 hold, H = H∗ on

{H <∞} and there exists an LSC function G : D×R×Rd×Md×C(D)→ R such

that

(a) H(t, x, y, p,M, ϕ) <∞ =⇒ G(t, x, y, p,M, ϕ) ≤ 0,

(b) G(t, x, y, p,M, ϕ) < 0 =⇒ H(t, x, y, p,M, ϕ) <∞.

Then u+
unco (resp. u−unco) is a USC (resp. an LSC) viscosity sub-solution (resp. super-

solution) of

min{ϕ(t, x)− g(x),max{−∂tϕ(t, x) + Hϕ(t, x),Gϕ(t, x)}} = 0 on Di.

Corollary 3.3.17. Suppose that all the assumptions in Corollary 3.3.16 hold. Then

u+
unco(T−, x) = u−unco(T−, x) = g(x). Moreover, if the comparison principle holds for

min{ϕ(t, x)− g(x),max{−∂tϕ(t, x) + Hϕ(t, x),Gϕ(t, x)}} = 0 on Di.

Then uunco(= uunco) is the unique continuous viscosity solution with uunco(T, x) =

g(x).

3.4 The stochastic target problem with a cooperative stopper

Definition 3.4.1 (Stochastic Super-solutions). A continuous function w : D→ R is

called a stochastic super-solution if

1. w(t, x) ≥ g(x) and for some C > 0 and n ∈ N, |w(t, x)| ≤ C(1 + |x|n) for all

(t, x) ∈ D.

2. Given (t, x, y) ∈ D× R, for any τ ∈ Tt, ρ ∈ Tτ and ν ∈ U tco, we have

P(Y (ρ) > w(ρ,X(ρ))|B) > 0
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for any B ⊂ {Y (τ) > w(τ,X(τ))} satisfying B ∈ F tτ and P(B) > 0. Here,

X := Xν
t,x and Y := Y ν

t,x,y.

Definition 3.4.2 (Stochastic Sub-solutions). A continuous function w : D → R is

called a stochastic sub-solution if

1. w(T, x) ≤ g(x) for all x ∈ Rd and for some C > 0 and n ∈ N, |w(t, x)| ≤

C(1 + |x|n) for all (t, x) ∈ D.

2. Given(t, x, y) ∈ D × R, for any τ ∈ Tt and ν ∈ U tco, there exist ρ ∈ Tτ and

ν̃ ∈ U tco such that

Y (ρ) ≤ g(X(ρ)) P-a.s. on {Y (τ) ≤ w(τ,X(τ))},

where X := Xν⊗τ ν̃
t,x and Y := Y ν⊗τ ν̃

t,x,y .

Denote the sets of stochastic super-solutions and sub-solutions by U+
co and U−co,

respectively.

Assumption 3.4.3. U+
co and U−co are not empty.

When the above assumption holds, we can check from the definitions of stochastic

solutions that

(3.4.1) u−co := sup
w∈U−co

w ≤ uco ≤ inf
w∈U+

co

w =: u+
co.

3.4.1 Viscosity property in Di

In the rest of this subsection, we state and prove the theorem which characterizes

u−co as a viscosity super-solution of

(3.4.2) min{ϕ(t, x)− g(x),−∂tϕ(t, x) + F ∗ϕ(t, x)} ≥ 0 in Di

and u+
co as a viscosity sub-solution of

(3.4.3) min{ϕ(t, x)− g(x),−∂tϕ(t, x) + F∗ϕ(t, x)} ≤ 0 in Di.
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The boundary conditions will be discussed in Theorem 3.4.8. Before we state the

main result, we impose a regularity assumption on the set-valued map M0,−η(·, ψ),

which is crucial to the super-solution property of u−co.

Assumption 3.4.4. For ψ ∈ C(D), η > 0, let B be a subset of D × R × Rd such

that M0,−η(·, ψ) 6= ∅ on B. Then for every ε > 0, (t0, x0, y0, p0) ∈ Int(B) and u0 ∈

M0,−η(t0, x0, y0, p0, ψ), there exists an open neighborhood B′ of (t0, x0, y0, p0) and a

locally Lipschitz continuous map ν̂ defined on B′ such that ‖ν̂(t0, x0, y0, p0)−u0‖U ≤ ε

and ν̂(t, x, y, p) ∈M0,−η(t, x, y, p, ψ).

Lemma 3.4.5. U+
co and U−co are closed under pairwise minimization and maximiza-

tion, respectively.

Lemma 3.4.6. There exists a non-increasing sequence {wn}∞n=1 ⊂ U+
co such that

wn ↘ u+
co and a non-decreasing sequence {vn}∞n=1 ⊂ U−co such that vn ↗ u−co.

Theorem 3.4.7. Under Assumptions 3.2.1, 3.2.2, 3.4.3 and 3.4.4, u+
co is a USC

viscosity sub-solution of (3.4.3). On the other hand, under Assumptions 3.2.1, 3.2.2

and 3.4.3, u−co is an LSC viscosity super-solution of (3.4.2).

Proof. Step 1 (u+
co is a viscosity sub-solution). Let (t0, x0) ∈ Di satisfy 0 =

(u+
co−ϕ)(t0, x0) = maxDi(u

+
co−ϕ) for some ϕ ∈ C1,2(D). For the sake of contradiction,

assume that

(3.4.4) 2η := −∂tϕ(t0, x0) + F ∗ϕ(t0, x0) > 0 and ϕ(t0, x0) > g(x0)

Let {wk}∞k=1 be a sequence in U+
co such that wk ↘ u+

co. Let ϕ̃(t, x) := ϕ(t, x) + ι|x−

x0|n0 , where we choose n0 ≥ 2 such that for all ι > 0,

(3.4.5) min
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→∞ and min
0≤t≤T

ϕ̃(t, x)→∞ as |x| → ∞.
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By (3.4.4), the upper semi-continuity of F ∗ and the fact that ϕ̃
u.c.−→ ϕ as ι→ 0, we

can find ε > 0, η > 0 and ι > 0 such that

(3.4.6)

ϕ(t, x) > g(x) + ε,

µY (t, x, y, u)−L uϕ̃(t, x) ≥ η for all u ∈Mε,η(t, x, y,Dϕ̃(t, x), ϕ̃)

and (t, x, y) ∈ D× R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ̃(t, x)| ≤ ε.

Fix ι. Note that (t0, x0) is still a strict maximizer of u+
co − ϕ̃. Since (3.4.5) holds,

there exists R0 > ε such that

ϕ̃ > w1 + ε ≥ wk + ε on O := D− [0, T ]×BR0(x0).

On the compact set T := [0, T ]× BR0(x0)− Bε/2(t0, x0), we know that ϕ̃ > u+
co and

the minimum of ϕ̃− u+
co is attained since u+

co is USC. Therefore, ϕ̃ > u+
co + 2α on T

for some α > 0. By a Dini-type argument, for large enough n, we have ϕ̃ > wn + α

on T and ϕ̃ > wn − ε on Bε/2(t0, x0). For simplicity, fix such an n and set w = wn.

In short,

(3.4.7) ϕ̃ > w + ε on O, ϕ̃ > w + α on T and ϕ̃ > w − ε on Bε/2(t0, x0).

For κ ∈ (0, α ∧ ε), define

wκ :=

 (ϕ̃− κ) ∧ w on Bε(t0, x0),

w outside Bε(t0, x0).

Noticing that wκ(t0, x0) ≤ ϕ̃(t0, x0)− κ < u+
co(t0, x0), we will obtain a contradiction

if we show that wκ ∈ U+
co. Obviously, wκ is continuous, has polynomial growth in

x and wκ(t, x) ≥ g(x) for all (t, x) ∈ D. Fix (t, x, y) ∈ Di × R, ν ∈ U tco, τ ∈ Tt and

ρ ∈ Tτ . Let X = Xν
t,x, Y = Y ν

t,x,y and θ = θ1 ∧ θ2, where

θ1 := inf
{
s ∈ [τ, T ] : (s,X(s)) /∈ Bε/2(t0, x0)

}
∧ T,

θ2 := inf {s ∈ [τ, T ] : |Y (s)− ϕ̃(s,X(s))| ≥ ε} ∧ T.
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Since X and Y are càdlàg processes, we know that θ ∈ Tτ . We know the following

also hold:

(θ1, X(θ1)) /∈ Bε/2(t0, x0), |Y (θ2)− ϕ̃(θ2, X(θ2))| ≥ ε,(3.4.8)

(θ1, X(θ1−)) ∈ Bε/2(t0, x0), |Y (θ2−)− ϕ̃(θ2, X(θ2−))| ≤ ε.(3.4.9)

It now suffices to show that

P(Y (ρ) > wκ(ρ,X(ρ))|B) > 0

for B ⊂ {Y (τ) > wκ(τ,X(τ))} satisfying B ∈ F tτ and P(B) > 0. Let A =

{wκ(τ,X(τ)) = w(τ,X(τ))} and set

E = {Y (τ) > wκ(τ,X(τ))}, E0 = E ∩ A, E1 = E ∩ Ac,

G = {Y (ρ) > wκ(ρ,X(ρ)}, G0 = {Y (ρ) > w(ρ,X(ρ)}.

Then E = E0 ∪ E1, E0 ∩ E1 = ∅ and G0 ⊂ G. To prove that wκ ∈ U+
co, it suffices

to show that P(G ∩B) > 0. As in [33], we will show

P(B ∩ E0) > 0 =⇒ P(G ∩B ∩ E0) > 0, P(B ∩ E1) > 0 =⇒ P(G ∩B ∩ E1) > 0.

This, together with the facts P(B) = P(B ∩ E0) + P(B ∩ E1) > 0 and P(G ∩ B) =

P(G ∩B ∩ E0) + P(G ∩B ∩ E1), implies that P(G ∩B) > 0.

(i)Assume that P(B ∩ E0) > 0. Since B ∩ E0 ⊂ {Y (τ) > w(τ,X(τ))} and

B ∩ E0 ∈ F tτ , P(G|B ∩ E0) > 0 from the fact w ∈ U+
co. This further implies that

P(G ∩B ∩ E0) > 0.

(ii)Assume that P(B ∩ E1) > 0. Let Γ(s) := Y (s)− ϕ̃(s,X(s)) + κ. From similar

arguments to those in Step 2.1 of Theorem 2.3.3’s proof, we know that ΓL is a sub-

martingale on [τ, θ]. Since Γ(τ)L(τ) > 0 on B ∩ E1, the sub-martingale property

implies that there exists F ⊂ B ∩E1 such that F ∈ F tτ and Γ(θ ∧ ρ)L(θ ∧ ρ) > 0 on
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F . The non-negativity of L then yields Γ(θ ∧ ρ) > 0 on F . Therefore,

Y (θ1) > ϕ̃(θ1, X(θ1))− κ on F ∩ {θ1 ≤ θ2, θ < ρ},

Y (θ2) > ϕ̃(θ2, X(θ2))− κ on F ∩ {θ1 > θ2, θ < ρ},

Y (ρ) > ϕ̃(ρ,X(ρ))− κ on F ∩ {θ ≥ ρ}.(3.4.10)

Since (θ1, X(θ1)) /∈ Bε/2(t0, x0), it follows from the first two inequalities in (3.4.7)

that

(3.4.11) Y (θ1) > ϕ̃(θ1, X(θ1))− κ > w(θ1, X(θ1)) on F ∩ {θ1 ≤ θ2, θ < ρ}.

On the other hand, since Y (θ2) > ϕ̃(θ2, X(θ2)) − κ on F ∩ {θ1 > θ2, θ < ρ} and

(3.4.8) holds,

Y (θ2)− ϕ̃(θ2, X(θ2)) ≥ ε on F ∩ {θ1 > θ2, θ < ρ}.

Observing that (θ2, X(θ2)) ∈ Bε/2(t0, x0) on {θ1 > θ2}, we get from the last inequality

of (3.4.7) that

(3.4.12) Y (θ2) > ϕ̃(θ2, X(θ2)) + ε > w(θ2, X(θ2)) on F ∩ {θ1 > θ2, θ < ρ}.

From (3.4.11) and (3.4.12), we get that Y (θ) > w(θ,X(θ)) on F ∩{θ < ρ}. Therefore,

from the definition of U+
co,

(3.4.13) P(G0|F ∩ {θ < ρ}) > 0 if P(F ∩ {θ < ρ}) > 0.

From (3.4.10), it holds that

(3.4.14) P(G|F ∩ {θ ≥ ρ}) > 0 if P(F ∩ {θ ≥ ρ}) > 0.

Since G0 ⊂ G, (3.4.13) and (3.4.14) imply that P(G ∩ F ) > 0. Therefore,

P(G ∩B ∩ E1) > 0.
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Step 2 (u−co is a viscosity super-solution).

Step A: We show in this step that u−co(t, x) ≥ g(x) for all (t, x) ∈ D. Assume, on

the contrary, that for some (t0, x0) ∈ D, there exists η > 0 such that

(3.4.15) 2η = g(x0)− u−co(t0, x0) > 0.

Choose an arbitrary w ∈ U−co. By the definition of U−co and lower semi-continuity of

g, there exists ε > 0 such that for all (t, x) ∈ Bε(t0, x0),

g(x)− w(t, x) > η, g(x)− g(x0) > −η
2
, |w(t, x)− w(t0, x0)| ≤ η

2
.

Define

w′(t, x) :=


w(t, x) for (t, x) /∈ Bε(t0, x0),

w(t, x) + (g(x0)− η − w(t0,x0))

(
1− dist((t, x), (t0, x0))

ε

)
, otherwise.

Obviously, w′ ≥ w and w′ is continuous with polynomial growth. In addition,

(3.4.16) {(t, x) : w(t, x) < w′(t, x)} = Bε(t0, x0) and

(3.4.17) w′(t, x) ≤ w(t, x) + (g(x0)− η − w(t0,x0)) < g(x) for (t, x) ∈ Bε(t0, x0)).

The equation above, along with the fact that w ∈ U−co, implies that w′(T, x) ≤ g(x)

for all x ∈ Rd. Noting that w′(t0, x0) = g(x0) − η > u−co(t0, x0) due to (3.4.15), we

would obtain a contradiction if we could show w′ ∈ U−co. We now prove that w′ ∈ U−co.

Fix (t, x, y) ∈ Di × R, τ ∈ Tt and ν ∈ U tco. For w ∈ U−co, let ρw,τ,ν ∈ Tτ and ν̃w,τ,ν

be the “optimal” stopping time and control satisfying the second item in Definition

3.4.2. In order to show that w′ ∈ U−co, we want to construct an “optimal” stopping

time ρ and “optimal” control ν̃ which work for w′ in the sense of Definition 3.4.2.

Let A = {w(τ,X(τ)) = w′(τ,X(τ))} ∈ F tτ ,

ρ = 1Aρ
w,τ,ν + 1Acτ and ν̃ = (1Aν̃

w,τ,ν + 1Acu0)1[τ,T ],
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where u0 is an arbitrary element in U . Obviously, ρ ∈ Tτ and ν̃ ∈ Tt. It suffices to

show

Y (ρ) ≤ g(X(ρ)) P-a.s. on {Y ≤ w′(τ,X(τ))}.

(i) On A ∩ {Y ≤ w′(τ,X(τ))}: Note that A ∩ {Y ≤ w′(τ,X(τ))} ⊂ {Y (τ) <

w(τ,X(τ))}. From the fact w ∈ U−co and the definition of ρ and ν̃ on A, it holds that

(3.4.18) Y (ρ) = Y (ρw,ν,τ ) ≤ g(X(ρw,ν,τ )) = g(X(ρ)) on A ∩ {Y ≤ w′(τ,X(τ))}.

(ii) On Ac ∩ {Y ≤ w′(τ,X(τ))}: (τ,X(τ)) ∈ Bε(t0, x0) on Ac from (3.4.16), which

implies w′(τ,X(τ)) < g(X(τ)) from (3.4.17). This, together with the fact that ρ = τ

on Ac, implies that

(3.4.19) Y (ρ) ≤ w′(ρ,X(ρ)) ≤ g(X(ρ)) on Ac ∩ {Y ≤ w′(τ,X(τ))}.

Step B: Assume, on the contrary, that for some (t0, x0) ∈ Di and ϕ ∈ C1,2(D)

satisfying 0 = (u− − ϕ)(t0, x0) = minDi(u
−
co − ϕ), we have

(3.4.20) −4η := −∂tϕ(t0, x0) + F ∗ϕ(t0, x0) < 0.

From Lemma 3.4.6, there exists a non-decreasing sequence U−co 3 wk ↗ u−co. Fix

such a sequence {wk}∞k=1 and an arbitrary stochastic sub-solution w−. Let ϕ̃(t, x) =

ϕ(t, x)− ι|x− x0|n0 . We can choose n0 ≥ 2 such that for any ι > 0,

(3.4.21) max
0≤t≤T

(ϕ̃(t, x)− w1(t, x))→ −∞ as |x| → ∞.

We can do this because ϕ(t, x) is bounded from above by w− (which has polynomial

growth in x) and w1 has polynomial growth in x. Since (Mε,η)ε≥0 is non-increasing

in ε, we know

F∗(Θ, ϕ) = lim sup
Θ
′→Θ,ψ

u.c.−→ϕ
η↘0

F0,η(Θ
′
, ψ).
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By (3.2.7) and (3.4.20), we can find ε > 0, η > 0 and ι > 0 such that for all

(t, x, y) satisfying (t, x) ∈ Bε(t0, x0) and |y− ϕ̃(t, x)| ≤ ε, µY (t, x, y, u)−Luϕ̃(t, x) ≤

−2η for some u ∈M0,−η(t, x, y,Dϕ̃(t, x), ϕ̃). Fix ι. Note that (t0, x0) is still a strict

minimizer of u−co− ϕ̃ over Di. For ε sufficiently small, Assumption 3.4.4 implies that

there exists a locally Lipschitz map ν̂ such that

ν̂(t, x, y,Dϕ̃(t, x)) ∈M0,−η(t, x, y,Dϕ̃(t, x), ϕ̃) and(3.4.22)

µY (t, x, y, ν̂(t, x, y,Dϕ̃(t, x)))− Lν̂(t,x,y,Dϕ̃(t,x))ϕ̃(t, x) ≤ −η

for all (t, x, y) ∈ Di × R s.t. (t, x) ∈ Bε(t0, x0) and |y − ϕ̃(t, x)| ≤ ε.

(3.4.23)

In the arguments above, choose ε small enough such that Bε(t0, x0)) ∩ DT = ∅.

Since (3.4.21) holds, there exists R0 > ε such that ϕ̃ < w1 − ε ≤ wk − ε on O :=

D− [0, T ]×BR0(x0) for all k. On the compact set T := [0, T ]×BR0(x0)−Bε/2(t0, x0),

we know that ϕ̃ < u−co and the maximum of ϕ̃ − u−co is attained since u−co is LSC.

Therefore, ϕ̃ < u−co − 2α on T for some α > 0. By a Dini-type argument, for large

enough n, we have ϕ̃ < wn − α on T and ϕ̃ < wn + ε on Bε/2(t0, x0). For simplicity,

fix such an n and set w = wn. In short,

(3.4.24) ϕ̃ < w − ε on O, ϕ̃ < w − α on T and ϕ̃ < w + ε on Bε/2(t0, x0).

For κ ∈ (0, ε ∧ α), define

wκ :=

 (ϕ̃+ κ) ∨ w on Bε(t0, x0)),

w outside Bε(t0, x0).

Observing that wκ(t0, x0) = ϕ̃(t0, x0) + κ > u−co(t0, x0), we could obtain a contradic-

tion if we could show that wκ ∈ U−co. Obviously, wκ is continuous, has polynomial

growth in x and wκ(T, x) ≥ g(x) for all x ∈ Rd.

Fix (t, x, y) ∈ Di × R, ν ∈ U tco and τ ∈ Tt. Now our goal is to construct ν̃ ∈ Ut
co
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and ρ ∈ Tt such that wκ and the processes (X, Y ) controlled by ν ⊗τ ν̃ satisfy the

property in Definition 3.4.2.

Let A = {wκ(τ,Xν
t,x(τ)) = w(τ,Xν

t,x(τ))}. On A, let ν̃ and ρ be ν̃1 and ρ1, respec-

tively, which are “optimal” for w starting at τ . We get the existence of ν̃1 and ρ1

since w ∈ U−co. On Ac, by an argument similar to that in [6] (see Step 1.1 of Theorem

3.1’s proof), we can construct ν0 ∈ U tco such that

ν0(s) := ν̂
(
s,Xν⊗τν0

t,x (s), Y ν⊗τν0
t,x,y (s), Dϕ̃(s,Xν⊗τν0

t,x (s)
)

for τ ≤ s < θ := θ1 ∧ θ2

where θ1 := inf
{
s ∈ [τ, T ] : (s,Xν⊗τν0

t,x (s)) /∈ Bε/2(t0, x0)
}
∧ T,

θ2 := inf
{
s ∈ [τ, T ] :

∣∣Y ν⊗τν0
t,x,y (s)− ϕ̃(s,Xν⊗τν0

t,x (s))
∣∣ ≥ ε

}
∧ T.

In the construction of ν0, we take advantage of Assumption 3.2.2 and the Lipschitz

continuity of ν̂ which guarantee the existence of Xν⊗τν0
t,x and Y ν⊗τν0

t,x,y . Since Xν⊗τν0
t,x

and Y ν⊗τν0
t,x,y are càdlàg, it is easy to check that θ ∈ Tτ . We also see that

(θ1, X
ν⊗τν0
t,x (θ1)) /∈ Bε/2(t0, x0),

∣∣Y ν⊗τν0
t,x,y (θ2)− ϕ̃(θ2, X

ν⊗τν0
t,x (θ2))

∣∣ ≥ ε,(3.4.25)

(θ1, X
ν⊗τν0
t,x (θ1−)) ∈ Bε/2(t0, x0),

∣∣Y ν⊗τν0
t,x,y (θ2−)− ϕ̃(θ2, X

ν⊗τν0
t,x (θ2−)

∣∣ ≤ ε.(3.4.26)

Let ν̃θ and ρθ be the “optimal” control and stopping time for w given θ and the

controlled processes (Xν⊗τν0
t,x , Y ν⊗τν0

t,x ). We define ν̃ to be ν0 on [τ, θ[ and ν̃θ after θ

on the set Ac. We set ρ to be ρθ on Ac. In short,

ν̃ :=
(
1Aν̃1 + 1Ac(ν01[t,θ) + 1[θ,T ]ν̃

θ)
)
1[τ,T ] and ρ := 1Aρ1 + 1Acρ

θ.

It is not difficult to check that ν̃ ∈ U tco and ρ ∈ Tτ . It suffices to show that

Y (ρ) ≤ g(X(ρ)) P− a.s. on S := {Y (τ) ≤ wκ(τ,X(τ))},

where X := Xν⊗τ ν̃
t,x and Y := Y ν⊗τ ν̃

t,x,y . Corresponding to the construction of ν̃ on A

and Ac, we consider the following two cases:



76

(i) On the set A ∩ S. We have Y (τ) ≤ w(τ,X(τ)). From the definition of ν̃ and ρ

on A and the fact that w ∈ U−co, we know

Y (ρ) = Y ν⊗τ ν̃1
t,x,y (ρ1) ≤ g(Xν⊗τ ν̃1

t,x (ρ1)) ≤ g(X(ρ)) P− a.s on A ∩ S.

(ii) On the set Ac ∩ S. Letting Γ(s) := Y (s) − ϕ̃(s,X(s)), we use Itô’s formula

and the definition of ν0 to obtain

Γ(· ∧ θ) = Γ(τ) +

∫ ·∧θ
τ

∫
E

J
ν0(s),e

(s, Z(s−), ϕ̃)> λ(ds, de)

+

∫ ·∧θ
τ

(
µY (s, Z(s), ν0(s))−L ν0(s)ϕ̃(s,X(s))

)
ds

on A ∩ S. Therefore, by (3.4.22), (3.4.23), (3.4.26) and the definition of θ, we know

that Γ(· ∧ θ) is non-increasing on [τ, T ]. This implies that

(3.4.27) Y (θ)− ϕ̃(θ,X(θ))− κ ≤ Y (τ)− ϕ̃(τ,X(τ))− κ ≤ 0 on Ac ∩ S.

Since (θ1, X(θ1)) /∈ Bε/2(t0, x0), we know

(3.4.28) 0 ≥ Y (θ1)− ϕ̃(θ1, X(θ1))−κ ≥ Y (θ1)−w(θ1, X(θ1)) on {θ1 ≤ θ2}∩Ac∩S

from (3.4.24). On the other hand, due to (3.4.25) and (3.4.27), it holds that

Y (θ2)− ϕ̃(θ2, X(θ2)) ≤ ε on {θ1 > θ2} ∩ Ac ∩ S.

Therefore, since ϕ̃ < w + ε on Bε/2(t0, x0) and (3.4.26) holds,

(3.4.29) Y (θ2) ≤ ε+ ϕ̃(θ2, X(θ2)) < w(θ2, X(θ2)) on {θ1 > θ2} ∩ Ac ∩ S.

Combining (3.4.28) and (3.4.29), we obtain Y (θ)−w(θ,X(θ)) ≤ 0 on Ac∩S. There-

fore, from the definitions of ν̃θ and ρθ,

Y (ρ) ≤ g(X(ρ)) on Ac ∩ {Y (τ) ≤ wκ(τ,X(τ))}.
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3.4.2 Boundary conditions

We then discuss the boundary conditions at terminal time T . From the definition

of the value function uco, it holds that uco(T, x) = g(x) for all x ∈ Rd. However, u+
co

and u−co may not agree with this boundary condition. Let

u+
co(T−, x) = lim sup

(t<T,x′)→(T,x)

u−co(t, x′), u−co(T−, x) = lim inf
(t<T,x′)→(T,x)

u−co(t, x′).

Theorem 3.4.8. Under Assumptions 3.2.1, 3.2.2, 3.4.3 and 3.4.4, u+
co(T−, ·) is an

USC viscosity sub-solution of

(ϕ(x)− g(x))1{F∗ϕ(x)>−∞} ≤ 0 on Rd

and

u−co(T−, x) ≥ g(x) for all x ∈ Rd.

Proof. Step 1.(The sub-solution property on DT ) We show in this step that

u+
co(T−, ·) is a viscosity sub-solution of

(ϕ(x)− g(x))1{F∗ϕ(x)>−∞} ≤ 0.

Let x0 ∈ Rd and ϕ ∈ C2(Rd) be a smooth function such that

0 = (u+
b (T−, x0)− ϕ(x0)) = max

x∈Rd
(strict) (u+

co(T−, x)− ϕ(x)).

Assume that F∗ϕ(x0) = C > −∞ and g(x0) < u+
co(T−, x0) = ϕ(x0) and we will work

towards a contradiction. Assume without loss of generality that

(3.4.30) ϕ(x)→∞ as |x| → ∞.

Let

ϕ̃′(x) = ϕ(x) + ι|x− x0|4, ϕ̃(t, x) = ϕ(x) + ι|x− x0|4 + (C + 2)(T − t),
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where ι will be fixed later. Note that Dϕ̃′(x) = Dϕ̃(t, x), D2ϕ̃′(x) = D2ϕ̃(t, x). By

the facts that g(x0) < ϕ(x0) = ϕ̃(T, x0) = u+
co(T−, x0), upper semi-continuity of g

and u+
co and the regularity of ϕ, the locally boundedness of µX , σX , µY , b and β,

the regularity of ϕ and definition of F∗, there exist ι, ε > 0 and 0 < η < 1 such that

there exist ι, ε > 0 and 0 < η < 1 such that

ϕ̃(t, x)− g(x) > ε for (t, x) ∈ Bε(T, x0),

(3.4.31) ϕ̃ > u+
co − 2η on [T − ε, T )×Bε/2(x0),

and

µY (t, x, y, u)− µ>X(t, x, u)Dϕ̃(t, x)− 1
2
Tr[σXσ

>
X(t, x, u)D2ϕ̃(t, x)] ≥ C − 1

for all (t, x, y, u) ∈ D× R× U s.t. (t, x) ∈ [T − ε, T ]×Bε(x0), |y − ϕ̃(t, x)| ≤ ε

and u ∈Mε,η(t, x, y,Dϕ̃(t, x), ϕ̃′).

Then by the definition of Πu,e involved in Mε,η,

µY (t, x, y, u)−L uϕ̃(t, x) ≥ C − 1 + C + 2 ≥ η for (t, x, y) ∈ D× R× U s.t.

(t, x) ∈ [T − ε, T ]×Bε(x0), |y − ϕ̃(t, x)| ≤ ε and u ∈Mε,η(t, x, y,Dϕ̃(t, x), ϕ̃).

From Lemma 3.4.6, there exists a non-decreasing sequence U+
b 3 wn ↘ u+

co. Fix this

sequence. Then by a Dini type argument, from (3.4.31), there exists an n0 such that

(3.4.32) ϕ̃ > wn0 − η on [T − ε, T )×Bε/2(x0).

By (3.4.30), there exists some R0 > ε such that for n ≥ n0,

(3.4.33) ϕ̃(t, x) > wn0(t, x) + ε ≥ wn(t, x) + ε on O := [T − ε, T ]× (Rd −BR0(x0)).

Since ϕ̃(T, x) ≥ ϕ(x), then u+
co(T−, ·)− ϕ̃(T, ·) is strictly negative on the compact set

T∗ := BR0(x0) − Bε/2(x0). Hence, by the upper semi-continuity of u+
co, there exists

some α > 0 such that

ϕ̃(T, ·) > u+
co(T−, ·) + 4α on T∗.
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Similar to the Step 1 in this proof, there exists a σ ≤ ε and n1 ≥ n0 such that

(3.4.34) ϕ̃ > wn1 + α on [T − σ, T )× T∗.

Let w = wn1 . Define, for κ ∈ (0, ε ∧ δ ∧ α),

wκ ,

 (ϕ̃− κ) ∧ w on [T − σ, T ]×Bε(x0),

w outside [T − σ, T ]×Bε(x0).

Similarly as Step 1 in the proof of Theorem 3.4.7, we can show that wκ ∈ U+
co, which

yields a contradiction.

Step 2. (The super-solution property on DT ) We’ve already proved that

u−co(t, x) ≥ g(x) in Step 2A of Theorem 3.4.7, which implies that u−co(T−, x) ≥

g(x).

3.4.3 Verification by comparison

We now carry out the verification for non-smooth functions assuming the comparison

principle.

Assumption 3.4.9. Let F = F ∗. Assume that F = F∗ on the set {F > −∞} and

that there exists a USC function G : D× R× Rd ×Md × C(D)→ R such that

(a) F (t, x, y, p, A, ϕ) > −∞ =⇒ G(t, x, y, p, A, ϕ) ≥ 0,

(b) G(t, x, y, p, A, ϕ) > 0 =⇒ F (t, x, y, p, A, ϕ) > −∞.

Proposition 3.4.10. Under Assumptions Assumptions 3.2.1, 3.2.2, 3.4.3, 3.4.4 and

3.4.9, u+
co (resp. u−co) is a USC (resp. an LSC) viscosity sub-solution (resp. super-

solution) of

min{ϕ(t, x)− g(x),max {−∂tϕ(t, x) + Fϕ(t, x), Gϕ(t, x)}} = 0 on Di.

Moverover, u+
co(T−, ·) (resp. u−co(T−, ·)) is a USC (resp. an LSC) viscosity sub-

solution (resp. super-solution) of max{ϕ(x)− g(x), G(x)} = 0.
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Assumption 3.4.11. Assume that a comparison principle holds between USC sub-

solutions and LSC super-solutions for

(3.4.35) min{ϕ(x)− g(x), Gϕ(x)} = 0 on Rd.

Lemma 3.4.12. Under Assumptions 3.2.1, 3.2.2, 3.4.3, 3.4.4, 3.4.9 and 3.4.11,

u−co(T−, ·) = u+
co(T−, ·) = ĝ(·), where ĝ is the unique continuous viscosity solution to

(3.4.35).

Proof. The proof of this lemma follows same argument as in Lemma 3.3.12

Theorem 3.4.13. Suppose that there is a comparison principle for

(3.4.36) min{ϕ(t, x)− g(x),max{−∂tϕ(t, x) + Fϕ(t, x), Gϕ(t, x)}} = 0 on Di

and that Assumptions 3.2.1, 3.2.2, 3.4.3, 3.4.4, 3.4.9 and 3.4.11 hold. Then there

exists a unique continuous viscosity solution Vco to (3.4.36) with terminal condition

Vco(T, ·) = ĝ(·) and uco(t, x) = u−co(t, x) = u+
co(t, x) = Vco(t, x) for (t, x) ∈ Di.

Proof. Define

û+
unco(t, x) :=

 u+
co(t, x), (t, x) ∈ Di

ĝ(x), t = T, x ∈ Rd

and

û−co(t, x) :=

 u−co(t, x), (t, x) ∈ Di,

ĝ(x), t = T, x ∈ Rd.

From Proposition 3.4.10, û−co is an LSC viscosity super-solution and û+
co is a USC

viscosity sub-solution of (3.4.36). Since û+
co(T, ·) = û−co(T, ·), û+

co ≤ û−co on D by

comparison. Hence, û+
co = û−co on D from (3.4.1). Define Vco := û+

co = û−co. It is

a continuous viscosity solution of (3.4.36) satisfying Vco(T, x) = ĝ(x). Uniqueness

follows directly from the comparison principle.



81

3.4.4 Stochastic cooperative controller-stopper problem as a stochastic target prob-
lem with a cooperative stopper

In this subsection, we show that a stochastic cooperative controller-stopper problem

can be expressed in terms of a stochastic target problem with a cooperative stopper.

Given a bounded continuous function g : Rd → R, we define

uco(t, x) := sup
ν∈Ut

sup
ρ∈Tt

E[g(Xν
t,x(ρ))].

We follow the setup of Section 3.2 with one exception: U t is the collection of all the

Ft-predictable processes in L2(Ω× [0, T ],F ⊗B[0, T ],P⊗ λL;U), where U ⊂ Rd and

X follows the SDE

dX(s) = µX(s,X(s), ν(s))ds+σX(s,X(s), ν(s))dWs+

∫
E

β(s,X(s−), ν(s), e)λ(ds, de).

To convert the cooperative controller-stopper problem to a stochastic target problem

with a cooperative stopper, we now prove the following lemma. The proof relies on

Lemma 3.5.7.

Lemma 3.4.14. Suppose Assumptions 3.2.1 and 3.2.2 hold. Define a stochastic

target problem as follows:

uco(t, x) := sup{y ∈ R : ∃(ν, α, γ, ρ) ∈ U t ×At × Γtco × Tt s.t. Y α,γ
t,y (ρ) ≤ g(Xν

t,x(ρ))},

where Y α,γ
t,y (·) := y +

∫ ·
t

α>(s)dWs +

∫ ·
t

∫
E

γ>(s, e)λ̃(ds, de).

Here, At and Γtco are the collections of Rd-valued and L2(E, E , m̂;RI)-valued pro-

cesses, respectively, satisfying the admissibility conditions in Section 3.2. Then

uco = uco on D.

Proof. In view of Lemma 3.5.7 and Remark 3.5.8, it suffices to check that

(3.4.37) Mco ⊂M :=
{
Y α,γ
t,y (·) : y ∈ R, α ∈ At, γ ∈ Γt

}
,
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where Mco is defined as in Remark 3.5.8. In fact, by the martingale representation

theorem, for any ν ∈ U t and ρ ∈ Tt, E[g(Xν
t,x(ρ))|F t· ] can be represented in the form of

Y α,γ
t,y for some α ∈ At and γ ∈ Γt0, where Γt0 is the collection of L2(E, E , m̂;RI)-valued

processes satisfying all of the admissibility conditions except for (3.2.3). Assume,

contrary to (3.4.37), that there exists ν0 ∈ U t and ρ ∈ Tt such that

E[g(Xν0
t,x(ρ))|F t· ] = y +

∫ ·
t

α>0 (s)dWs +

∫ ·
t

∫
E

γ>0 (s, e)λ̃(ds, de)

for some y ∈ R, α0 ∈ At and γ0 ∈ Γt0, but (3.2.3) does not hold. In the equation

above, E[g(Xν0
t,x(ρ))|F t· ] can be chosen to be càdlàg, thanks to Theorem 1.3.13 in [20].

Then for K > 2‖g‖∞, there exists τ0 ∈ Tt such that

P
(∫

E

γ>0 (τ0, e)λ({τ0}, de) > K

)
> 0.

Let M0(·) = E
[
g(Xν0

t,x(ρ))|F t·
]
. Therefore,

M0(τ0)−M0(τ0−) =

∫
E

γ>0 (τ0, e)λ({τ0}, de) > K with positive probability.

Since |M0| is bounded by ‖g‖∞ < K/2, we obtain a contradiction.

Let F∗ be the LSC envelope of the USC map F : D×Rd×Md×C(D)→ R defined

by

F : (t, x, p, A, ϕ)→ infu∈U{−I[ϕ](t, x, u)− µ>X(t, x, u)p− 1
2
Tr[σXσ

>
X(t, x, u)A]},

where I[ϕ](t, x, u) =
∑

1≤i≤I
∫
E

(ϕ(t, x+ βi(t, x, u, e))− ϕ(t, x))mi(de).

Theorem 3.4.15. Under Assumptions 3.2.1 and 3.2.2, u+
co is a USC viscosity sub-

solution of

min{ϕ(t, x)− g(x),−∂tϕ(t, x) + F∗ϕ(t, x)} ≤ 0 on Di

and u−co(T−, x) ≤ g(x) for all x ∈ Rd. On the other hand, u−co is an LSC viscosity

super-solution of

min{ϕ(t, x)− g(x),−∂tϕ(t, x) + Fϕ(t, x)} ≥ 0 on Di
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and u−co(T−, ·) ≥ g(x) for all x ∈ Rd.

Proof. It is easy to check Assumption 3.4.4 for the stochastic target problem. Since

g is bounded, we can check that all of the assumptions in the appendix (Subsection

3.5.1) are satisfied, which implies that Assumption 3.3.3 holds. From Theorem 3.4.7,

u+
co is a USC viscosity sub-solution of

min{ϕ(t, x)− g(x),−∂tϕ(t, x) + F∗ϕ(t, x)} ≤ 0 on Di

and u−co is an LSC viscosity super-solution of

min{ϕ(t, x)− g(x),−∂tϕ(t, x) + F ∗ϕ(t, x)} ≥ 0 on Di

From Proposition 3.1 in [13], F ∗ ≤ F and F∗ ≥ F∗. This implies that the viscosity

properties in the parabolic interior and at the boundary hold.

The following two corollaries show that uco is the unique viscosity solution to its

associated HJB equation. We omit the proofs.

Corollary 3.4.16. Suppose that Assumptions 3.2.1 and 3.2.2 hold, F = F∗ on

{F > −∞} and there exists a USC function G : D×R×Rd×Md×C(D)→ R such

that

(a) F(t, x, y, p,M, ϕ) > −∞ =⇒ G(t, x, y, p,M, ϕ) ≥ 0,

(b) G(t, x, y, p,M, ϕ) > 0 =⇒ F(t, x, y, p,M, ϕ) > −∞.

Then u+
co (resp. u−co) is a USC (resp. an LSC) viscosity sub-solution (resp. super-

solution) of

min{ϕ(t, x)− g(x),max{−∂tϕ(t, x) + Fϕ(t, x),Gϕ(t, x)}} = 0 on Di.

Corollary 3.4.17. Suppose that all the assumptions in Corollary 3.4.16 hold. Then

u+
co(T−, x) = u−co(T−, x) = g(x). Moreover, if the comparison principle holds for

min{ϕ(t, x)− g(x),max{−∂tϕ(t, x) + Fϕ(t, x), Gϕ(t, x)}} = 0 on Di,
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then uco(= uco) is the unique continuous viscosity solution with uco(T, x) = g(x).

3.5 Appendix

3.5.1 The nonemptiness of U+
unco, U−

unco, U+
co and U−

co

Assumption 3.5.1. g is bounded.

Assumption 3.5.2. There exists u0 ∈ U such that

σY (t, x, y, u0) = 0 and b(t, x, y, u0(e), e) = 0

for all (t, x, y, e) ∈ D× R× E.

Proposition 3.5.3. Under Assumptions 3.2.1, 3.2.2, 3.5.1 and 3.5.2, U+
unco and U−co

are not empty.

Proof. We will only show U+
unco is not empty. A very similar proof applies to U−co.

Step 1. In this step we assume that µY is non-decreasing in its y-variable. We will

show that w(t, x) = γ− ekt is a stochastic super-solution for some choice of k and γ.

By the linear growth condition on µY in Assumption 3.2.2, there exists L > 0

such that

|µY (t, x, y, u0)| ≤ L(1 + |y|),

where u0 is the element in U in Assumption 3.5.2. Choose k ≥ 2L and γ such that

−ekT + γ ≥ ‖g‖∞. Then w(t, x) ≥ w(T, x) ≥ g(x) for all (t, x) ∈ D. It suffices to

show that for any (t, x, y) ∈ D× R, τ ∈ Tt, ν ∈ U tunco and ρ ∈ Tτ ,

(3.5.1) Y (ρ) ≥ w(ρ,X(ρ)) P-a.s. on {Y (τ) ≥ w(τ,X(τ))},

where X := Xν⊗τu0
t,x and Y := Y ν⊗τu0

t,x,y . Let A = {Y (τ) > w(τ,X(τ))}, V (s) =

w(s,X(s)) and Γ(s) = (V (s)− Y (s))1A. Therefore, for s ≥ τ ,

Γ(s) = 1A

∫ s

τ

(ξ(q) + ∆(q))dq,where(3.5.2)
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∆(s) : = −keks − µY (s,X(s), Y (s), u0)

≤ −keks − µY (s,X(s),−eks, u0)

≤ −keks + L(1 + eks) ≤ 0,

ξ(s) : = µY (s,X(s), V (s), u0)− µY (s,X(s), Y (s), u0).

Therefore, from (3.5.2) it holds that

Γ(s) ≤ 1A

∫ s

τ

ξ(q)dq and Γ+(s) ≤ 1A

∫ s

τ

ξ+(q)dq for s ≥ τ.

From the Lipschitz continuity of µY in y-variable in Assumption 3.2.2,

Γ+(s) ≤ 1A

∫ s

τ

ξ+(q)dq ≤
∫ s

τ

L0Γ+(q)dq for s ≥ τ,

where L0 is the Lipschitz constant of µY with respect to y. Note that we use the

assumption that µY is non-decreasing in its y-variable to obtain the second inequality.

Since Γ+(τ) = 0, an application of Grönwall’s Inequality implies that Γ+(ρ) ≤ 0,

which further implies that (3.5.1) holds.

Step 2. We get rid of our assumption on µY from Step 1 by following a proof similar

to those in [16]. For c > 0, define Ỹ ν
t,x,y as the strong solution of

dỸ (s) = µ̃Y (s,Xν
t,x(s), Ỹ (s), ν(s))ds+ σ̃>Y (s,Xν

t,x(s), Ỹ (s), ν(s))dWs

+

∫
E

b̃>(s,Xν
t,x(s−), Ỹ (s−), ν1(s), ν2(s, e), e)λ(ds, de)

with initial data Ỹ (t) = y, where

µ̃Y (t, x, y, u) := cy + ectµY (t, x, e−cty, u), σ̃Y (t, x, y, u) := ectσY (t, x, e−cty, u),

b̃(t, x, y, u(e), e) := ectb(t, x, e−cty, u(e), e).

Therefore,

(3.5.3) Ỹ ν
t,x,y(s)e

−cs = Y ν
t,x,ye−ct(s), t ≤ s ≤ T.



86

Let

(3.5.4) ũunco(t, x) = inf{y ∈ R : ∃ ν ∈ U tunco, s.t. Ỹ ν
t,x,y(ρ) ≥ g̃(ρ,Xν

t,x(ρ)) -a.s.},

where g̃(t, x) = ectg(x). Therefore, from (3.5.3), ũunco(t, x) = ectuunco(t, x). Since µY

is Lipschitz in y, we can choose c > 0 so that

µ̃Y : (t, x, y, u) 7→ cy + ectµY (t, x, e−cty, u)

is non-decreasing in y. Moreover, all the properties of µ̃Y , σ̃Y and b̃ in Assumption

3.2.2 still hold. We replace µY , σY and b in all of the equations and definitions in

Section 3.2 with µ̃Y , σ̃Y and b̃, we get H̃∗ and H̃∗. Let Ũ+
unco be the set of stochastic

super-solutions of the new target problem (3.5.4). It is easy to see that w ∈ U+
unco

if and only if w̃(t, x) := ectw(t, x) ∈ Ũ+
unco. From Step 1, Ũ+

unco is not empty. Thus,

U+
unco is not empty.

Assumption 3.5.4. There is C ∈ R such that for all (t, x, y, u, e) ∈ D×R×U ×E,∣∣∣∣µY (t, x, y, u) +

∫
E

b>(t, x, y, u(e), e)m(de)

∣∣∣∣ ≤ C(1 + |y|).

Proposition 3.5.5. Under Assumptions 3.2.1, 3.2.2, 3.5.1 and 3.5.4, U−unco and U+
co

are not empty.

Proof. We will only show that U−unco is not empty. Assume that

µY (t, x, y, u) +

∫
E

b>(t, x, y, u(e), e)m(de)

is non-decreasing in its y-variable. We could remove this assumption by using the

argument from previous proposition.

Choose k ≥ 2C (C is the constant in Assumption 3.5.4) and γ > 0 such that

ekT −γ < −‖g‖∞. Let w(t, x) = ekx−γ. Notice that w is continuous, has polynomial
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growth in x and w(T, x) ≤ g(x) for all x ∈ Rd. It suffices to show that for any

(t, x, y) ∈ D× R, τ ∈ Tt and ν ∈ U tunco, there exists ρ ∈ Tt such that

P(Y (ρ) < g(X(ρ))|B) > 0

for B ⊂ A := {Y (τ) < w(τ,X(τ))} satisfying B ∈ F tτ and P(B) > 0, where

X := Xν
t,x and Y := Y ν

t,x,y. Define

M(·) = Y (·)−
∫ ·
τ

K(s)ds, V (s) = w(s,X(s)), Γ(s) = (Y (s)− V (s))1A, where

K(s) := µY (s,X(s), Y (s), ν(s)) +

∫
E

b>(s,X(s−), Y (s−), ν1(s), ν2(s, e), e)m(de),

K̃(s) := µY (s,X(s), V (s), ν(s)) +

∫
E

b>(s,X(s−), V (s−), ν1(s), ν2(s, e), e)m(de).

It is easy to see that M is a martingale after τ. Due to the facts that A ∈ F tτ and

dV (s) = keksds, we further know

(3.5.5) 1A

(
Y (·)− V (·) +

∫ ·
τ

keks −K(s)ds

)
is a super-martingale after τ.

Since Assumption 3.5.4 holds and µY (t, x, y, u) +
∫
E
b>(t, x, y, u(e), e)m(de) is non-

decreasing in y,

K̃(s) ≤ µY (s,X(s), eks, ν(s)) +

∫
E

b>(s,X(s−), eks, ν1(s), ν2(s, e), e)m(de) ≤ 2Ceks.

Therefore, it follows from (3.5.5) and the inequality above that

(3.5.6) M̃(·) := 1A

(
Y (·)− V (·)−

∫ ·
τ

ξ(s)ds)

)
is a super-martingale after τ,

where ξ(s) := K(s)− K̃(s). Since M̃(τ) < 0 on B, there exists a non-null set F ⊂ B

such that M̃(ρ) < 0 on F for any ρ ∈ Tτ . By the definition of M̃ in (3.5.6), we get

(3.5.7) Γ(ρ) < 1A

∫ ρ

τ

ξ(s)ds on F.

Therefore,

(3.5.8) Γ+(ρ) ≤ 1A

∫ ρ

τ

ξ+(s)ds ≤
∫ ρ

τ

L0Γ+(s)ds on F.
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By Grönwall’s Inequality, Γ+(τ) = 0 implies that Γ+(ρ) = 0 on F . More precisely,

for ω ∈ F (P − a.s.), Γ+(s)(ω) = 0 for s ∈ [τ(ω), ρ(ω)]. This implies that we can

replace the inequalities with equalities in (3.5.8). Therefore, by (3.5.7), Γ(ρ) < 0 on

F , which yields P(Y (ρ) < g(X(ρ))|B) > 0.

3.5.2 The equivalence results

Let T be a finite time horizon, given a general probability space (Ω,F ,P) endowed

with a filtration F = {Ft}0≤t≤T satisfying the usual conditions. Let Tt be the set

of F-stopping times valued in [t, T ]. In particular, let T := T0. We assume that F0

is trivial. Let U be the collection of all F-predictable processes valued in U ⊂ Rk

and {Gν , ν ∈ U} be a collection of bounded, right-continuous processes valued in R.

Given (t, ν) ∈ [0, T ]× U , we consider the following two problems:

(3.5.9) V ν
unco(t) = ess inf

µ∈U(t,ν)
esssup

τ∈Tt
E[Gµ(τ)|Ft],

and

(3.5.10) V ν
co(t) = ess sup

µ∈U(t,ν)

esssup
τ∈Tt

E[Gµ(τ)|Ft],

where U(t, ν) = {µ ∈ U , µ = ν on [0, t] P− a.s.}.

Lemma 3.5.6. Given t ∈ [0, T ] and ν ∈ Ut, let M be any family of martingales

which satisfies the following:

(3.5.11)
For any µ ∈ U(t, ν), there exists an M ∈M such that

esssup
τ∈Tt

E[Gµ(τ)|Ft] +M(ρ)−M(t) ≥ Gµ(ρ) for all ρ ∈ Tt.

Then V ν
unco(t) = Y ν

unco(t), where

Y ν
unco(t) = essinf{Y ∈ L1(Ω,Ft,P) | ∃(M,µ) ∈M×U(t, ν) such that

Y +M(ρ)−M(t) ≥ Gµ(ρ) for all ρ ∈ Tt }.
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Proof. (1) Y ν
unco(t) ≥ V ν

unco(t): Fix Y ∈ L1(Ω,Ft,P) and (M,µ) ∈ M× U(t, ν) such

that

Y +M(ρ)−M(t) ≥ Gµ(ρ) for all ρ ∈ Tt.

By taking the conditional expectation, we get that

Y ≥ E[Gµ(ρ)|Ft] for all ρ ∈ Tt.

which implies that Y ≥ V ν
unco(t). Therefore, Y ν

unco(t) ≥ V ν
unco(t).

(2) V ν
unco(t) ≥ Y ν

unco(t): we get from (3.5.11) that for each µ ∈ U(t, ν), there exists

an M ∈M such that

esssup
τ∈Tt

E[Gµ(τ)|Ft] +M(ρ)−M(t) ≥ Gµ(ρ) for all ρ ∈ T .

This implies that

esssup
τ∈Tt

E[Gµ(τ)|Ft] ≥ Y ν
unco(t),

which further implies V ν
unco(t) ≥ Y ν

unco(t).

Lemma 3.5.7. Let M be any family of martingales which satisfies the following:

(3.5.12)

For any ν ∈ U and ρ ∈ T , there exists M ∈M such that Gν(ρ) = M(ρ).

Then for each (t, ν) ∈ [0, T ]× U , V ν
co(t) = Y ν

co(t), where

Y ν
co(t) = esssup{Y ∈ L1(Ω,Ft,P) |∃(M,µ, ρ) ∈M×U(t, ν)× Tt,

such that Y +M(ρ)−M(t) ≤ Gµ(ρ)}.

Proof. (1) Y ν
co(t) ≤ V ν

co(t): Fix Y ∈ L1(Ω,Ft,P) and (M,µ, ρ) ∈ M × U(t, ν) × Tt

such that

Y +M(ρ)−M(t) ≤ Gµ(ρ).
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Then by taking the conditional expectation, we get that

Y ≤ E[Gµ(ρ)|Ft] ≤ V ν
co(t),

which implies that Y ν
co(t) ≤ V ν

co(t).

(2) Y ν
co(t) ≥ V ν

co(t): we get from (3.5.11) that for each µ ∈ U(t, ν) and ρ ∈ Tt, there

exists M ∈M such that

E[Gµ(ρ)|Ft] +M(ρ)−M(t) = Gµ(ρ).

In particular,

E[Gµ(ρ)|Ft] +M(ρ)−M(t) ≤ Gµ(ρ).

Therefore, E[Gµ(ρ)|Ft] ≤ Y ν
co(t), which implies V ν

co(t) ≤ Y ν
co(t).

Remark 3.5.8. It is clear that a collection of martingales which satisfies (3.5.12)

always exists. In particular, one can take

Mco = {{E[Gν(ρ)|Ft]}0≤t≤T , ν ∈ U , ρ ∈ T }.



CHAPTER IV

Stochastic Perron for Stochastic Target Games

4.1 Outline of this chapter

In this chapter, we will analyze a stochastic target game as described in Chapter

I. This chapter is organized as follows. In Section 4.2, we introduce the setup of

the stochastic target game as used in [16], the related HJB equation and the defini-

tions of the stochastic semi-solutions (our conceptual contribution). The technical

contribution of this chapter is given in Section 4.3, where we characterize the infi-

mum (supremum) of the stochastic super-solutions (sub-solutions) as the viscosity

sub-solution (super-solution) of the HJB equation. A viscosity comparison argument

concludes that the value function is the unique bounded continuous viscosity solution

of the HJB equation. Finally, we obtain the dynamic programming principle as a

byproduct. Some technical results are deferred to the appendix (Section 4.4).

4.2 The setup

4.2.1 The value function

Let Ω be the space of continuous functions ω : [0, T ]→ Rd and let P be the Wiener

measure on Ω. We will denote by W the canonical process on Ω, i.e. Wt(ω) = ωt,

and by F = (Fs)0≤s≤T the augmented filtration generated by W . For 0 ≤ t ≤ T

let Ft = (F ts)0≤s≤T be the augmented filtration generated by (Ws − Wt)s≥t. By
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convention, F ts is trivial for s ≤ t.

We denote by U t (resp. At) the collection of all Ft-predictable processes in Lp(P⊗

λL) with values in a given Borel subset U (resp. bounded set A) of Rd, where p ≥ 2

and λL is the Lebesgue measure on R. Define

D := [0, T ]× Rd, Di := [0, T )× Rd, DT := {T} × Rd.

Given (t, x, y) ∈ D× R and (u, α) ∈ U t ×At, consider the following SDEs.

dX(s) = µX(s,X(s), αs)ds+ σX(s,X(s), αs)dWs,

dY (s) = µY (s,X(s), Y (s), us, αs)ds+ σY (s,X(s), Y (s), us, αs)dWs,

(4.2.1)

with initial data (X(t), Y (t)) = (x, y).

Assumption 4.2.1. The coefficients µX , µY , σX and σY are continuous in all vari-

ables and take values in Rd, R, Rd and Md := Rd×d, respectively. There exists K > 0

such that for all (t, x, y, u, a) ∈ D× R× U × A and (t′, x′, y′) ∈ D× R,

|µX(t, x, a)− µX(t′, x′, a)|+ |σX(t, x, a)− σX(t′, x′, a)| ≤ K(|t− t′|+ |x− x′|),

|µX(t, x, a)|+ |σX(t, x, a)| ≤ K,

|µY (t, x, y, u, a)− µY (t, x, y′, u, a)|+ |σY (t, x, y, u, a)− σY (t, x, y′, u, a)| ≤ K|y − y′|,

|µY (t, x, y, u, a)|+ |σY (t, x, y, u, a)| ≤ K(1 + |u|+ |y|).

This assumption ensures that the stochastic differential equations given in (4.2.1)

are well-posed. Denote the solutions to (4.2.1) by (Xα
t,x, Y

u,α
t,x,y). Let t ≤ T . We say

that a map u : At → U t, α 7→ u[α] is a t-admissible strategy if it is non-anticipating

in the sense that

{ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} ⊂ {ω ∈ Ω : u[α](ω)|[t,s] = u[α′](ω)|[t,s]} -a.s.

for all s ∈ [t, T ] and α, α′ ∈ At, where |[t,s] indicates the restriction to the interval

[t, s]. We denote by U(t) the collection of all t-admissible strategies; moreover, we
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write Y u,α
t,x,y for Y

u[α],α
t,x,y . Then we can introduce the value function of the stochastic

target game,

(4.2.2) v(t, x) := inf
{
y ∈ R : ∃ u ∈ U(t) s.t. Y u,α

t,x,y(T ) ≥ g(Xα
t,x(T )) -a.s. ∀ α ∈ At

}
,

where g : Rd → R is a bounded continuous function. We also need to define strategies

starting at a family of stopping times. Let Tt be the set of Ft-stopping times valued

in [t, T ].

Definition 4.2.2 (Non-anticipating family of stopping times). Let {τα}α∈At ⊂ Tt

be a family of stopping times. This family is t-non-anticipating if

{ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} ⊂

{ω ∈ Ω : t ≤ τα(ω) = τα
′
(ω) ≤s} ∪ {ω ∈ Ω : s < τα(ω) , s < τα

′
(ω)} -a.s.

Denote the set of t-non-anticipating families of stopping times by Tt.

We will use {τα} for short to represent {τα}α∈At , which will always denote a t-non-

anticipating family of stopping times.

Definition 4.2.3 (Strategies starting at a non-anticipating family of stopping times).

Fix t and let {τα} ∈ Tt. We say that a map u : At → U t, α 7→ u[α] is a (t, {τα})-

admissible strategy if it is non-anticipating in the sense that

{ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} ⊂ {ω ∈ Ω : s < τα(ω), s < τα
′
(ω)} ∪

{ω ∈ Ω : t ≤ τα(ω) = τα
′
(ω) ≤ s, u[α](ω)|[τα(ω),s] = u[α′](ω)|[τα′ (ω),s]} -a.s.

for all s ∈ [t, T ] and α, α′ ∈ At, denoted by u ∈ U(t, {τα}).

It is clear that, in the Definition 4.2.3 if we set τα = t for all α, then U(t, {τα}) is

then same as U(t). Hence, the above definitions are consistent.
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Definition 4.2.4 (Concatenation). Let α1, α2 ∈ At, τ ∈ Tt is a stopping time. The

concatenation of α1, α2 is defined as follows:

α1 ⊗τ α2 := α11[t,τ) + α21[τ,T ].

The concatenation of elements in U t is defined in the similar fashion.

Lemma 4.2.5. Fix t and let {τα} ∈ Tt. For u ∈ U(t) and ũ ∈ U(t, {τα}), define

u∗[α] := u[α] ⊗τα ũ[α]. Then u∗ ∈ U(t). For the rest of the chapter, we will use

u⊗τα ũ[α] to represent u[α]⊗τα ũ[α].

Proof. It is obvious that u∗ maps At to U t. Let us check the non-anticipativity of the

map. For any fixed s ∈ [t, T ] and α, α′ ∈ At, ω′ ∈ {ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]},

by Definition 4.2.2,

(4.2.3) ω′ ∈ {t ≤ τα = τα
′ ≤ s} ∪ {s < τα , s < τα

′} -a.s.

(i) If ω′ ∈ {t ≤ τα = τα
′ ≤ s}, by definition of u∗,

u∗[α](ω′)|[t,s] = u[α](ω′)1[t,τα(ω′))|[t,s] + ũ[α](ω′)1[τα(ω′),T ]|[t,s],

u∗[α
′](ω′)|[t,s] = u[α′](ω′)1[t,τα′ (ω′))|[t,s] + ũ[α′](ω′)1[τα′ (ω′),T ]|[t,s].

Since τα(ω′) = τα
′
(ω′), u ∈ U(t) and by Definition 4.2.3, we know

ω′ ∈ {ω ∈ Ω : u[α](ω)|[t,s] = u[α′](ω)|[t,s]} -a.s.

(ii) If ω′ ∈ {s < τα, s < τα
′}, using definition of u∗,

u∗[α](ω′)|[t,s] = u[α](ω′)|[t,s], u∗[α′](ω′)|[t,s] = u[α′](ω′)|[t,s].

Since ω′ ∈ {ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} and u ∈ U(t), then

ω′ ∈ {ω ∈ Ω : u∗[α](ω)|[t,s] = u∗[α
′](ω)|[t,s]} -a.s.
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4.2.2 The Hamilton-Jacobi-Bellman equation

Before introducing the HJB equation, we make an assumption which was also

assumed by [16] on the set-valued map

N(t, x, y, z, a) := {u ∈ U : σY (t, x, y, u, a) = z} for (t, x, y, z, a) ∈ D× R× Rd × A.

Assumption 4.2.6. u 7→ σY (t, x, y, u, a) is invertible. More precisely, there exists a

measurable map û : D × R × Rd × A → U such that N = {û}. Moreover, the map

û(·, a) is continuous for each a ∈ A.

Let us define for (t, x, y, p,M) ∈ D× R× Rd ×Md,

H(t, x, y, p,M) := sup
a∈A

Ha(t, x, y, p,M)

where

µûY (t, x, y, z, a) := µY (t, x, y, û(t, x, y, z, a), a) and

Ha(t, x, y, p,M) := −µûY (t, x, y, σX(t, x, a)p, a) + µ>X(t, x, a)p+
1

2
Tr[σXσ

>
X(t, x, a)M ]

The HJB equation is

(4.2.4)
∂tϕ(t, x) +H(t, x, ϕ,Dϕ,D2ϕ) = 0 on Di,

ϕ = g on DT .

4.2.3 Stochastic solutions

We will introduce weak solution concepts to the HJB equation that are stable

under minimization and maximization respectively and envelope the value function

v of the stochastic target game.

Definition 4.2.7 (Stochastic super-solutions). A function w : [0, T ] × Rd → R is

called a stochastic super-solution of (4.2.4) if
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1. It is bounded, continuous and w(T, ·) ≥ g(·)

2. For (t, x, y) ∈ D × R, {τα} ∈ Tt and u ∈ U(t), there exists a strategy ũ ∈

U(t, {τα}) such that for any α ∈ At and ρ ∈ Tt satisfying τα ≤ ρ ≤ T , we have

Y (ρ) ≥ w(ρ,X(ρ)) P− a.s. on {Y (τα) > w(τα, X(τα))}.

Here X := Xα
t,x and Y := Y

u⊗τα ũ[α],α
t,x,y ,

The set of stochastic super-solutions is denoted by U+. Assume it is nonempty

and v+ := infw∈U+ w. For any stochastic super-solution w, choose τα = t for all α

and ρ = T , then there exists ũ ∈ U(t) such that, for any α ∈ At,

Y ũ,α
t,x,y(T ) ≥ w

(
T,Xα

t,x(T )
)
≥ g

(
Xα
t,x(T )

)
P− a.s. on {y > w(t, x)}.

Hence, y > w(t, x) implies y ≥ v(t, x) from (4.2.2). This gives w ≥ v and v+ ≥ v.

Similarly, we could define the stochastic sub-solutions.

Definition 4.2.8 (Stochastic sub-solutions). A function w : [0, T ]×Rd → R is called

a stochastic sub-solution of (4.2.4) if

1. It is bounded, continuous and w(T, ·) ≤ g(·),

2. For fixed (t, x, y) ∈ D×R and {τα} ∈ Tt, for any u ∈ U(t), α ∈ At, there exists

α̃ ∈ At (may depend on u, α and τα) such that for each stopping time ρ ∈ Tt,

τα ≤ ρ ≤ T with the simplifying notation X := Xα
t,x, Y := Y u,α⊗τα α̃

t,x,y , we have

P (Y (ρ) < w (ρ,X(ρ)) |B) > 0,

for any B ⊂ {Y (τα) < w(τα, X(τα)}, B ∈ F tτα and P(B) > 0.

The set of stochastic sub-solutions is denoted by U−. Assume it is nonempty and

let v− := supw∈U− w. For any stochastic sub-solution w, choose τα = t for all α and
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ρ = T . Hence for any u ∈ U(t), there exists α̃ ∈ At, such that

P
(
Y u,α̃
t,x,y(T ) < w

(
T,X α̃

t,x(T )
)
≤ g(X α̃

t,x(T )) | y < w(t, x)
)
> 0.

Hence, y < w(t, x) implies y ≤ v(t, x) from (4.2.2). This gives w ≤ v and v− ≤ v.

As a result we have,

(4.2.5) v− , sup
w∈U−

w ≤ v ≤ inf
w∈U+

w , v+.

We will show in Section 4.3 that under some suitable assumptions, v+ and v− are

viscosity sub- and super-solutions of (4.2.4), respectively.

4.2.4 Additional technical assumptions.

We will need to make some more technical assumptions as in [16].

Assumption 4.2.9. The map (t, x, y, z) ∈ D×R×Rd 7→ µûY (t, x, y, z, a) is Lipschitz

continuous, uniformly in a ∈ A, and (y, z) ∈ R × Rd 7→ µûY (t, x, y, z, a) has linear

growth, uniformly in (t, x, a) ∈ D× A.

For the derivation of the super-solution property of v−, we will impose a condition

on the growth of µY relative to σY .

Assumption 4.2.10.

sup
u∈U

|µY (·, u, ·)|
1 + ‖σY (·, u, ·)‖

is locally bounded,

where ‖ · ‖ is the Euclidean norm.

In (4.2.5) we implicitly assumed that the sets U+ and U− are nonempty. The

assumptions we made already imply that U+ is not empty, but the same may not be

true for U− is not empty.

Assumption 4.2.11. The collection U− is not empty.
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4.2.5 The nonemptiness of U+ and U−

In this subsection, we discuss the nonemptiness of U+ and U−. As the next result

shows, the assumptions above already guarantee that U+ is not empty.

Proposition 4.2.12. Under Assumptions 4.2.1, 4.2.6 and 4.2.9 the collection U+

is not empty.

Proof. See the Appendix.

In the above proposition the assumptions made can be replaced by the following

natural assumption (although this is not the route we will take):

Assumption 4.2.13. There exists u ∈ U such that

µY (t, x, y,u, a) = 0, σY (t, x, y,u, a) = 0

for all (t, x, y, a) ∈ Di ×R×A. (In these equations the right-hand-sides are denoted

by just 0 for simplicity, but they in fact are collections of 0’s matching the dimension

on the left-hand-side.)

In the context of super-hedging in mathematical finance, in which Y represents

the wealth of an investor and X the stock price, and g(XT ) a financial contract, the

last assumption is equivalent to allowing the investor not to trade in the risky assets.

Proposition 4.2.14. Under Assumptions 4.2.1 and 4.2.13 the collection U+ is not

empty.

Proof. Choose the strategy ũ[α] = u. For any given {τα} ∈ Tt, we have ũ ∈

U(t, {τα}) and from Assumption 4.2.13, it holds for any u ∈ U(t) that

Y
u⊗τα ũ[α],α
t,x,y (ρ) = Y

u⊗τα ũ[α],α
t,x,y (τα),∀α ∈ At and ρ ∈ Tt such that τα ≤ ρ ≤ T.
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From the boundedness of g, there exists an C, such that g(x) < C. Now take

w(t, x) ≡ C, which clearly satisfies the first condition in Definition 4.2.7. On the

other hand, on {Y (τα) > w(τα, X(τα))}, we clearly have that {Y (ρ) > w(ρ,X(ρ))}

for any ρ such that τα ≤ ρ ≤ T , which gives the second condition in Definition 4.2.7.

Proposition 4.2.15. If in addition to Assumptions 4.2.1 there exists a ∈ A such

that µY (t, x, y, u, a) = 0, σY (t, x, y, u, a) = 0 for all (t, x, y, u) ∈ Di×R×U , then U−

is not empty.

Proof. The proof is similar to that of Proposition 4.2.14.

The additional assumption in the latter proposition is not very reasonable. Below

we introduce an alternative assumption.

Assumption 4.2.16. |µY |
‖σY ‖

is bounded on N = {(t, x, y, u, a) : σY (t, x, y, u, a) 6= 0}.

Proposition 4.2.17. Under Assumptions 4.2.1, 4.2.6, 4.2.13, and 4.2.16, U− is not

empty.

Proof. See the Appendix.

4.3 The main results

Before we state and prove the main theorem, we need some preparatory lemmas.

Lemma 4.3.1. The set of stochastic super-solutions (resp. stochastic sub-solutions)

is upwards (resp. downwards) directed, i.e.,

1. If w1, w2 ∈ U+, then w1 ∧ w2 ∈ U+;

2. If w1, w2 ∈ U−, then w1 ∨ w2 ∈ U−.
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Proof. This lemma is in the spirit of Lemma 3.7 in [30]. Here we only sketch the

proof for (1). For w1, w2 ∈ U+, let w = w1 ∧ w2. Clearly w is bounded, continuous

and w(T, x) ≥ g(x). For fixed (t, x, y) ∈ Di×R and {τα} ∈ Tt, let u1 and u2 are the

strategies starting at {τα} for w1 and w2, respectively. Let

u[α] = u1[α]1{w1(τα,X(τα))<w2(τα,X(τα))} + u2[α]1{w1(τα,X(τα))≥w2(τα,X(τα))} .

It is easy to show that u works for w in the definition of stochastic super-solutions.

Lemma 4.3.2. There exists a non-increasing sequence U+ 3 wn ↘ v+ and a non-

decreasing sequence U− 3 vn ↗ v−.

Proof. The proof of the lemma follows directly from Proposition 4.1 in [8].

Lemma 4.3.3. Given f : X × Y ⊂ Rp × Rq → R, define F (x) := supy∈Y f(x, y).

If x → f(x, y) is continuous, uniformly in y and F (x) < ∞ for all x ∈ X, then

x→ F (x) is continuous.

The lemma above is easy to check and we omit the proof.

Theorem 4.3.4. Let Assumptions 4.2.1 and 4.2.6 hold.

1. If in addition g is USC and Assumption 4.2.9 holds, the function v+ is a bounded

USC viscosity sub-solution of (4.2.4).

2. On the other hand if g is LSC and Assumptions 4.2.10 and 4.2.11 hold, the

function v− is a bounded LSC viscosity super-solution of (4.2.4).

Proof. Step 1. ( v+ is the viscosity sub-solution). Due to Proposition 4.2.12,

v+ is well-defined. We will first show the interior viscosity sub-solution property and

then demonstrate the boundary condition.

1.1 The interior sub-solution property: Let (t0, x0) ∈ Di and ϕ ∈ C1,2(D)
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be such that ϕ strictly touches v+ from above at (t0, x0). Assume, by contradiction,

that

∂tϕ(t0, x0) +H(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0)) < 0.

From the uniform continuity of µX and σX in Assumption 4.2.1, the uniform con-

tinuity of µûY in Assumption 4.2.9 and the smoothness of ϕ, the map (t, x, y, a) →

Ha(t, x, y,Dϕ(t, x), D2ϕ(t, x)) is uniformly continuous in (t, x, y). Hence the map

(t, x, y)→ H(t, x, y,Dϕ(t, x), D2ϕ(t, x))

is continuous due to Lemma 4.3.3. This implies that there exist ε > 0 and δ > 0

such that for all (t, x) ∈ Bε(t0, x0) and |y − ϕ(t, x)| ≤ δ,

(4.3.1) ∂tϕ(t, x) +H(t, x, y,Dϕ(t, x), D2ϕ(t, x)) < 0.

On the compact set T := Bε(t0, x0) − Bε/2(t0, x0), we have that ϕ > v+ and the

min of ϕ − v+ is attained since v+ is USC. Therefore, ϕ > v+ + η on T for some

η > 0. Since wn ↘ v+, a Dini type argument shows that, for large enough n we have

ϕ > wn + η/2 on T and ϕ > wn − δ on Bε/2(t0, x0) . For simplicity, fix such an n

and denote w = wn. For κ ∈ (0, η
2
∧ δ), define

wκ :=

 (ϕ− κ) ∧ w on Bε(t0, x0),

w outside Bε(t0, x0).

Obviously, wκ is continuous and bounded. Since wκ(t0, x0) < v+(t0, x0), we would

obtain a contradiction if we can show wκ ∈ U+.

Fix t, {τα} ∈ Tt and u ∈ U(t). We need to construct a strategy ũ ∈ U(t, {τα})

in the definition of stochastic super-solutions for wκ. This can be done as follows:

since w is a stochastic super-solution, there exists an ”optimal” strategy ũ1 in the

Definition 4.2.7 for w starting at {τα}. We will construct ũ in two steps:
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(i) wκ(τα, Xα
t,x(τ

α)) = w(τα, Xα
t,x(τ

α)): set ũ = ũ1;

(ii) wκ(τα, Xα
t,x(τ

α)) < w(τα, Xα
t,x(τ

α)): In this case we necessarily start inside

the ball. Let Y be the unique strong solution (which is thanks in particular to

Assumption 4.2.9) of the equation

Y (l) =Y u,α
t,x,y(τ

α) +

∫ τα∨l

τα
µûY
(
s,Xα

t,x(s), Y (s), σX(s,Xα
t,x(s), αs)Dϕ(s,Xα

t,x(s)), αs
)
ds

+

∫ τα∨l

τα
σX(s,Xα

t,x(s), αs)Dϕ(s,Xα
t,x(s))dWs, l ≥ τα,

for any u ∈ U(t) and α ∈ At and set Y (s) = Y u,α
t,x,y(s) for s < τα. Define

ũ0 := ũ0[α](s) = û(s,Xα
t,x(s), Y (s), σX(s,Xα

t,x(s), αs)Dϕ(s,Xα
t,x(s)), αs).

Let θα1 is the first exit time of (s,Xα
t,x(s)) after τα from Bε/2(t0, x0) and θα2 be the

first time after τα when |Y (s)− ϕ(s,Xα
t,x(s))| ≥ δ. More, precisely,

θα1 := inf
{
s ∈ [τα, T ] : (s,Xα

t,x(s)) /∈ Bε/2(t0, x0)
}
,

and

θα2 := inf
{
s ∈ [τα, T ] :

∣∣Y (s)− ϕ(s,Xα
t,x(s))

∣∣ ≥ δ
}
.

Let θα = θα1 ∧ θα2 . We know that {θα} ∈ Tt from Example 1 in [4]. We will set ũ to

be ũ0 until θα. Starting at θα, we will then follow the strategy uθ ∈ U(t, {θα}) which

is ”optimal” for w.

In summary, (i) and (ii) together gave us the following strategy:

ũ[α] =
(
1Aũ1[α] + 1Ac(ũ0[α]1[t,θα) + uθ[α]1[θα,T ])

)
1[τα,T ],

where

A = {wκ(τα, Xα
t,x(τ

α)) = w(τα, Xα
t,x(τ

α))}.

We note that ũ0 ∈ U(t) by the pathwise uniqueness of X’s, Y ’s and Y ’s equations.

Then applying Lemma 4.2.5, ũ0[α]1[t,θα) + uθ[α]1[θα,T ] ∈ U(t). Since ũ1 ∈ U(t, {τα}),
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by Definition 4.2.3, it follows that ũ ∈ U(t, {τα}) by the pathwise uniqueness of X’s

equation. Now, let us show the above construction actually works. We need to show

that for any ρ ∈ Tt such that τα ≤ ρ ≤ T ,

Y (ρ) ≥ wκ(ρ,X(ρ)) P− a.s. on {Y (τα) > wκ(τα, X(τα))},

where

X := Xα
t,x and Y := Y

u⊗τα ũ[α],α
t,x,y .

Note that Y (s) = Y
u⊗τα ũ0[α],α
t,x,y (s) for s ≥ τα and

(4.3.2) Y = 1AY
u⊗τα ũ1[α],α
t,x,y + 1AcY

u⊗τα ũ0[α],α
t,x,y for τα ≤ s ≤ θα.

We will carry out the proof in two steps:

(i) On the set A ∩ {Y (τα) > wκ(τα, X(τα))}, we have Y (τα) > w(τα, X(τα)).

From (4.3.2) and the ”optimality” of ũ1 (for w), we know

Y (ρ) = Y
u⊗τα ũ1[α],α
t,x,y (ρ) ≥ w(ρ,X(ρ)) ≥ wκ(ρ,X(ρ)) P− a.s on the above set.

(ii) On the set Ac∩{Y (τα) > wκ(τα, X(τα)}, by the definition of ũ0 and (4.3.2),

using Itô’s Formula,

Y (· ∧ θα)− ϕ(· ∧ θα, X(· ∧ θα)) = Y (τα)− ϕ(τα, X(τα)) +

∫ ·∧θα
τα

γ(s) ds,

where

γ(s) := −Hαs(s,X(s), Y (s), Dϕ(s,X(s)), D2ϕ(s,X(s)))− ∂tϕ(s,X(s)),

since the definition of û allows us to cancel the Brownian motion terms on the right-

hand-side. Obviously, on [τα, θα], γ > 0. This implies that Y (·∧θα)−ϕ(·∧θα, X(·∧

θα)) is non-decreasing on [τα, T ]. Therefore,

(4.3.3) Y (θα)− ϕ(θα, X(θα)) + κ > Y (τα)− ϕ(τα, X(τα)) + κ > 0.
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As a result, on the one hand, we have

(4.3.4) 0 < (Y (θα1 )−ϕ(θα1 , X(θα1 )) +κ) ≤ (Y (θα1 )−w(θα1 , X(θα1 ))) on {θα1 < θα2 }.

On the other hand,

Y (θα2 )− ϕ(θα2 , X(θα2 )) = δ on {θα1 ≥ θα2 }.

Observe that the right-hand-side of the above expression cannot be −δ due to (4.3.3).

Therefore,

(4.3.5) Y (θα2 )−w(θα2 , X(θα2 )) = δ+ϕ(θα2 , X(θα2 ))−w(θα2 , X(θα2 )) > 0 on {θα1 ≥ θα2 },

since ϕ > w − δ on Bε/2(t0, x0). Combining (4.3.4) and (4.3.5) we obtain

(4.3.6) Y (θα)− w(θα, X(θα)) > 0 on Ac ∩ {Y (τα) > wκ(τα, Xα)}.

It follows from this conclusion and the ”optimality” of uθ starting at {θα} that

Y (ρ ∨ θα) ≥ w(ρ ∨ θα, X(ρ ∨ θα)) ≥ wκ(ρ ∨ θα, X(ρ ∨ θα))

on Ac ∩ {Y (τα) > wκ(τα, Xα)}. Also, since Y (· ∧ θα) − ϕ(· ∧ θα, X(· ∧ θα)) is non-

decreasing on [τα, T ],

Y (ρ ∧ θα)− ϕ(ρ ∧ θα, X(ρ ∧ θα)) + κ > 0 on Ac ∩ {Y (τα) > wκ(τα, Xα)}.

Therefore,

(4.3.7) Y (ρ ∧ θα)− wκ(ρ ∧ θα, X(ρ ∧ θα)) > 0 on Ac ∩ {Y (τα) > wκ(τα, Xα)}.

From (4.3.6) and (4.3.7) we have

Y (ρ)− wκ(ρ,X(ρ)) ≥ 0 on Ac ∩ {Y (τα) > wκ(τα, Xα)}.
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1.2 The boundary condition:

Step A: In this step we will assume that µûY is non-decreasing in its y-variable.

Assume to the contrary that for some x0 ∈ Rd, we have

v+(T, x0) > g(x0).(4.3.8)

Since g is USC, then from (4.3.8) there exists ε > 0 such that

v+(T, x0) > g(x) + ε for |x− x0| ≤ ε.(4.3.9)

Choose ε such that ε < 1. Since v+ is USC, then v+ is bounded above on the compact

set T = Bε(T, x0)− Bε/2(T, x0), where

Bε(T, x0) = {(t, x) ∈ D : max {|T − t|, |x− x0|} < ε}.1

Choose β > 0 small enough, such that

v+(T, x0) +
ε2

4β
> ε+ sup

T
v+(t, x).

By a Dini type argument there exists a w ∈ U+ such that

(4.3.10) v+(T, x0) +
ε2

4β
> ε+ sup

T
w(t, x).

For C > 0 let us denote

ϕβ,C(t, x) = v+(T, x0) +
|x− x0|2

β
+ C (T − t).

Hence, Dϕβ,C(t, x) = 2(x−x0)
β

and D2ϕβ,C(t, x) = 2
β
Id×d. From Assumption 4.2.1,

(4.3.11)
∣∣µ>X(t, x, a)Dϕβ,C(t, x)

∣∣ ≤ 2K
|x− x0|

β
≤ 2K

β
on Bε(T, x0) for a ∈ A,

where we use ε < 1. Similarly,∣∣∣∣12Tr
[
σXσ

>
X(t, x, a)D2ϕβ,C(t, x)

]∣∣∣∣ ≤ 1

2
K2 2d

β
=
K2d

β

for (t, x) ∈ Bε(T, x0) and a ∈ A,
(4.3.12)

1Note that such a neighborhood is not the regular Euclidean ball. The definition of such a neighborhood is crucial
for (4.3.15)
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where d is the dimension of the space where the variable x lives. From the linear

growth condition of µûY in Assumption 4.2.9, there exists L > 0 such that for all

(t, x) ∈ Bε(T, x0) and a ∈ A,

− µûY (t, x, ϕβ,0 − ε, σX(t, x, a)Dϕβ,0, a)

≤ L
(
1 +

∣∣ϕβ,0(t, x)− ε
∣∣+
∣∣σX(t, x, a)Dϕβ,0(t, x)

∣∣)
≤ L

(
1 + v+(T, x0) + 1/β + 1 + 2K/β

)(4.3.13)

Noting that Dϕβ,C(t, x) = Dϕβ,0(t, x), from the monotonicity assumption of µûY , we

have

−µûY (t, x, ϕβ,C − ε, σX(t, x, a)Dϕβ,C , a) ≤ −µûY (t, x, ϕβ,0 − ε, σX(t, x, a)Dϕβ,0, a).

The above equation with (4.3.11),(4.3.12) and (4.3.13) implies that H(·, ϕβ,C −

ε,Dϕβ,C , D2ϕβ,C)(t, x) is bounded from above on Bε(T, x0) and the bound is indepen-

dent of C. Therefore, we can find C > 0 large enough such that for (t, x) ∈ Bε(T, x0)

and y ≥ ϕβ,C(t, x)− ε,

(4.3.14) ∂tϕ
β,C +H(·, y,Dϕβ,C , D2ϕβ,C)(t, x) < 0,

where we used the monotonicity assumption of µûY . Making sure that C ≥ ε/2β, we

obtain from (4.3.10) that

(4.3.15) ϕβ,C ≥ ε+ w on T.

Also,

(4.3.16) ϕβ,C(T, x) ≥ v+(T, x0) > g(x) + ε for |x− x0| ≤ ε.

Now we can choose κ < ε and define

wβ,C,κ :=

 (ϕβ,C − κ) ∧ w on Bε(T, x0),

w outside Bε(T, x0).

(4.3.17)
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From (4.3.16) and (4.3.17) it is easy to see that wβ,C,κ(T, x) ≥ g(x). By applying

similar arguments as in Step 1.1, we can show that wβ,C,κ is a stochastic super-

solution with wβ,C,κ(T, x0) < v+(T, x0). This contradicts the definition of v+.

Step B: We now turn to showing the same result for more general µûY and follow a

proof similar to that in [16]. Fix c > 0 and define Ỹ u,α
t,x,y as the strong solution of

dỸ (s) = µ̃Y (s,Xα
t,x(s), Ỹ (s), u[α]s, αs)ds+ σ̃Y (s,Xα

t,x(s), Ỹ (s), u[α]s, αs)dWs

with initial data Ỹ (t) = y, where

µ̃Y (t, x, y, u, a) := cy + ectµY (t, x, e−cty, u, a),

σ̃Y (t, x, y, u, a) := ectσY (t, x, e−cty, u, a).

Hence, Ỹ u,α
t,x,y(s)e

−cs = Y u,α
t,x,ye−ct(s) for any s ∈ [t, T ] by the strong uniqueness. Set

g̃(x) := ecTg(x) and define

ṽ(t, x) := inf{y ∈ R : ∃ u ∈ Ut s.t. Ỹ u,α
t,x,y(T ) ≥ g̃(Xα

t,x(T )) -a.s. ∀ α ∈ At}.

Therefore, ṽ(t, x) = ectv(t, x). Since µûY has linear growth in its second argument y,

one can choose large enough c > 0 so that

(4.3.18) µ̃ûY : (t, x, y, z, a) 7→ cy + ectµûY (t, x, e−cty, e−ctz, a)

is non-decreasing in its y-variable. This means that these dynamics satisfy the mono-

tonicity assumption used in Step A above. Moreover, all the assumptions needed to

apply Step A to this new problem are also satisfied. Let

H̃(t, x, y, p,M) := sup
a∈A
{−cy − ectµũY (t, x, e−cty, e−ctσX(t, x, a)p, a)

+µ>X(t, x, a)p+
1

2
Tr
[
σXσ

>
X(t, x, a)M

]
},

(4.3.19)
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where ũ is defined like û but now in terms of σ̃Y . We will denote by Ũ+ be the set

of stochastic super-solutions of

(4.3.20)
∂tϕ+ H̃(·, ϕ,Dϕ,D2ϕ) = 0 on Di,

ϕ = g̃ on DT ,

and ṽ+(t, x) := infw∈Ũ+ w(t, x).

From step A, we know that ṽ+ is a viscosity sub-solution of the above PDE.

Since any function w(t, x) is a stochastic super-solution of (4.2.4) if and only if

w̃(t, x) = ectw(t, x) is a stochastic super-solution of (4.3.20), it follows that ṽ+(t, x) =

ectv+(t, x). Now it is easy to conclude that v+ is a viscosity sub-solution of (4.2.4).

Step 2. ( v− is the viscosity super-solution) Due to Assumption 4.2.11, v− is

well-defined. Next we will show that it satisfies the interior viscosity super-solution

property followed by the boundary condition.

2.1 The interior super-solution property: Let (t0, x0) ∈ Di and ϕ ∈ C1,2(D)

be such that ϕ strictly touches v− from below at (t0, x0). Assume by contradiction

that

∂tϕ(t0, x0) +H(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0)) > 0.

Hence there exists a0 ∈ A such that

(4.3.21) ∂tϕ(t0, x0) +Hu0,a0(t0, x0, ϕ(t0, x0), Dϕ(t0, x0), D2ϕ(t0, x0)) > 0,

where u0 = û(t0, x0, ϕ(t0, x0), σX(t0, x0, a0)Dϕ(t0, x0), D2ϕ(t0, x0)) and

Hu,a(t, x, y, p,M) := −µY (t, x, y, u, a) + µ>X(t, x, a)p+
1

2
Tr
[
σXσ

>
X(t, x, a)M

]
.

From the continuity assumption on the coefficients in Assumption 4.2.1 and the

continuity of û in Assumption 4.2.6, there exists ε, δ > 0 such that

ϕt +Hu,a0(·, y,Dϕ,D2ϕ) > 0 ∀ (t, x) ∈ Bε(t0, x0) and (y, u) ∈ R× U s.t.

|y − ϕ(t, x)| ≤ δ and |σY (t, x, y, u, a0)− σX(t, x, a0)Dϕ(t, x)| ≤ δ.
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Now, on the compact set T = Bε(t0, x0)−Bε/2(t0, x0), we have that ϕ < v− and the

max of ϕ − v− is attained since v− is LSC. Therefore, ϕ + η < v− on T for some

η > 0. Since wn ↗ v−, a Dini type argument shows that, for large enough n we have

ϕ+ η/2 < wn on T and ϕ < wn + δ on Bε/2(t0, x0). For simplicity, fix such an n and

denote w = wn. For κ ∈ (0, η
2
∧ δ),

wκ :=

 (ϕ+ κ) ∨ w on Bε(t0, x0),

w outside Bε(t0, x0).

Since wκ(t0, x0) > v−(t0, x0), we obtain a contradiction if we can show that wκ ∈ U−.

In order to do so, fix t and {τα} ∈ Tt. For a given u ∈ U(t) and α ∈ At, we will

construct an ”optimal” α̃ ∈ At in the definition of stochastic sub-solutions for wκ.

We will divide the construction into two cases:

(i) w(τα, X(τα)) = wκ(τα, X(τα)): Since w is a stochastic sub-solution, there

exists an α̃1 for w in the definition which is ”optimal” for the nature given u, α and

τα. Let α̃ = α̃1.

(ii) w(τα, X(τα)) < wκ(τα, X(τα)): Let

θα1 := inf
{
s ∈ [τα, T ] : (s,Xα⊗ταa0

t,x (s)) /∈ Bε/2(t0, x0)
}
∧ T

and

θα2 := inf
{
s ∈ [τα, T ] :

∣∣Y u,α⊗ταa0
t,x,y (s)− ϕ(s,Xα⊗ταa0

t,x (s))
∣∣ ≥ δ

}
∧ T.

Denote θα = θα1 ∧ θα2 . Then let α̃ = a0 until θα. Starting from θα, choose α̃ = α∗,

where the latter is ”optimal” for nature given α and u this time onward. In short,

the above construction yields a candidate “optimal” control for wκ given by

α̃ =
(
1Aα̃1 + 1Ac(a01[t,θα) + α∗1[θα,T ])

)
1[τα,T ],
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where A = {w(τα, Xα
t,x(τ

α)) = wκ(τα, Xα
t,x(τ

α))}. We now check that what we con-

structed actually works. Let

(X, Y ) = (Xα⊗τα α̃
t,x , Y u,α⊗τα α̃

t,x,y ).

Note that

X(s) = 1AX
α⊗τα α̃1
t,x (s) + 1AcX

α⊗ταa0
t,x (s) for τα ≤ s ≤ θα,

Y (s) = 1AY
u,α⊗τα α̃1
t,x,y (s) + 1AcY

u,α⊗ταa0
t,x,y (s) for τα ≤ s ≤ θα.

(4.3.22)

Define

E = {Y (τα) < wκ(τα, X(τα))}, E0 = E ∩ A, E1 = E ∩ Ac,

G = {Y (ρ) < wκ(ρ,X(ρ)}, G0 = {Y (ρ) < w(ρ,X(ρ)}.

Observe that

E = E0 ∪ E1, E0 ∩ E1 = ∅ and G0 ⊂ G.

The proof will be complete if we can show that P (G|B) > 0 for any non-null set

B ⊂ E. In fact, it suffices to show that P(G∩B) > 0. Relying on the decomposition

P(G ∩B) = P(G ∩B ∩E0) + P(G ∩B ∩E1) (recall that B ⊂ E), we will divide the

proof into two steps:

(i) P(B ∩ E0) > 0: Directly from the way α̃1 is defined, the definition of the

stochastic sub-solutions and B ∩ E0 ⊂ A, we get

P(G0|B ∩ E0) = P(Y u,α⊗τα α̃1
t,x,y (ρ) < w(ρ,Xα⊗τα α̃1

t,x (ρ))|B ∩ E0) > 0.

This further implies that P(G ∩B ∩ E0) ≥ P(G0 ∩B ∩ E0) > 0.

(ii) P(B ∩ E1) > 0: From (4.3.22) and B ∩ E1 ⊂ Ac,

P(Y (θα) < wκ(θα, X(θα))|B∩E1) = P(Y u,α⊗ταa0
t,x,y (θα) < wκ(θα, Xα⊗ταa0

t,x (θα))|B∩E1).
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The analysis in [16] shows that

∆(s) = Y (s ∧ θα)− (ϕ(s ∧ θα, X(s ∧ θα)) + κ) .

is a super-martingale up to a change of measure. We summarize these arguments

here. Let

λ(s) := σY (s,X(s), Y (s), u[a0]s, a0)− σX(s,X(s), a0)Dϕ(s,X(s)),

β(s) := |λ(s)|−2λ(s)1{|λ(s)|>δ}

(
∂tϕ(s,X(s))+

Hu[a0]s,a0(s,X(s), Y (s), Dϕ(s,X(s)), D2ϕ(s,X(s)))
)
.

From the definition of θα and the regularity and growth conditions in Assumptions

4.2.1 and 4.2.10, β is uniformly bounded on [τα, θα]. This ensures that the positive

exponential local martingale M defined by the SDE

M(·) = 1 +

∫ ·∧θα
τα

M(s)β>s dWs

is a true martingale. An application of Itô’s formula immediately implies that M∆

is a local super-martingale. By the definition of θα, ∆ is bounded by −δ − κ from

below and by δ − κ from above on [τα, θα]. Therefore, M∆ is bounded above by a

martingale 2Mδ and below by another martingale −2Mδ . An application of Fatou’s

Lemma implies that M∆ is a super-martingale.

From the definition of E1 and wκ, ∆(τα) < 0 on B ∩ E1. The super-martingale

property of M∆ implies that there exists a non-null set H ⊂ B ∩ E1 satisfying

H ∈ F tτα such that ∆(θα ∧ ρ) < 0 on H. Therefore, from the decomposition

∆(θα ∧ ρ)1H = (Y (θα1 )− ϕ(θα1 , X(θα1 ))− κ)1H∩{θα1<θα2 ∧ρ} +

(Y (θα2 )− ϕ(θα2 , X(θα2 ))− κ)1H∩{θα2≤θα1 ∧ρ} + (Y (ρ)− ϕ(ρ,X(ρ))− κ)1H∩{ρ<θα}.

we see that

(4.3.23) Y (θα1 )− ϕ(θα1 , X(θα1 ))− κ < 0 on H ∩ {θα1 < θα2 ∧ ρ},
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(4.3.24) Y (θα2 )− ϕ(θα2 , X(θα2 ))− κ < 0 on H ∩ {θα2 ≤ θα1 ∧ ρ} and

(4.3.25) Y (ρ) < ϕ(ρ,X(ρ)) + κ on H ∩ {ρ < θα}.

On the one hand, on H ∩ {θα1 < θα2 ∧ ρ}, ϕ(θα1 , X(θα1 )) + κ < w(θα1 , X(θα1 )). Then

from (4.3.23), we will have

(4.3.26) Y (θα1 ) < w(θα1 , X(θα1 )) on H ∩ {θα1 < θα2 ∧ ρ}.

On the other hand, on H ∩ {θα2 ≤ θα1 ∧ ρ}, we get Y (θα2 )− ϕ(θα2 , X(θα2 )) = −δ. (The

right-hand-side can not be equal to δ, otherwise (4.3.24) would be contradicted.)

Recalling the fact that ϕ < w + δ on Bε/2(t0, x0), this observation gives that

(4.3.27) Y (θα2 )−w(θα2 , X(θα2 )) = (ϕ−w)(θα2 , X(θα2 ))− δ < 0 on H ∩{θα2 ≤ θα1 ∧ ρ}.

We have obtained in (4.3.26) and (4.3.27) that

Y (θα) < w(θα, X(θα)) on H ∩ {θα ≤ ρ}.

Now from the definition of stochastic sub-solutions and of α∗, we have that

(4.3.28) P(G0|H ∩ {θα ≤ ρ}) > 0 if P(H ∩ {θα ≤ ρ}) > 0.

On the other hand, (4.3.25) implies that

(4.3.29) P(G|H ∩ {θα > ρ}) > 0 if P(H ∩ {θα > ρ}) > 0.

Since P(H) > 0, G0 ⊂ G, and H ⊂ E1 ∩B, (4.3.28) and (4.3.29) imply

P(G ∩ E1 ∩B) > 0.

2.2 The boundary condition:

Assume, on the contrary, that

v−(T, x0) < g(x0) for some x0 ∈ Rd.(4.3.30)



113

From (4.3.30) and the lower semi-continuity of g, there exists ε > 0 such that

v−(T, x0) < g(x)− ε for |x− x0| ≤ ε.(4.3.31)

Since v− is LSC, v− is bounded below on the compact set T = Bε(T, x0)−Bε/2(T, x0).

Choose β > 0 small enough such that

v−(T, x0)− ε2

4β
< inf

T
v−(t, x)− ε.

By a Dini type argument, there exists w ∈ U− such that

(4.3.32) v−(T, x0)− ε2

4β
< inf

T
w(t, x)− ε.

For C > 0, define

ϕβ,C(t, x) = v−(T, x0)− |x− x0|2

β
− C (T − t) for (t, x) ∈ D.

For any a0, we can choose large enough C such that2

∂tϕ
β,C +Hu0,a0(·, ϕβ,C , Dϕβ,C , D2ϕβ,C) > 0 onBε(T, x0),

where u0 = û(T, x0, ϕ(T, x0), σX(T, x0, a0)Dϕ(T, x0), a0). Then from the continuity

of the coefficients in Assumption 4.2.1 and the continuity of û in Assumption 4.2.6,

for any a0, and there exists a small enough δ > 0 such that

ϕβ,Ct +Hu,a0(·, y,Dϕβ,C , D2ϕβ,C) > 0 ∀ (t, x) ∈ Bε(T, x0) and (y, u) ∈ R× U

s.t. |y − ϕβ,C(t, x)| ≤ δ and |σY (t, x, y, u, a0)− σX(t, x, a0)Dϕβ,C(t, x)| ≤ δ.

Choosing C > ε/2β, we obtain from (4.3.32) that

ϕβ,C ≤ w − ε on T.

It also holds that

(4.3.33) ϕβ,C(T, x) ≤ v−(T, x0) < g(x)− ε for |x− x0| ≤ ε.

2Similar analysis for (4.3.14) will guarantee that choosing C is possible.
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For κ ∈ (0, ε ∧ δ), define

wβ,C,κ :=

 (ϕβ,C + κ) ∨ w on Bε(T, x0),

w outside Bε(T, x0).

(4.3.34)

From (4.3.33) and (4.3.34), it is easy to see that wβ,C,κ(T, x) ≤ g(x). By apply-

ing arguments similar to those in Step 2.1, we can show that wβ,C,κ ∈ U− with

wβ,C,κ(T, x0) > v−(T, x0). This contradicts the definition of v−.

To characterize v as the unique viscosity solution of (4.2.4), we need a comparison

principle.

Proposition 4.3.5 (Comparison Principle). Under Assumptions 4.2.1, 4.2.6 and

4.2.9, the comparison principle for (4.2.4) holds. More precisely, suppose that U

(resp. V ) be a bounded USC viscosity sub-solution (resp. LSC viscosity super-

solution) to (4.2.4). If U ≤ V on DT , then U ≤ V on D.

Proof. Step 1: Without loss of generality, assume that

(4.3.35) ∃ γ > 0 such that H(t, x, y, p,M)−H(t, x, y′, p,M) < −γ(y − y′)

for all y > y′. Otherwise, let Ũ(t, x) = ectU(t, x) and Ṽ (t, x) = ectV (t, x). Then a

straightforward calculation shows that Ũ (resp. Ṽ ) is a sub-solution (resp. super-

solution) to

(4.3.36)
∂tϕ+ H̃(·, ϕ,Dϕ,D2ϕ) = 0 on Di,

ϕ = g̃ on DT ,

where g̃(x) = ecTg(x) and H̃ is the same as that in (4.3.19). We can choose c large

enough such that (4.3.35) holds for H̃. In fact, from the Lipschitz continuity of µûY
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in Assumption 4.2.9, for y > y′,

H̃a(t, x, y, p,M)− H̃a(t, x, y′, p,M) = −c(y − y′)

+ ect
(
µũY (t, x, e−cty′, e−ctσX(t, x, a)p, a)− µũY (t, x, e−cty, e−ctσX(t, x, a)p, a)

)
≤ −c(y − y′) + ectL · e−ct(y − y′)

= −(c− L)(y − y′),

where L is the Lipschitz constant and

H̃a(t, x, y, p,M) : = −cy − ectµũY (t, x, e−cty, e−ctσX(t, x, a)p, a)

+ µ>X(t, x, a)p+
1

2
Tr
[
σXσ

>
X(t, x, a)M

]
.

Then γ := c−L > 0 for large enough c. Since H̃(·) = supa∈A H̃
a(·), equation (4.3.35)

holds for H̃.

Step 2: In this step, we claim that for large enough λ, Vδ := V + δe−λt(1 + |x|2)

is a LSC viscosity super-solution to (4.2.4) for δ > 0. Then, if we can show that

U − Vδ ≤ 0 on D for all δ > 0, we will get the required result by sending δ to zero.

Now we prove the above claim.

Obviously, the boundary condition is satisfied. Let ϕ be a smooth function which

strictly touches Vδ from below at (t0, x0) ∈ Di. Let ϕδ(t, x) = ϕ(t, x)−δe−λt(1+ |x|2)

for all (t, x) ∈ D. Then V −ϕδ has a strict minimum at (t0, x0). Since V is a viscosity

super-solution, it holds that

(4.3.37) ∂tϕ
δ(t, x) +H(t, x, ϕδ(t, x), Dϕδ(t, x), D2ϕδ(t, x)) ≤ 0 on Di.

Note that

(4.3.38)
∂tϕ

δ(t, x) = ∂tϕ(t, x) + λδe−λt(1 + |x|2),

Dϕδ(t, x) = Dϕ(t, x)− 2δe−λtx, D2ϕδ(t, x) = D2ϕ(t, x)− 2δe−λtId×d.

Consider the difference of H(t, x, ϕδ, Dϕδ, D2ϕδ) and H(t, x, ϕ,Dϕ,D2ϕ). From
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(4.3.38) and Assumption 4.2.1, we get that∣∣µ>X(t, x, a)Dϕ(t, x)− µ>X(t, x, a)Dϕδ(t, x)
∣∣

≤ K|Dϕ(t, x)−Dϕδ(t, x)| = 2Kδe−λt|x|.
(4.3.39)

Similarly,

(4.3.40)∣∣∣∣12Tr(σXσ
>
X(t, x, a))D2ϕ(t, x)− 1

2
Tr(σXσ

>
X(t, x, a))D2ϕδ(t, x)

∣∣∣∣ ≤ K2dδe−λt.

From the Lipschitz continuity of µûY in Assumption 4.2.9,∣∣µûY (t, x, ϕ, σX(t, x, a)Dϕ, a)− µûY (t, x, ϕδ, σX(t, x, a)Dϕδ, a)
∣∣

≤ L(δe−λt(1 + |x|2) + 2Kδe−λt|x|).
(4.3.41)

From (4.3.39), (4.3.40) and (4.3.41),

∣∣H(t, x, ϕδ, Dϕδ, D2ϕδ)−H(t, x, ϕ,Dϕ,D2ϕ)
∣∣ ≤ δe−λt(1 + |x|2)λ∗,

where λ∗ := L+ LK +K2d+K. Taking λ > λ∗, we get that

∂tϕ(t, x) +H(t, x, ϕ(t, x), Dϕ(t, x), D2ϕ(t, x))

≤ ∂tϕ
δ(t, x) +H(t, x, ϕδ, Dϕδ, D2ϕδ)− λδe−λt(1 + |x|2)

+
∣∣H(t, x, ϕδ, Dϕδ, D2ϕδ)−H(t, x, ϕ,Dϕ,D2ϕ)

∣∣
≤ ∂tϕ

δ +H(t, x, ϕδ, Dϕδ, D2ϕδ)

≤ 0.

Step 3: In this step, we show that U−Vδ ≤ 0 on D for all δ > 0. From boundedness

of U and V ,

lim
|x|→∞

sup
[0,T ]

(U − Vδ)(t, x) = −∞ for all δ > 0.

This implies the supremum of U − Vδ on D is attained on [0, T ] ×O for some open

bounded set O of Rd. Assume, for the sake of contradiction, that

M∗ := sup
D

(U − Vδ) = max
[0,T )×O

(U − Vδ) > 0.
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We will obtain a contradiction to the above equation. Take a bounded sequence

(tε, sε, xε, yε)ε that maximizes Φε on [0, T ]2×Rd×Rd with Φε = U(t, x)− Vδ(s, y)−

φε(t, s, x, y) and φε(t, s, x, y) := 1
2ε

(|t − s|2 + |x − y|2). By similar arguments in

Theorem 4.4.4 in [26], we know that (tε, sε, xε, yε)ε converges to (t0, t0, x0, x0) for

some (t0, x0) ∈ [0, T ]×O and

(4.3.42) Mε = Φ(tε, sε, xε, yε)→M∗ and φε(tε, sε, xε, yε)→ 0.

In view of Ishii’s Lemma (Lemma 4.4.2), there exist M,N ∈ Sd such that(
1

ε
(tε − sε),

1

ε
(xε − yε),M

)
∈ P 2,+

U(t, x),(
1

ε
(tε − sε),

1

ε
(xε − yε), N

)
∈ P 2,−

Vδ(t, x).

From the viscosity sub-solution and super-solution characterization of U and Vδ in

terms of super-jets and sub-jets, we then have

−1

ε
(tε − sε)−H(tε, xε, U(tε, xε),

1

ε
(xε − yε),M) ≤ 0,

−1

ε
(tε − sε)−H(sε, yε, Vδ(sε, yε),

1

ε
(xε − yε), N) ≥ 0.

By subtracting the two inequalities above, we get

H(tε, xε, U(tε, xε),
1

ε
(xε − yε),M) ≥ H(sε, yε, Vδ(sε, yε),

1

ε
(xε − yε), N).

Subtracting H(tε, xε, Vδ(sε, yε),
1
ε
(xε−yε),M) from both sides of the equation above,

we get

(4.3.43)
H(tε, xε, U(tε, xε),

1
ε
(xε − yε),M)−H(tε, xε, Vδ(sε, yε),

1
ε
(xε − yε),M) ≥

H(sε, yε, Vδ(sε, yε),
1
ε
(xε − yε), N)−H(tε, xε, Vδ(sε, yε),

1
ε
(xε − yε),M)

Denote the left and right hand side of the inequality above by LHS and RHS. On

the one hand, since U(tε, xε)− Vδ(sε, yε) ≥M∗,

(4.3.44) LHS ≤ −γ(U(tε, xε)− Vδ(sε, yε)) ≤ −γM∗.
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On the other hand, applying inequality (4.4.5) to C = σX(tε, xε, a) and D =

σX(sε, yε, a), we get

I1 :=
∣∣1

2
Tr[σXσ

>
X(tε, xε, a)M ]− 1

2
Tr[σXσ

>
X(sε, yε, a)N ]

∣∣
≤ 3

2ε
Tr
[
(σX(tε, xε)− σX(sε, yε))(σX(tε, xε)− σX(sε, yε))

>)
]

≤ 1
2ε
O(|tε − sε|2 + |xε − yε|2)→ 0.

In the last inequality, we use (4.3.42) and Lipschitz continuity of σX (uniformly in

a). Therefore,

(4.3.45) I1 → 0 as ε→ 0, uniformly in a ∈ A.

Similarly, from (4.3.42) and the Lipschitz continuity of µX (uniformly in a)

(4.3.46) I2 :=

∣∣∣∣1εµ>X(tε, xε, a)(xε − yε)−
1

ε
µ>X(sε, yε, a)(xε − yε)

∣∣∣∣→ 0 for all a ∈ A.

From (4.3.42) and Lipschitz continuity of σX (Assumption 4.2.1) and µûY (Assumption

4.2.9), we get

I3 :=

∣∣∣∣∣µûY
(
tε, xε, Vδ(sε, yε), σX(tε, xε, a)

(
xε − yε
ε

)
, a

)

− µûY
(
sε, yε, Vδ(sε, yε), σX(sε, yε, a)

(
xε − yε
ε

)
, a

) ∣∣∣∣∣
≤ν(|tε − sε|+ |xε − yε|) +

1

2ε
O(|tε − sε|2 + |xε − yε|2)→ 0 as ε→ 0,

where ν(z)→ 0 as z → 0. The first term in the last inequality above is the modulus

of continuity of µûY in the variables (t, x) (uniformly in a) and the second term comes

from similar arguments for I1 and I2. Therefore,

(4.3.47) I3 → 0, uniformly in a ∈ A.

Then, (4.3.45), (4.3.46) and (4.3.47) imply that

(4.3.48) RHS→ 0 as ε→ 0.

From (4.3.43), (4.3.44) and (4.3.48), we obtain a contradiction.
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Corollary 4.3.6. If g is continuous and Assumptions 4.2.1, 4.2.6, 4.2.9, 4.2.10 and

4.2.11 hold, then v is the unique bounded continuous viscosity solution of (4.2.4).

Proof. From 4.3.4, v+ (resp. v−) is a bounded USC viscosity sub-solution (resp. LSC

viscosity super-solution) to (4.2.4). Then, v+(T, x) ≤ g(x) ≤ v−(T, x). This implies

v+ ≤ v− on D from Proposition 4.3.5. Since v+ ≥ v ≥ v− by definition, v+ = v = v−.

We have shown that v is continuous and a bounded viscosity solution of (4.2.4).

To check the uniqueness, let w be a bounded continuous viscosity solution of

(4.2.4). Note that w is a LSC viscosity super-solution and v is an USC viscosity

sub-solution of (4.2.4) . From Proposition 4.3.5, v ≤ w on D. Similarly, w ≤ v on

D. This implies w = v on D.

From Theorem 4.3.4 and Corollary 4.3.6, we obtain dynamic programming prin-

ciple as a byproduct.

Corollary 4.3.7 (Dynamic Programming Principle). Assume g is continuous and

Assumptions 4.2.1- 4.2.11 hold. For any (t, x) ∈ D, the following two statements

hold:

1. (DPP 1.) For any y > v(t, x), there exists u ∈ U(t) such that for all α ∈ At

and θ ∈ Tt,

Y u,α
t,x,y(θ) ≥ v(θ,Xα

t,x(θ)).

2. (DPP 2.) For any y < v(t, x) and u ∈ U(t), there exists α ∈ At such that for

all θ ∈ Tt,

P
(
Y u,α
t,x,y ≥ v(θ,Xα

t,x(θ))
)
< 1.

Proof. DPP 1: If y > v(t, x) = v+(t, x) (due to Corollary 4.3.6), there exists w ∈ U+

such that y > w(t, x). From the definition of stochastic super-solution, there exists
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u ∈ U(t) such that

Y u,α
t,x,y(θ) ≥ w(θ,Xα

t,x(θ)) ≥ v(θ,Xα
t,x(θ)) for all θ ∈ Tt and α ∈ At.

DPP 2: If y < v(t, x) = v−(t, x) = supw∈U− w(t, x) there exists w ∈ U− such that

y < w(t, x). From the definition of stochastic sub-solution, for any u ∈ U(t), there

exits α ∈ At such that

P
(
Y u,α
t,x,y(θ) < w(θ,Xα

t,x(θ))
)
> 0 for all θ ∈ Tt.

Since w(θ,Xα
t,x(θ)) ≤ v(θ,Xα

t,x(θ)), the desired result holds.

4.4 Appendix

4.4.1 Proof of Proposition 4.2.12

We carry out the proof in two steps. First under Assumptions 4.2.6 and 4.2.9,

we will show that there exists a classical solution to (4.2.4). Next, we will show

that, if we additionally have Assumption 4.2.1, then every classical super-solution is

a stochastic super-solution, which implies in particular that U+ is not empty.

Step 1. Existence of a classical super-solution to (4.2.4).

1.A. In this step we will assume that µûY is non-decreasing in its y-variable. Letting

φ(t, x) = −eλt, we have that

(4.4.1) ∂tφ(t, x) +H(t, x, φ,Dφ,D2φ) = −λeλt + sup
a∈A
{−µûY (t, x, φ(t, x), 0, a)}.

From the linear growth condition of µûY in Assumption 4.2.9, we know there exists

an L > 0, such that −µûY (t, x, φ(t, x), 0, a) ≤ L(1 + |φ(t, x)|) = L(1 + eλt). Therefore,

from (4.4.1),

∂tφ(t, x) +H(t, x, φ,Dφ,D2φ) ≤ −λeλt + L(1 + eλt) ≤ 0 on Di for λ > 2L.
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Fix λ > 2L and choose N2 such that −eλT +N2 ≥ ‖g‖∞. Then φ′(T, x) = φ(T, x) +

N2 ≥ g(x) for all x ∈ Rd. From the assumption that µûY is non-decreasing in its

y-variable, it holds that

∂tφ
′(t, x) +H(t, x, φ′, Dφ′, D2φ′) ≤ 0 on Di.

Therefore, φ′ is a classical super-solution.

1.B. We now turn to showing the same result for more general µûY . This follows the

same reparameterization argument outlined in Step 1.2-B in the proof of the main

theorem.

Step 2. Classical super-solutions are stochastic super-solutions. Let w be

a classical super-solution. Fix (t, x, y) ∈ Di×R and {τα} ∈ Tt. Let Y be the unique

strong solution (which is thanks to Assumption 4.2.9) of the equation

Y (l) =Y u,α
t,x,y(τ

α) +

∫ τα∨l

τα
µûY
(
s,Xα

t,x(s), Y (s), σX(s,Xα
t,x(s), αs)Dw(s,Xα

t,x(s)), αs
)
ds

+

∫ τα∨l

τα
σX(s,Xα

t,x(s), αs)Dw(s,Xα
t,x(s))dWs, l ≥ τα,

for any u ∈ U(t) and α ∈ At and set Y (s) = Y u,α
t,x,y(s) for s < τα. We will set ũ to be

ũ := ũ[α](s) = û(s,Xα
t,x(s), Y (s), σX(s,Xα

t,x(s), αs)Dw(s,Xα
t,x(s)), αs).

It is not difficult to check that ũ ∈ U(t, {τα}). We will show that for any u ∈ U(t),

α ∈ At and each stopping time ρ ∈ Tt, τα ≤ ρ ≤ T with the simplifying notation

X := Xα
t,x, Y := Y

u⊗τα ũ[α],α
t,x,y , we have

Y (ρ) ≥ w(ρ,X(ρ)) P− a.s. on {Y (τα) > w(τα, X(τα))}.

Note that Y = Y
u⊗τα ũ[α],α
t,x,y for s ≥ τα. We will carry out the rest of the proof in two

steps.

2.A. In this step we will assume that µûY is non-decreasing in its y-variable. Let

A = {Y (τα) > w(τα, X(τα))}, Z(s) = w(s,X(s)), Γ(s) = (Z(s)− Y (s))1A.
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Therefore,

Γ(s) = 1A

∫ s∨τα

τα
(ξ(u)− γ′(u))du,(4.4.2)

where

γ′(s) : = µûY (s,X(s), w(s,X(s)), σX(s,X(s), αs)Dw(s,X(s)), αs)− ∂tw(s,X(s))

− µ>X(s,X(s), αs)Dw(s,X(s))− 1

2
Tr[σXσ

>
X(s,X(s), αs)D

2w(s,X(s))]

and

ξ(s) : = µûY
(
s,X(s), Z(s), σX(s,X(s), αs)Dw(s,X(s)), αs

)
− µûY

(
s,X(s), Y (s), σX(s,X(s), αs)Dw(s,X(s)), αs

)
.

Since w is a classical super-solution, γ′ ≥ 0. Then from (4.4.2), it follows that

Γ(s) ≤ 1A

∫ s

τα
ξ(u)du and Γ+(s) ≤ 1A

∫ s

τα
ξ+(u)du, for s ≥ τα.

From the Lipschitz continuity of µûY in y-variable in Assumption 4.2.9,

Γ+(s) ≤ 1A

∫ s

τα
ξ+(u)du ≤

∫ s

τα
LΓ+(u)du for s ≥ τα.

In the equation above, we also use the assumption that µûY is non-decreasing in its

y-variable to obtain the second inequality. Since EΓ+(τα) = 0, an application of

Gronwall’s Inequality implies that EΓ+(ρ) ≤ 0.

2.B. Now let us turn to showing same result for more general µûY . However, this

again follows the same reparameterization argument outlined in Step 1.2-B in the

proof of the main theorem. �

4.4.2 Proof of Proposition 4.2.17

Take w(t, x) = m for any (t, x) ∈ D, where the constant m is a lower bound of g.

For any given u ∈ U(t), α ∈ At, choose any α̃ ∈ At. Let B ⊂ {Y (τα) < w(τ,X(τα))}
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and P(B) > 0. Set

θs :=


0 if σY (s,X(s), Y (s), u[α⊗τα α̃]s, [α⊗τα α̃]s) 6= 0,

µY σY
‖σY ‖2

(s,X(s), Y (s), u[α⊗τα α̃]s, [α⊗τα α̃]s), otherwise.

Therefore, θs satisfies the Novikov’s condition due to Assumption 4.2.16 and W̃ (s) =

W (s)−
∫ s

0
θudu is a Brownian motion under the probability measure Q, where

Q(A) = EP(ZT1A) for all A ∈ F , and Zs := exp

(∫ s

0

θudWu −
1

2

∫ s

0

‖θu‖2du

)
.

ZT ∈ Lq(P) for any q ≥ 1 since θ is a bounded. From Assumption 4.2.13 and

assumption that σY is invertible in its u-variable (Assumption 4.2.6), it follows that

σY (t, x, y, u, a) = 0 implies µY (t, x, y, u, a) = 0. Therefore under Q

dY (s) = σY (s,X(s), Y (s), u[α̃]s, α̃s)dW̃s for s ≥ τα,

where Y := Y u,α⊗τα α̃
t,x,y . We will show that the Q-local martingale Y is actually a

Q-martingale. Assumption 4.2.1 implies that

(4.4.3) EP

[
sup

0≤s≤T
|Y (s)|2

]
<∞.

See e.g. Theorem 1.3.5 in [26] or Theorem 2.2 in [34]. As a result, an application of

Hölder’s inequality yields that

(4.4.4) EQ

[
sup

0≤s≤T
|Y (s)|

]
≤ EP

[
sup

0≤s≤T
|Y (s)|2

]
EP[Z2

T ] <∞.

From (4.4.4), Y is a martingale on [τα, T ] under Q. Moreover, since Q is equivalent

to P, Q(B) > 0. As a result, for any ρ ≥ τα,

Y (ρ) ≤ Y (τα) < m on some F tτα-measurable set H ⊂ B with Q(H) > 0.

This implies Q(Y (ρ) < m|B) > 0 and P(Y (ρ) < m|B) > 0 by the fact P ∼ Q.

Therefore, w(t, x) = m is a stochastic sub-solution. �
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4.4.3 Some well-known results from the theory of viscosity solutions

In this subsection, we introduce an alternative definition of viscosity solutions and

Ishii’s Lemma following [26]. First, we define the second order super-jet of an USC

function U at a point (t, x) ∈ [0, T )×Rd as the set of elements (q, p,M) ∈ R×Rd×Sd

satisfying

U(t, x) ≤ U(t, x) + q(t− t) + p · (x− x) +
1

2
M(x− x) · (x− x) + o(|t− t|+ |x− x|2).

This set is denoted by P 2,+U(t, x). Similarly, P 2,−V (t, x), the second-order sub-jet

of a LSC function V at the point (t, x) ∈ [0, T )×Rd is defined as the set of elements

(q, p,M) ∈ R× Rd × Sd satisfying

V (t, x) ≥ V (t, x) + q(t− t) + p · (x− x) +
1

2
M(x− x) · (x− x) + o(|t− t|+ |x− x|2).

For technical reasons related to Ishii’s lemma, we also need to consider the limiting

super-jets and sub-jets. More precisely, we define P
2,+
U(t, x) as the set of elements

(q, p,M) ∈ R×Rd×Sd for which there exists a sequence (tε, xε, qε, pε,Mε)ε satisfying

(qε, pε,Mε) ∈ P 2,+U(tε, xε) and (tε, xε, U(tε, xε), qε, pε,Mε) → (t, x, U(t, x), q, p,M).

The set P
2,−
V (t, x) is defined similarly. Now we state the alternative definition of

viscosity solutions to (4.2.4).

Lemma 4.4.1. A USC (resp. LSC) function w on Di is a viscosity sub-solution

(resp. super-solution) to (4.2.4) if and only if for all (t, x) ∈ Di, and all (q, p,M) ∈

P
2,+
w(t, x)(resp.P

2,−
w(t, x)),

−q −H(t, x, w(t, x), p,M) ≤ (resp. ≥) 0.

Finally, we state Ishii’s lemma used in [26] without proof and refer the reader to

Theorem 8.3 in [18].
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Lemma 4.4.2 (Ishii’s Lemma). Let U (resp. V ) be an USC (resp. LSC) function

on Di, ϕ ∈ C1,1,2,2([0, T )2 × Rd × Rd) and (t0, s0, x0, y0) ∈ [0, T )2 × Rd × Rd be a

local maximum of U(t, x) − V (s, y) − ϕ(t, s, x, y). Then, for all η > 0, there exist

M,N ∈ Sd satisfying

(∂tϕ(t0, s0, x0, y0), Dxϕ(t0, s0, x0, y0),M) ∈ P 2,+
U(t, x),

(−ϕs(t0, s0, x0, y0),−Dyϕ(t0, s0, x0, y0), N) ∈ P 2,−
V (t, x),

and  M 0

0 −N

 ≤ D2
x,yϕ(t0, s0, x0, y0) + η

(
D2
x,yϕ(t0, s0, x0, y0)

)2
.

Remark 4.4.3. From Remark 4.4.9 in [26] , by choosing ϕε(t, s, x, y) := 1
2ε

(|t− s|2 +

|x− y|2) and η = ε, for any d× n matrices C,D, we get

(4.4.5) Tr(CC>M −DD>N) ≤ 3

ε
Tr((C −D)(C −D)>).



CHAPTER V

Stochastic Perron for Stochastic Target Games with a
Stopper

5.1 Outline of this chapter

As mentioned in the introduction, in this chapter we investigate two types of

stochastic target games with a stopper under the framework of Chapter IV. The

two types of stochastic target problems can be interpreted as the super-hedging and

sub-hedging problem, respectively. In Section 5.2, both problems and their associ-

ated HJB equations are introduced. In Sections 5.3 and 5.4, we prove the viscosity

properties and verify that the value function is the unique viscosity solution to its as-

sociated HJB equation for the super-hedging and sub-hedging problem, respectively.

In Section 5.5, we compare the two value functions and prove that they coincide

when the control set of Nature is a singleton.

5.2 The setup

Let Ω be the space of continuous functions ω : [0, T ] → Rd, P be the Wiener

measure on Ω and W be the canonical process on Ω, i.e. Wt(ω) = ωt. For t ∈ [0, T ],

let Ft = (F ts)0≤s≤T be the augmented filtration generated by (Ws − Wt)s≥t. By

convention, F ts := F tt for s < t. Denote by U t (resp. At) the collection of all Ft-

predictable processes in L2(P ⊗ λL) with values in a given Borel subset U (resp.

126
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bounded set A) of Rk (resp. Rl), where λL is the Lebesgue measure on R. Let

D := [0, T ]× Rd, Di := [0, T )× Rd, DT := {T} × Rd.

Given (t, x, y) ∈ D × R and (u, α) ∈ U t × At, the state processes are driven by the

stochastic differential equations (SDEs)

dX(s) = µX(s,X(s), αs)ds+ σX(s,X(s), αs)dWs,

dY (s) = µY (s,X(s), Y (s), us, αs)ds+ σY (s,X(s), Y (s), us, αs)dWs,

(5.2.1)

with initial data (X(t), Y (t)) = (x, y).

Assumption 5.2.1. µX , µY , σX and σY are continuous in all variables and take

values in Rd, R, Rd and Md, respectively. There exists K > 0 such that for all

(t, x, y), (t′, x′, y′) ∈ D× R, u ∈ U and a ∈ A,

|µX(t, x, a)− µX(t′, x′, a)|+ |σX(t, x, a)− σX(t′, x′, a)| ≤ K(|t− t′|+ |x− x′|),

|µX(t, x, a)|+ |σX(t, x, a)| ≤ K,

|µY (t, x, y, u, a)− µY (t, x, y′, u, a)|+ |σY (t, x, y, u, a)− σY (t, x, y′, u, a)| ≤ K|y − y′|,

|µY (t, x, y, u, a)|+ |σY (t, x, y, u, a)| ≤ K(1 + |u|+ |y|).

This assumption ensures that the stochastic differential equations given in (5.2.1)

are well-posed. Denote the solutions to (5.2.1) by (Xα
t,x, Y

u,α
t,x,y). Let Tt be the collec-

tion of all Ft-stopping times valued in [t, T ].

Definition 5.2.2. A map u : At → U t, α 7→ u[α] is a t-admissible strategy if it is

non-anticipating in the sense that

{ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} ⊂ {ω ∈ Ω : u[α](ω)|[t,s] = u[α′](ω)|[t,s]} -a.s.

for all s ∈ [t, T ] and α, α′ ∈ At, where |[t,s] indicates the restriction to the interval

[t, s]. We denote by U(t) the collection of all t-admissible strategies. We write Y u,α
t,x,y

for Y
u[α],α
t,x,y for any u ∈ U(t).
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Definition 5.2.3. A map ρ : At → Tt, α 7→ ρρρ[α] is a t-admissible stopping strategy

if

{ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} ⊂

{ω ∈ Ω : t ≤ ρρρ[α](ω) = ρρρ(α′)(ω) ≤ s} ∪ {ω ∈ Ω, s < min{ρρρ[α](ω), ρρρ(α′)(ω)}}

for all s ∈ [t, T ] and α, α′ ∈ At. We denote by T(t) the collection of all t-admissible

stopping strategies;

With the definitions above, we can rigorously define the two value functions, which

can be interpreted as the super-hedging and sub-hedging price of American options

with model uncertainty, respectively.1

Vs(t, x) := inf
{
y ∈ R : ∃ u ∈ U(t) s.t. Y u,α

t,x,y(ρ) ≥ g(Xα
t,x(ρ)) ∀ α ∈ At,∀ρ ∈ Tt

}
,

Vb(t, x) := sup
{
y ∈ R : ∃ u ∈ U(t), ρρρ ∈ T(t) s.t. Y u,α

t,x,y(ρρρ[α]) ≤ g(Xα
t,x(ρρρ[α]))∀α ∈ At

}
,

where g : Rd → R is a bounded continuous function. From the above definitions, it

is unclear if Vb compare with Vs, although we expect that Vs is larger. We will prove

that this is indeed the case in Section 5.5.

To identify appropriate definitions of stochastic semi-solutions in Section 5.3 and

5.4, we need the following definitions.

Definition 5.2.4 (Non-anticipating family of stopping times). Let {τα}α∈At ⊂ Tt

be a family of stopping times. This family is t-non-anticipating if

{ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} ⊂

{ω ∈ Ω : t ≤ τα(ω) = τα
′
(ω) ≤ s} ∪ {ω ∈ Ω : s < min{τα(ω), τα

′
(ω)}} -a.s.

Denote the set of t-non-anticipating families of stopping times by Tt.
1We will use “the super-hedging problem” and “the sub-hedging problem” to refer to the two problems in this

chapter, when there is no ambiguity.
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Remark 5.2.5. For ρρρ ∈ T(t), {ρρρ[α]}α∈At ∈ Tt by definition. Throughout this chapter,

{τα} will be used to represent t-non-anticipating family of stopping times {τα}α∈At

for short, when t is fixed and there is no ambiguity.

Definition 5.2.6 (Strategies starting at a non-anticipating family of stopping times).

Fix t and let {τα} ∈ Tt. We say that a map u : At → U t, α 7→ u[α] is a (t, {τα})-

admissible strategy if it is non-anticipating in the sense that

{ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} ⊂ {ω ∈ Ω : s < min{τα(ω), τα
′
(ω)}} ∪

{ω ∈ Ω : t ≤ τα(ω) = τα
′
(ω) ≤ s, u[α](ω)|[τα(ω),s] = u[α′](ω)|[τα′ (ω),s]} -a.s.

for all s ∈ [t, T ] and α, α′ ∈ At, denoted by u ∈ U(t, {τα}).

Remark 5.2.7. The definitions for U(t, {τα}) and U(t) are consistent. In fact, if we

set τα = t for all α ∈ At, then the two definitions coincide.

Definition 5.2.8 (Stopping strategies after a non-anticipating family of stopping

times). For t ∈ [0, T ] and {τα} ∈ Tt, a map ρρρ : At → Tt, α 7→ ρρρ[α] is a (t, {τα})-

stopping strategy if ρρρ[α] ≥ τα for all α ∈ At and

{ω ∈ Ω : α(ω)|[t,s] = α′(ω)|[t,s]} ⊂ {ω ∈ Ω, s < min{ρρρ[α](ω), ρρρ(α′)(ω)}}

∪{ω ∈ Ω : τα(ω) = τα
′
(ω) ≤ ρρρ[α](ω) = ρρρ(α′)(ω) ≤ s}

for all s ∈ [t, T ] and α, α′ ∈ At. The set of all such stopping strategies is denoted by

T(t, {τα}).

Remark 5.2.9. The definitions of T(t, {τα}) and T(t) are consistent. In fact, if we

set τα = t for all α ∈ At, then the two definitions coincide. It also holds that

T(t, {τα}) ⊂ T(t) by definition for any {τα} ∈ Tt.

Definition 5.2.10 (Concatenation). For α1, α2 ∈ At and τ ∈ Tt. The concatenation

of α1, α2 is defined as follows:

α1 ⊗τ α2 := α11[t,τ) + α21[τ,T ].
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The concatenation of elements in U t is defined in the same way. The following

lemma discusses about the admissibility of the pasted strategy at a non-anticipating

family of stopping times; We refer the readers to Lemma 4.2.5 for its proof.

Lemma 5.2.11. For t ∈ [0, T ] and {τα} ∈ Tt, if u ∈ U(t) and ũ ∈ U(t, {τα}), then

u∗ ∈ U(t), where

u∗[α] := u⊗τα ũ[α] := u[α]⊗τα ũ[α].

For (t, x, y, z, a) ∈ D× R× Rd × A, define

N(t, x, y, z, a) := {u ∈ U : σY (t, x, y, u, a) = z}.

Assumption 5.2.12. There exists a measurable map û : D×R×Rd×A→ U such

that N = {û}. Moreover, the map û(·, a) is continuous for each a ∈ A.

For (t, x, y, p, z,M, a) ∈ D× R× Rd × Rd ×Md × A, define

µûY (t, x, y, z, a) := µY (t, x, y, û(t, x, y, z, a), a),

La(t, x, y, p,M) := µûY (t, x, y, σX(t, x, a)p, a)− µX(t, x, a)>p− 1

2
Tr[σXσ

>
X(t, x, a)M ],

Lu,a(t, x, y, p,M) := µY (t, x, y, u, a)− µX(t, x, a)>p− 1

2
Tr
[
σXσ

>
X(t, x, a)M

]
.

H(t, x, y, p,M) := inf
a∈A

La(t, x, y, p,M), F (t, x, y, p,M) := sup
a∈A

La(t, x, y, p,M).

Assumption 5.2.13. The map (t, x, y, z) ∈ D×R×Rd 7→ µûY (t, x, y, z, a) is Lipschitz

continuous, uniformly in a ∈ A. Moreover, (y, z) ∈ R × Rd 7→ µûY (t, x, y, z, a) has

linear growth, uniformly in (t, x, a) ∈ D× A.

Assumption 5.2.14.

sup
u∈U

|µY (·, u, ·)|
1 + |σY (·, u, ·)|

is locally bounded,

With stochastic Perron’s method, we will show



131

• in Section 5.3 that Vs is the unique viscosity solution of

(5.2.2)
min {−∂tϕ(t, x) +Hϕ(t, x), ϕ(t, x)− g(x)} = 0 in Di,

ϕ(T, x) = g(x) for x ∈ Rd.

• in Section 5.4 that Vb is the unique viscosity solution of

(5.2.3)
min {−∂tϕ(t, x) + Fϕ(t, x), ϕ(t, x)− g(x)} = 0 in Di,

ϕ(T, x) = g(x) for x ∈ Rd.

5.3 The super-hedging problem

We now introduce classes of stochastic super-solutions and sub-solutions to (5.2.2),

which envelope the value function and are closed under pairwise minimization and

maximization, respectively.

Definition 5.3.1 (Stochastic super-solutions). A function w : [0, T ] × Rd → R is

called a stochastic super-solution of (5.2.2) if

1. It is bounded, continuous and w(t, x) ≥ g(x) for all (t, x) ∈ D.

2. For any (t, x, y) ∈ D × R, {τα} ∈ Tt and u ∈ U(t), there exists ũ ∈ U(t, {τα})

such that for all α ∈ At and ρ ∈ Tt satisfying τα ≤ ρ ≤ T , we have

Y (ρ) ≥ w(ρ,X(ρ)) P− a.s. on {Y (τα) ≥ w(τα, X(τα))},

where X := Xα
t,x and Y := Y

u⊗τα ũ[α],α
t,x,y .

The set of stochastic super-solutions is denoted by U+
s .

Definition 5.3.2 (Stochastic sub-solutions). A function w : [0, T ]×Rd → R is called

a stochastic sub-solution of (5.2.2) if

1. It is bounded, continuous and w(T, x) ≤ g(x) for all x ∈ Rd.
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2. For any (t, x, y) ∈ D × R, {τα} ∈ Tt, u ∈ U(t) and α ∈ At, there exist α̃ ∈ At

and ρ ∈ Tt satisfying τα ≤ ρ ≤ T (α̃ and ρ may depend on w, u, {τα} and α)

such that

P (Y (ρ) < g (X(ρ)) |B) > 0,

for any B ⊂ {Y (τα) < w(τα, X(τα)} satisfying B ∈ F tτα and P(B) > 0, where

X := Xα⊗τα α̃
t,x and Y := Y u,α⊗τα α̃

t,x,y .

The set of stochastic sub-solutions is denoted by U−s .

Proposition 5.3.3. Under Assumptions 5.2.1, 5.2.12 and 5.2.13, U+
s is not empty.

Proof. The proposition follows from similar arguments to those in 4.2.14.

Assumption 5.3.4. U−s are not empty.

Following similar arguments to those in Subsection 4.2.3, we can see that the

following holds if U+
s and U−s are not empty.

V −s := sup
w∈U−s

w ≤ Vs ≤ inf
w∈U+

s

w =: V +
s .

In the rest of the section, we will show in Theorem 5.3.7 that that V +
s is a viscosity

sub-solution and V −s is a super-solution of (5.2.2). We first state two lemmas without

proof. For their proofs, we refer the readers to Lemma 4.3.1 and 4.3.2.

Lemma 5.3.5. U+
s (resp. U−s ) is closed under pairwise minimization (resp. maxi-

mization).

Lemma 5.3.6. There exists a non-increasing sequence U+
s 3 wn ↘ V +

s and a non-

decreasing sequence U−s 3 vn ↗ V −s .

Theorem 5.3.7. Let Assumptions 5.2.1 and 5.2.12 hold.
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1. If Assumption 5.2.13 holds, V +
s is a bounded USC viscosity sub-solution of

(5.2.2).

2. If Assumptions 5.2.14 and 5.3.4 hold, V −s is a bounded LSC viscosity super-

solution of (5.2.2).

Proof. Step 1. ( V +
s is a viscosity sub-solution)

1.1. The interior sub-solution property: Assume, on the contrary, that

(t0, x0) ∈ Di and ϕ ∈ C1,2(D) be such that

0 = V +
s (t0, x0)− ϕ(t0, x0) = max

Di
(V +

s (s, x)− ϕ(t, x)),

ϕ(t0, x0) > g(x0) and −∂tϕ(t0, x0) + Hϕ(t0, x0) > 0. By similar arguments to those

in Step 1.1 of Theorem 4.3.4’s proof in Chapter IV, there exist ε > 0 and δ > 0 such

that

(5.3.1)
ϕ(t, x) > g(x) + ε and − ∂tϕ(t, x) +H(t, x, y,Dϕ(t, x), D2ϕ(t, x)) > 0

for all (t, x) ∈ Bε(t0, x0) and y ∈ R s.t. |y − ϕ(t, x)| ≤ δ.

Choose ε small enough such that Bε(t0, x0)∩DT = ∅. Since ϕ > V +
s on the compact

set T := Bε(t0, x0)−Bε/2(t0, x0) and V +
s is USC, ϕ > V +

s + 2η on T for some η > 0.

Let {wn} be a sequence such that wn ↘ V +
s . A Dini type argument shows that for

large enough n,

(5.3.2) ϕ > wn + η on T, ϕ > wn − δ on Bε/2(t0, x0).

Fix such an n and let w = wn. For κ ∈ (0, η ∧ δ ∧ ε), define

wκ :=

 (ϕ− κ) ∧ w on Bε(t0, x0),

w outside Bε(t0, x0).

Since wκ(t0, x0) = ϕ(t0, x0) − κ < V +
s (t0, x0), we will obtain a contradiction if we

can show wκ ∈ U+
s . Obviously, wκ is continuous and bounded. Since w ∈ U+

s and
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ϕ(t, x) − κ > g(x) + ε − κ > g(x) for all (t, x) ∈ Bε(t0, x0), wκ(t, x) ≥ g(x) for all

(t, x) ∈ D. The rest of the proof (which shows that wκ satisfies the second property

of Definition 5.3.1) is the same as that in Step 1.1 of Theorem 4.3.4 in Chapter IV.

1.2. The boundary condition: The proof follows the same arguments in Step 1.2

of Theorem 4.3.4’s proof in Chapter IV.

Step 2. ( V −s is a viscosity super-solution)

2.1. V −
s (t, x) ≥ g(x) : In this step, we show that V −s (t, x) ≥ g(x) for all (t, x) ∈ D.

Assume, on the contrary, that for some (t0, x0) ∈ D there exists η > 0 such that

(5.3.3) 0 < 2η := g(x0)− V −s (t0, x0).

Take an arbitrary w ∈ U−s . From the fact that w(t0, x0) ≤ V −s (t0, x0), the continuity

of w and lower semi-continuity of g, there exists ε > 0 such that for all (t, x) ∈

Bε(t0, x0),

g(x)− w(t, x) > η, g(x)− g(x0) > −η
2

and |w(t, x)− w(t0, x0)| < η

2
.(5.3.4)

Define

w′(t, x) :=


w(t, x) for (t, x) /∈ Bε(t0, x0)

w(t, x) +

(
1− dist((t, x), (t0, x0))

ε

)
(g(x0)− η − w(t0, x0)), otherwise.

Obviously, w′ is bounded, continuous and

(5.3.5) {(t, x) : w(t, x) < w′(t, x)} ⊂ Bε(t0, x0).

Moreover, by (5.3.4),

(5.3.6) w′(t, x) ≤ w(t, x) + g(x0)− η − w(t0, x0) < g(x) for (t, x) ∈ Bε(t0, x0).

The equation above, along with the fact that w ∈ U−s , implies that w′(T, x) ≤ g(x).

Since w′(t0, x0) = g(x0)− η > V −s (t0, x0) by (5.3.3), we will obtain a contradiction if

w′ ∈ U−s .
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We now show that w′ ∈ U−s . Fix (t, x, y) ∈ Di × R, {τα} ∈ Tt, u ∈ U(t) and

α ∈ At. Let α̃w ∈ At and ρw ∈ Tt be the ”optimal” control and stopping time of

Nature in Definition 5.3.2 for w.2 Define

α̃ := (α̃w1A + α01Ac)1[τα,T ] and ρ := ρw1A + τα1Ac ,

where α0 is arbitrary in At and A = {w′(τα, Xα
t,x(τ

α)) = w(τα, Xα
t,x(τ

α))}. We

can easily check that α̃ ∈ At and ρ ∈ Tt with ρ ≥ τα. Let X := Xα⊗τα α̃
t,x and

Y := Y u,α⊗τα α̃
t,x,y . It suffices to show that

P (Y (ρ) < g (X(ρ)) |B) > 0

for any B ⊂ {Y (τα) < w′(τα, X(τα)} satisfying B ∈ F tτα and P(B) > 0. Note that

(5.3.7) X(τα) = Xα
t,x(τ

α), Y (τα) = Y u,α
t,x,y(τ

α),

X(s) = 1AX
α⊗τα α̃w
t,x (s) + 1AcX

α⊗ταα0
t,x (s) for τα ≤ s,

Y (s) = 1AY
u,α⊗τα α̃w
t,x,y (s) + 1AcY

u,α⊗ταα0
t,x,y (s) for τα ≤ s.

(5.3.8)

We consider the following two cases which will yield the desired result.

(i) If P(B ∩ A) > 0: Note that

B ∩ A ⊂
{
Y u,α⊗τα α̃w
t,x,y (τα) < w

(
τα, Xα⊗τα α̃w

t,x (τα)
)}

.

From the fact w ∈ U−s , the equation above, (5.3.8) and the definitions of ρ and α̃w

on A,

P (Y (ρ) < g (X(ρ)) |B ∩ A) = P
(
Y u,α⊗τα α̃w
t,x,y (ρw) < g

(
Xα⊗τα α̃w
t,x (ρw)

)
|B ∩ A

)
> 0.

This implies that P ({Y (ρ) < g (X(ρ))} ∩B ∩ A) > 0.

(ii) If P(B ∩ Ac) > 0: By (5.3.5) and (5.3.6),

Y u,α
t,x,y(τ

α) < w′(τα, Xα
t,x(τ

α)) < g(Xα
t,x(τ

α)) on B ∩ Ac.
2Although the “optimal” control and stopping time also depend on {τα}, u and α, we only emphasize the

dependence on w.
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By (5.3.7), (5.3.8) and the definition of ρ on Ac,

P (Y (ρ) < g (X(ρ)) |B ∩ Ac) = P
(
Y u,α
t,x,y(τ

α) < g(Xα
t,x(τ

α))|B ∩ Ac
)
> 0.

This further implies that P ({Y (ρ) < g (X(ρ))} ∩B ∩ Ac) > 0.

2.2 −∂tV
−
s (t, x) + HV −

s (t, x) ≥ 0 on Di in the viscosity sense. Assume, on

the contrary, that (t0, x0) ∈ Di and ϕ ∈ C1,2(D) are such that

max
(t,x)∈D

(ϕ(t, x)− V −s (t, x)) = ϕ(t0, x0)− V −s (t0, x0) = 0 and

−∂tϕ(t0, x0) +Hϕ(t0, x0) < 0.

From the equation above, there exists an a0 ∈ A such that

(5.3.9) −∂tϕ(t0, x0) + Lu0,a0ϕ(t0, x0) < 0,

where u0 := û(t0, x0, ϕ(t0, x0), σX(t0, x0, a0)Dϕ(t0, x0), a0). From the continuity of

µX , µY and σX in Assumption 5.2.1 and the continuity of û in Assumption 5.2.12,

there exist ε > 0 and δ > 0 such that

−∂tϕ(t, x) + Lu,a0(t, x, y,Dϕ(t, x), D2ϕ(t, x)) < 0, for (t, x) ∈ Bε(t0, x0) and (y, u)

∈ R× U s.t. |y − ϕ(t, x)| ≤ δ and |σY (t, x, y, u, a0)− σX(t, x, a0)Dϕ(t, x)| ≤ δ.

Choose ε small enough to make sure that Bε(t0, x0) ∩DT = ∅. Since ϕ < V −s on the

compact set T := Bε(t0, x0) − Bε/2(t0, x0) and V −s is LSC, ϕ < V −s − 2η on T for

some η > 0. Let {wn} be a sequence in U−s such that wn ↗ V −s . By a Dini type

argument, there exists n0 ∈ N such that for all n ≥ n0,

ϕ < wn − η on T, ϕ < wn + δ on Bε/2(t0, x0).

Fix such an n and let w = wn. For κ ∈ (0, η ∧ δ ∧ ε), define

wκ :=

 (ϕ+ κ) ∨ w on Bε(t0, x0),

w outside Bε(t0, x0).



137

Since wκ(t0, x0) = ϕ(t0x0) + κ > V −s (t0, x0), we would obtain a contradiction if we

could show wκ ∈ U−s . Obviously, wκ is continuous, bounded and wκ(T, x) ≥ g(x) for

x ∈ Rd.

Fix (t, x, y), {τα} ∈ Tt, u ∈ U(t) and α ∈ At. To show wκ ∈ U−s , we need

to construct an “optimal” control α̃ ∈ At and an “optimal” stopping time ρ ∈ Tt

satisfying ρ ≥ τα in the sense of Definition 5.3.2 for wκ. Let A = {w(τα, Xα
t,x(τ

α)) =

wκ(τα, Xα
t,x(τ

α))}. We consider the construction of α̃ and ρ on A and Ac separately:

(i) On A: Let α̃w,τ
α

and ρw,τ
α

be the “optimal” control and stopping time of

Nature for w in Definition 5.3.2 given u, α and {τα}. Set α̃ = α̃w,τ
α

and ρ = ρw,τ
α
.

(ii) On Ac: Let θα = θα1 ∧ θα2 , where

θα1 := inf
{
s ∈ [τα, T ] : (s,Xα⊗ταa0

t,x (s)) /∈ Bε/2(t0, x0)
}
∧ T and

θα2 := inf
{
s ∈ [τα, T ] :

∣∣Y u,α⊗ταa0
t,x,y (s)− ϕ(s,Xα⊗ταa0

t,x (s))
∣∣ ≥ δ

}
∧ T.

By Example 1 in [4], {θα} ∈ Tt. Let α̃ be a0 on [τα, θα). Starting from θα, choose

α̃ = α̃w,θ
α

and ρ = ρw,θ
α
, where α̃w,θ

α
is the ”optimal” control and ρw,θ

α
is the

”optimal” stopping time satisfying ρw,θ
α ≥ θα which correspond to u, α ⊗τα a0 and

{θα} in Definition 5.3.2.

In short,

α̃ =
(
1Aα̃

w,τ + 1Ac(a01[t,θα) + α̃w,θ1[θα,T ])
)
1[τα,T ], ρ = 1Aρ

w,τ + 1Acρ
w,θ.

To show the construction works, the proof follows from similar arguments to those

in Step 2.1 of Theorem 4.3.4’s proof.

To characterize Vs as the unique viscosity solution of (5.2.2), we need a comparison

principle.
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Proposition 5.3.8. Under Assumptions 5.2.1, 5.2.12 and 5.2.13, the comparison

principle for (5.2.2) holds. More precisely, if U (resp. W ) is a bounded LSC viscosity

sub-solution (resp. a bounded USC viscosity super-solution) to (5.2.2) and U ≤ W

on DT , then U ≤ W on D.

Proof. This proposition follows from the arguments in Proposition 4.3.5.

Corollary 5.3.9. Under Assumptions 5.2.1, 5.2.12, 5.2.13, 5.2.14 and 5.3.4, Vs is

the unique bounded continuous viscosity solution of (5.2.2).

Proof. This corollary follows from the same arguments in Corollary 4.3.6.

5.4 The sub-hedging problem

Definition 5.4.1 (Stochastic super-solutions). A function w : [0, T ] × Rd → R is

called a stochastic super-solution of (5.2.3) if

1. It is bounded, continuous and w(t, x) ≥ g(x) for all (t, x) ∈ D.

2. For any (t, x, y) ∈ D×R, {τα} ∈ Tt, u ∈ U(t), ρρρ ∈ T(t, {τα}) and α ∈ At, there

exists α̃ ∈ At such that

P (Y (ρρρ[α]) > w (ρρρ[α], X(ρρρ[α])) |B) > 0

for any B ⊂ {Y (τα) > w(τα, X(τα)} satisfying B ∈ F tτα and P(B) > 0, where

X := Xα⊗τα α̃
t,x and Y := Y u,α⊗τα α̃

t,x,y .

The set of stochastic sub-solutions is denoted by U+
b .

Definition 5.4.2 (Stochastic sub-solutions). A function w : [0, T ]×Rd → R is called

a stochastic sub-solution of (5.2.3) if

1. It is bounded, continuous and w(T, x) ≤ g(x) for all x ∈ Rd.
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2. For (t, x, y) ∈ D × R, {τα} ∈ Tt and u ∈ U(t), there exist ũ ∈ U(t, {τα}) and

ρρρ ∈ T(t, {τα}) such that for any α ∈ At ,

Y (ρρρ[α]) ≤ g(X(ρρρ[α])) P− a.s. on {Y (τα) ≤ w(τα, X(τα))},

where X := Xα
t,x and Y := Y

u⊗τα ũ[α],α
t,x,y .

The set of stochastic super-solutions is denoted by U−b .

Proposition 5.4.3. Under Assumptions 5.2.1, 5.2.12, 5.2.13, U−b is not empty.

Assumption 5.4.4. U+
b is not empty.

Following similar arguments to those in Subsection 4.2.3, we can check that

(5.4.1) V −b := sup
w∈U−b

w ≤ Vb ≤ inf
w∈U+

b

w =: V +
b ,

when U+
b and U−b are not empty. Next we will show in Theorem 5.4.7 that V +

b is

a viscosity sub-solution and V −b is a super-solution of (5.2.3). We still have the

following two preparatory lemmas.

Lemma 5.4.5. U+
b (resp. U−b ) is closed under pairwise minimization (resp. maxi-

mization).

Lemma 5.4.6. There exists a non-increasing sequence U+
b 3 wn ↘ V +

b and a non-

decreasing sequence U−b 3 vn ↗ V −b .

Theorem 5.4.7. Let Assumptions 5.2.1 and 5.2.12 hold.

1. If Assumption 5.2.13 holds, V +
b is a bounded USC viscosity sub-solution of

(5.2.3).

2. If Assumptions 5.2.14 and 5.4.4 hold in addition to the main assumptions, V −b

is a bounded LSC viscosity super-solution of (5.2.3).
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Proof. Step 1. ( V −b is a viscosity super-solution)

1.1. V −
b (t, x) ≥ g(x) : We show that V −b (t, x) ≥ g(x) for all (t, x) ∈ D in this step.

Assume, on the contrary, that for some (t0, x0) ∈ D, there exists η > 0 such that

−2η := V −b (t0, x0)− g(x0) < 0.

Take an arbitrary w ∈ U−b . From the fact that w(t0, x0) ≤ V −b (t0, x0), the continuity

of w and upper semi-continuity of g, there exists ε > 0 such that for all (t, x) ∈

Bε(t0, x0),

w(t, x)− g(x) < −η, g(x)− g(x0) > −η
2

and |w(t, x)− w(t0, x0)| < η

2
.

Define

w′(t, x) :=


w(t, x) for (t, x) /∈ Bε(t0, x0),

w(t, x) +

(
1− dist((t, x), (t0, x0))

ε

)
(g(x0)− w(t0, x0)− η), otherwise.

Obviously, w′ is bounded and continuous. Moreover,

(5.4.2) {(t, x) : w(t, x) < w′(t, x)} ⊂ Bε(t0, x0) and

(5.4.3) w′(t, x) ≤ w(t, x) + (g(x0)− w(t0, x0)− η) < g(x) for (t, x) ∈ Bε(t0, x0).

This, together with the fact that w(T, x) ≤ g(x) for all x ∈ Rd, implies that

w′(T, x) ≤ g(x). Since w′(t0, x0) = g(x0) − η > V −b (t0, x0), we will obtain a con-

tradiction if w′ ∈ U−b .

Fix (t, x, y) ∈ Di × R, {τα} ∈ Tt and u ∈ U(t). Let ũw ∈ U(t, {τα}) and ρρρw ∈

T(t, {τα}) be the strategies in Definition 5.4.1 for w. Define

ũ[α] = (ũw[α]1A + u∗[α]1Ac)1[τα,T ] and ρρρ[α] = ρρρw[α]1A + τα1Ac ,
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where u∗ is arbitrary in U(t, {τα}) and A = {w′(τα, Xα
t,x(τ

α)) = w(τα, Xα
t,x(τ

α))}.

It is easy to check that ũ ∈ U(t, {τα}) and ρρρ ∈ T(t, {τα}). Let X := Xα
t,x and

Y := Y
u⊗τα ũ[α],α
t,x,y . It suffices to show that

Y (ρρρ[α]) ≤ g(X(ρρρ[α])) P− a.s. on {Y (τα) ≤ w′(τα, X(τα))}.

Note that

(5.4.4) X(τα) = Xα
t,x(τ

α), Y (τα) = Y u,α
t,x,y(τ

α)

We consider the following two cases.

(i) On the set A ∩ {Y (τα) ≤ w′(τα, X(τα))}: Note that

A ∩ {Y (τα) ≤ w′(τα, X(τα))} ⊂ {Y (τα) ≤ w (τα, X(τα))} .

The equation above, along with the definitions of ũ and ρρρ on A and the fact w ∈ U−b ,

implies that

Y (ρρρ[α]) ≤ g(X(ρρρ[α])) on A ∩ {Y (τα) ≤ w′(τα, X(τα))}.

(ii) On the set Ac ∩ {Y (τα) ≤ w′(τα, X(τα))}: by (5.4.2),

(τα, Xα
t,x(τ

α)) ∈ Bε(t0, x0) on Ac ∩ {Y (τα) ≤ w′(τα, X(τα))}.

This implies from the definition of ρρρ on Ac, (5.4.3) and (5.4.4) that

Y u,α
t,x,y(ρρρ[α]) ≤ w′

(
ρρρ[α], Xα

t,x(ρρρ[α])
)
≤ g

(
Xα
t,x(ρρρ[α])

)
on Ac ∩ {Y (τα) ≤ w′(τα, X(τα))}. Therefore, (i) and (ii) yield the desired result.

1.2. −∂V −
b (t, x) + FV −

b (t, x) ≥ 0 on Di in the viscosity sense. Let

(t0, x0) ∈ Di and ϕ ∈ C1,2(D) be such

0 = V −b (t0, x0)− ϕ(t0, x0) = min
(t,x)∈Di

(V −b (t, x)− ϕ(t, x)).
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Assume by contradiction that

−∂t(t0, x0) + Fϕ(t0, x0) < 0.

By applying similar arguments to those in Step 1.1 of Theorem 4.3.4’s proof, there

exist ε > 0 and δ > 0 such that for all (t, x, y) ∈ D× R satisfying (t, x) ∈ Bε(t0, x0)

and |y − ϕ(t, x)| ≤ δ,

(5.4.5) −∂tϕ(t, x) + F (t, x, y,Dϕ(t, x), D2ϕ(t, x)) < 0.

Since ϕ < V −b on the compact set T := Bε(t0, x0) − Bε/2(t0, x0) and V −b is LSC,

ϕ < V −b − 2η on T for some η > 0. Let {wn} be a sequence in U−b such that

wn ↗ V −b . A Dini type argument shows that ϕ < wn − η on T and ϕ < wn + δ on

Bε/2(t0, x0) for large enough n ∈ N. For simplicity, fix such an n and let w = wn.

For κ ∈ (0, η ∧ δ ∧ ε), define

wκ :=

 (ϕ+ κ) ∨ w on Bε(t0, x0),

w outside Bε(t0, x0).

Since wκ(t0, x0) = ϕ(t0, x0) + κ > V −b (t0, x0), we will obtain a contradiction if

we can show wκ ∈ U−b . Obviously, wκ is continuous, bounded and wκ(T, x) ≤

g(x) for all x ∈ Rd. Fix (t, x, y) ∈ Di × R, {τα} ∈ Tt and u ∈ U(t). Let

ũw,{τ
α} ∈ U(t, {τα}) be the “optimal” strategy in Definition 5.4.1 for w and A ={

wκ(τα, Xα
t,x(τ

α)) = w(τα, Xα
t,x(τ

α))
}
. We construct ũ on A and Ac separately:

(i) On A: set ũ to be ũw,{τ
α}.

(ii) On Ac: For α ∈ At, let Y
α

be the unique strong solution (which is thanks in

particular to Assumption 5.2.13) of the equation

Y
α
(l) = Y u,α

t,x,y(τ
α) +

∫ τα∨l

τα
σX(s,Xα

t,x(s), αs)Dϕ(s,Xα
t,x(s))dWs

+

∫ τα∨l

τα
µûY
(
s,Xα

t,x(s), Y
α
(s), σX(s,Xα

t,x(s), αs)Dϕ(s,Xα
t,x(s)), αs

)
ds.
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Note that Y
α
(s) = Y u,α

t,x,y(s) for s < τα. Define

ũ0 := ũ0[α](s) = û(s,Xα
t,x(s), Y

α
(s), σX(s,Xα

t,x(s), αs)Dϕ(s,Xα
t,x(s)), αs).

Let θα = θα1 ∧ θα2 , where

θα1 := inf
{
s ∈ [τα, T ] : (s,Xα

t,x(s)) /∈ Bε/2(t0, x0)
}
∧ T and

θα2 := inf
{
s ∈ [τα, T ] :

∣∣Y α
(s)− ϕ(s,Xα

t,x(s))
∣∣ ≥ δ

}
∧ T.

Set ũ to be ũ0 on [τα, θα). Starting at θα, we will follow the strategy uw,{θ
α} ∈

U(t, {θα}) which is ”optimal” for w. In short,

ũ[α] =
(
1Au

w,{τα}[α] + 1Ac(ũ0[α]1[t,θα) + uw,{θ
α}[α]1[θα,T ])

)
1[τα,T ].

We note that ũ0 ∈ U(t) by the pathwise uniqueness of X’s, Y ’s and Y ’s equations.

Define u∗[α] := ũ0[α]1[t,θα) + uw,{θ
α}[α]1[θα,T ]. From Lemma 5.2.11, u∗ ∈ U(t). By

Definition 5.2.6, it is easy to see that ũ ∈ U(t, {τα}) by the pathwise uniqueness of

X’s equation.

We construct ρρρ as follows. Let ρρρw,{τ
α} ∈ T(t, {τα}) be the stopping strategy of the

controller in Definition 5.4.1 for w corresponding to {τα} and ρρρw,{θ
α} ∈ T(t, {θα})

be the stopping strategy in Definition 5.4.1 for w corresponding to {θα}. Define

(5.4.6) ρρρ[α] = 1Aρρρ
w,{τα}[α] + 1Acρρρ

w,{θα}[α].

Obviously, ρρρ ∈ T(t, {τα}).To check that the constructions of ũ and ρρρ works, it suffices

to show that

Y (ρρρ[α]) ≤ g(X(ρρρ[α])) P-a.s. on {Y (τα) ≤ w(τα, X(τα))},

where

X := Xα
t,x and Y := Y

u⊗τα ũ[α],α
t,x,y .
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We will carry out the proof in two steps:

(i) On the set A ∩ {Y (τα) ≤ wκ(τα, X(τα))}: Note that

A ∩ {Y (τα) ≤ wκ(τα, X(τα))} ⊂ {Y (τα) ≤ w(τα, X(τα))}.

Therefore, by the definitions of ρρρ and ũ on A and the fact w ∈ U−b , we have

Y (ρρρ[α]) ≤ g(X(ρρρ[α])) on A ∩ {Y (τα) ≤ wκ(τα, X(τα))}.

(ii) On the set Ac∩{Y (τα) ≤ wκ(τα, X(τα)}: Applying Itô’s Formula, we get that

Y (· ∧ θα)− ϕ(· ∧ θα, X(· ∧ θα)) = Y (τα)− ϕ(τα, X(τα)) +

∫ ·∧θα
τα

γ(s) ds, where

γ(s) := −∂tϕ(s,X(s)) + Lαs(s,X(s), Y (s), Dϕ(s,X(s)), D2ϕ(s,X(s))).

From (5.4.5), γ < 0 on [τα, θα]. This implies that Y (· ∧ θα)− ϕ(· ∧ θα, X(· ∧ θα)) is

non-increasing on [τα, T ]. Therefore,

(5.4.7) Y (θα)− ϕ(θα, X(θα))− κ ≤ Y (τα)− ϕ(τα, X(τα))− κ ≤ 0.

On the one hand, we get from (5.4.7) that

(5.4.8) 0 ≥ Y (θα1 )− ϕ(θα1 , X(θα1 ) + κ) ≥ Y (θα1 )− w(θα1 , X(θα1 )) on {θα1 < θα2 }.

On the other hand, due to (5.4.7) and the path continuity of X and Y ,

Y (θα2 )− ϕ(θα2 , X(θα2 )) = −δ on {θα1 ≥ θα2 }.

Since ϕ < w + δ on Bε/2(t0, x0),

(5.4.9) Y (θα2 )−w(θα2 , X(θα2 )) = ϕ(θα2 , X(θα2 ))−w(θα2 , X(θα2 ))−δ < 0 on {θα1 ≥ θα2 }.

Combining (5.4.8) and (5.4.9), we obtain

Y (θα)− w(θα, X(θα)) ≤ 0 on Ac ∩ {Y (τα) ≤ wκ(τα, Xα)}.
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This equation, together with the facts that ρρρ = ρρρw,θ
α

and ũ = uw,{θ
α} on Ac, implies

that

Y (ρρρ[α]) ≤ g(X(ρρρ[α])) on Ac ∩ {Y (τα) ≤ wκ(τα, Xα)}.

Step 2. ( V +
b is a viscosity sub-solution)

2.1 The interior super-solution property: Assume, on the contrary, that

(t0, x0) ∈ Di and ϕ ∈ C1,2(D) are such that

0 = V +
b (t0, x0)− ϕ(t0, x0) = max

(t,x)∈Di
(V +

b (t, x)− ϕ(t, x)),

V +
b (t0, x0) > g(x0) and −∂tϕ(t0, x0) + Fϕ(t0, x0) > 0. Then there exists a0 ∈ A such

that

(5.4.10) −∂tϕ(t0, x0) + Lu0,a0ϕ(t0, x0) > 0,

where u0 = û(t0, x0, ϕ(t0, x0), σX(t0, x0, a0)Dϕ(t0, x0), a0). From the continuity as-

sumption on the coefficients, the upper semi-continuity of g and the continuity of û

in Assumption 5.2.12, there exist ε > 0 and δ > 0 such that

(5.4.11) ϕ(t, x) > g(x) + ε for all (t, x) ∈ Bε(t0, x0),

and

(5.4.12)
−∂tϕ(t, x) + Lu,a0(t, x, y,Dϕ,D2ϕ) > 0, (t, x, y, u) ∈ Bε(t0, x0)× R× U

s.t. |y − ϕ(t, x)| ≤ δ and |σY (t, x, y, u, a0)− σX(t, x, a0)Dϕ(t, x)| ≤ δ.

Since ϕ > V +
b on the compact set T := Bε(t0, x0) − Bε/2(t0, x0) and V +

b is USC,

ϕ > V +
b + 2η on T for some η > 0. Let {wn} be a sequence in U+

b such that

wn ↘ V +
b . A Dini type argument shows that for large enough n,

ϕ > wn + η on T, ϕ > wn − δ on Bε/2(t0, x0).
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Fix such an n and let w = wn. For κ ∈ (0, η ∧ δ ∧ ε) , define

wκ :=

 (ϕ− κ) ∧ w on Bε(t0, x0),

w outside Bε(t0, x0).

Since wκ(t0, x0) = ϕ(t0, x0)+κ < V +
b (t0, x0), we will obtain a contradiction if we can

show wκ ∈ U+
b . Obviously, wκ is continuous and bounded. By (5.4.11) and w ∈ U+

b ,

wκ(t, x) ≥ g(x) for all (t, x) ∈ D.

Fix (t, x, y) ∈ Di × R, {τα} ∈ Tt, u ∈ U(t), ρρρ ∈ T(t, {τα}) and α ∈ At. we

will construct an ”optimal” control α̃ ∈ At in Definition 5.4.2 for wκ. Let A =

{w(τα, Xα
t,x(τ

α)) = wκ(τα, Xα
t,x(τ

α))}. We divide the construction into two cases:

(i) On A: Since w ∈ U+
b , there exists α̃w,τ

α
which is ”optimal” for Nature in the

sense of Definition 5.4.2 given u, {τα}, ρρρ and α. Set α̃ to be α̃w,τ
α

on A.

(ii) On Ac: Let θα = θα1 ∧ θα2 , where

θα1 := inf
{
s ∈ [τα, T ] : (s,Xα⊗ταa0

t,x (s)) /∈ B(t0, x0, ε/2)
}
∧ T and

θα2 := inf
{
s ∈ [τα, T ] :

∣∣Y u,α⊗ταa0
t,x,y (s)− ϕ(s,Xα⊗ταa0

t,x (s))
∣∣ ≥ δ

}
∧ T.

Set α̃ = a0 on [τα, θα). Starting from θα, choose α̃ = α̃w,θ
α
, where the latter is

”optimal” for Nature given u, {τα}, ρρρ and α this time onward. In short,

α̃ =
(
1Aα̃

w,τα + 1Ac(a01[t,θα) + α̃w,θ
α

1[θα,T ])
)
1[τα,T ].

Let us check the construction above works. Set (X, Y ) := (Xα⊗τα α̃
t,x , Y u,α⊗τα α̃

t,x,y ). Note

that

X(s) = 1AX
α⊗τα α̃w,τ

α

t,x (s) + 1AcX
α⊗ταa0
t,x (s) for τα ≤ s ≤ θα,

Y (s) = 1AY
u,α⊗τα α̃w,τ

α

t,x,y (s) + 1AcY
u,α⊗ταa0
t,x,y (s) for τα ≤ s ≤ θα.

(5.4.13)

Let

E = {Y (τα) > wκ(τα, X(τα))}, E0 = E ∩ A, E1 = E ∩ Ac,

G = {Y (ρρρ[α]) > wκ(ρρρ[α], X(ρρρ[α])}, G0 = {Y (ρρρ[α]) > w(ρρρ[α], X(ρρρ[α])}.
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Observe that E = E0∪E1, E0∩E1 = ∅ and G0 ⊂ G. We will show in the rest of the

step that P (G|B) > 0 for any F tτα-measurable, non-null set B ⊂ E. In fact, it suffices

to show that P(G∩B) > 0. Noting that P(G∩B) = P(G∩B ∩E0) +P(G∩B ∩E1)

and P(B) = P(B ∩ E0) + P(B ∩ E1), we divide the proof into two steps which will

yield the desired result.

(i) If P(B ∩ E0) > 0: Since w ∈ U−b , B ∩ E0 ⊂ {Y (τα) > w(τα, X(τα))} and

B ∩ E0 ⊂ A, it follows from the definition of α̃w,τ
α

that

P(G0|B ∩ E0) = P
(
Y u,α⊗τα α̃w,τ

α

t,x,y (ρρρ[α]) > w
(
ρρρ[α], Xα⊗τα α̃w,τ

α

t,x (ρρρ[α])
)
|B ∩ E0

)
> 0.

This further implies that P(G ∩B ∩ E0) ≥ P(G0 ∩B ∩ E0) > 0.

(ii) If P(B ∩ E1) > 0: From (5.4.13) and B ∩ E1 ⊂ Ac,

P(Y (θα) > wκ(θα, X(θα))|B∩E1) = P
(
Y u,α⊗ταa0
t,x,y (θα) > wκ

(
θα, Xα⊗ταa0

t,x (θα)
)
|B ∩ E1

)
.

The analysis in [6] shows that

∆(s) = Y (s ∧ θα)− ϕ(s ∧ θα, X(s ∧ θα)) + κ.

is a super-martingale up to a change of measure. We will summarize these arguments

here. Let

λ(s) := σY (s,X(s), Y (s), u[a0]s, a0)− σX(s,X(s), a0)Dϕ(s,X(s)),

β(s) := Lu[a0]s,a0(s,X(s), Y (s), Dϕ(s,X(s)), D2ϕ(s,X(s)))|λ(s)|−2λ(s)1{|λ(s)|>δ}.

From the definition of θα and the regularity and growth conditions in Assumptions

5.2.1 and 5.2.14, we can check that β is uniformly bounded on [τα, θα]. This ensures

that the positive exponential local martingale M defined by the SDE

M(·) = 1 +

∫ ·∧θα
τα

M(s)β>s dWs
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is a true martingale after τα. From (5.4.12), an application of Itô’s formula immedi-

ately implies that M∆ is a local sub-martingale. By similar arguments to those in

Step 2.1 of Theorem 4.3.4’s proof, we further know that M∆ is a sub-martingale.

Since ∆(τα) > 0 on B ∩ E1, it follows from the sub-martingale property of M∆

that there exists a non-null K ⊂ B ∩E1, K ∈ F tτα such that ∆(θα ∧ρρρ[α]) > 0 on K.

From the decomposition

∆(θα ∧ ρρρ[α])1K = (Y (θα1 )− ϕ(θα1 , X(θα1 )) + κ)1K∩{θα1<θα2 ∧ρρρ[α]}

+ (Y (θα2 )− ϕ(θα2 , X(θα2 )) + κ)1K∩{θα2≤θα1 ∧ρρρ[α]}

+ (Y (ρρρ[α])− ϕ(ρρρ[α], X(ρρρ[α])) + κ)1K∩{ρρρ[α]<θα},

we get that

Y (θα1 )− ϕ(θα1 , X(θα1 )) + κ > 0 on K ∩ {θα1 < θα2 ∧ ρρρ[α]},(5.4.14)

Y (θα2 )− ϕ(θα2 , X(θα2 )) + κ > 0 on K ∩ {θα2 ≤ θα1 ∧ ρρρ[α]},(5.4.15)

Y (ρρρ[α])− ϕ(ρρρ[α], X(ρρρ[α]) + κ > 0 on K ∩ {ρρρ[α] < θα}.(5.4.16)

On the one hand,

ϕ(θα1 , X(θα1 ))− κ > w(θα1 , X(θα1 )) on K ∩ {θα1 < θα2 ∧ ρρρ[α]}.

Then from (5.4.14), the equation above yields that

(5.4.17) Y (θα1 ) > w(θα1 , X(θα1 )) on K ∩ {θα1 < θα2 ∧ ρρρ[α]}.

On the other hand,

Y (θα2 )− ϕ(θα2 , X(θα2 )) = δ. on K ∩ {θα2 ≤ θα1 ∧ ρρρ[α]}.

The right-hand-side can not be −δ, otherwise (5.4.15) would be contradicted. Re-

calling that ϕ > w − δ on Bε/2(t0, x0), this observation gives that

(5.4.18) Y (θα2 ) = ϕ(θα2 , X(θα2 )) + δ > w(θα2 , X(θα2 )) on K ∩ {θα2 ≤ θα1 ∧ ρρρ[α]}.
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Therefore, we obtain in (5.4.17) and (5.4.18) that

Y (θα) > w(θα, X(θα)) on K ∩ {θα ≤ ρρρ[α]}.

By the definition of stochastic sub-solutions and of α̃w,θ
α
, we have that

(5.4.19) P(G0|K ∩ {θα ≤ ρρρ[α]}) > 0 if P(K ∩ {θα ≤ ρρρ[α]}) > 0.

Also, (5.4.16) implies that

(5.4.20) P(G|K ∩ {θα > ρρρ[α]}) > 0 if P(K ∩ {θα > ρρρ[α]}) > 0.

Since P(K) > 0, G0 ⊂ G, and K ⊂ E1 ∩B, (5.4.19) and (5.4.20) imply

P(G ∩ E1 ∩B) > 0.

2.2 The boundary condition: The boundary condition can be proven by follow-

ing a similar proof to Step 2.2 in Theorem 4.3.4.

To characterize Vb as the unique viscosity solution of (5.2.3), we need a comparison

principle.

Proposition 5.4.8. Under Assumption 5.2.1, 5.2.12 and 5.2.13, the comparison

principle for (5.2.3) holds. More precisely, if U (resp. W ) is a bounded LSC viscosity

sub-solution (resp. a bounded USC viscosity super-solution) to (5.2.3) and U ≤ W

on DT , then U ≤ W on D.

Proof. The proposition follows from the arguments in Proposition 4.3.5.

Corollary 5.4.9. Under Assumption 5.2.1, 5.2.12, 5.2.14 and 5.4.4, Vb is the unique

bounded continuous viscosity solution of (5.2.3).

Proof. This corollary follows from the same arguments in Corollary 4.3.6.
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5.5 Comparison of Vs and Vb

Proposition 5.5.1. Let Assumptions 5.2.1, 5.2.12, 5.2.13, 5.2.14 and 5.4.4 hold.

Then

1. Vs ≥ Vb on D.

2. If A = a0 for some a0, Vs = Vb.

Proof. The second claim is trivial, by the uniqueness of the viscosity solutions to

(5.2.2) and the fact that H = F if A is a singleton. The proof of the first claim is

similar to that of Proposition 4.3.5. We will only outline the key steps of the proof.

Step 1. Without loss of generality, we assume that

(5.5.1) ∃ γ > 0 such that H(t, x, y, p,M)−H(t, x, y′, p,M) > γ(y − y′)

for all y > y′. Otherwise, we could follow the arguments in Step 1 of Proposition

4.3.5.

Step 2. We know from Theorem 5.3.7 that Vs is the unique bounded continuous

viscosity solution of (5.2.2). We claim that for large enough λ > 0, V δ
s is a continuous

viscosity super-solution of (5.2.2) for any δ > 0, where V δ
s (t, x) := Vs(t, x)+δe−λt(1+

|x|2) for (t, x) ∈ D. Such a claim is proved in Step 2 of Proposition 4.3.5.

Step 3. In this step, we show that Vb ≤ V δ
s on D for all δ > 0. Then by taking

δ → 0, we get that Vb ≤ Vs on D. The proof of this step follows from a very similar

arguments in Step 3 of Proposition 4.3.5.

Remark 5.5.2. As we mentioned, Vs and Vb are interpreted as hedging prices of Amer-

ican options with model uncertainty. Although they don’t compare by definition, the

above proposition show that Vs ≥ Vb on D without proving any duality results. For

discussion about hedging under model uncertainty, we refer the readers to [5] and

the references therein.
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