Skip to main content

Advertisement

Log in

Convergence of One-Step Projected Gradient Methods for Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we revisit the numerical approach to some classical variational inequalities, with monotone and Lipschitz continuous mapping A, by means of a projected reflected gradient-type method. A main feature of the method is that it formally requires only one projection step onto the feasible set and one evaluation of the involved mapping per iteration. Contrary to what was done so far, we establish the convergence of the method in a more general setting that allows us to use varying step-sizes without any requirement of additional projections. A linear convergence rate is obtained, when A is assumed to be strongly monotone. Preliminary numerical experiments are also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei 7(8), 91–140 (1964)

    MathSciNet  MATH  Google Scholar 

  2. Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. CR Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P.: On the Goldstein–Levitin–Polyak gradient projection method. IEEE Trans. Autom. Control 21(2), 174–184 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsekas, D.P., Gafni, E.M.: Projection methods for variational inequalities with applications to the traffic assignment problem. Math. Prog. Study 17, 139–159 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burachik, R.S., Lopes, J.O., Svaiter, B.F.: An outer approximation method for the variational inequality problem. SIAM J. Control Optim. 43(6), 2071–2088 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Noor, M.A.: Modified projection method for pseudomonotone variational inequalities. Appl. Math. Lett. 15, 315–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Malitski, Yu.: Projected reflected gradient method for variational inequalities. SIAM J. Optim. 25(1), 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  8. Xiu, N., Zhang, J.: Some recent advances in projection-type methods for variational inequalities. J. Comp. Appl. Math. 152, 559–585 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  10. Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comp. Math. Phys. 27, 120–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marcotte, P.: Applications of Khobotov’s algorithm to variational and network equilibrium problems. Inf. Syst. Oper. Res. 29, 258–270 (1991)

    MATH  Google Scholar 

  12. Sun, D.: An iterative method for solving variational inequality problems and complementarity problems. Numer. Math. J. Chin. Univ. 16, 145–153 (1994)

    MathSciNet  MATH  Google Scholar 

  13. Iusem, A.N.: An iterative algorithm for the variational inequality problem. Math. Appl. Comp. 13, 103–114 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Tseng, P.: On linear convergence of iterative methods for the variational inequality problem. J. Comp. Appl. Math. 60, 237–252 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iusem, A.N., Pérez, L.R.: An extragradient-type algorithm for nonsmooth variational inequalities. Optimization 48, 309–332 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hibert spaces. J. Optim. Theory Appl. 148, 318–355 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malitsky, Yu., Semenov, V.V.: An extragradient algorithm for monotone variational inequalities. Cybern. Syst. Anal. 50, 271–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  22. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors do wish to thank the editor in chief (Franco Giannessi) and the two anonymous referees for their constructive suggestions that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Maingé.

Additional information

Communicated by Alfredo N. Iusem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maingé, P.E., Gobinddass, M.L. Convergence of One-Step Projected Gradient Methods for Variational Inequalities . J Optim Theory Appl 171, 146–168 (2016). https://doi.org/10.1007/s10957-016-0972-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0972-4

Keywords

Mathematics Subject Classification

Navigation