Skip to main content
Log in

Hierarchical Control for the Wave Equation with a Moving Boundary

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the study of the hierarchical control for the one-dimensional wave equation in intervals with a moving boundary. This equation models the motion of a string where an endpoint is fixed and the other one is moving. When the speed of the moving endpoint is less than the characteristic speed, the controllability of this equation is established. We assume that we can act on the dynamic of the system by a hierarchy of controls. According to the formulation given by Stackelberg (Marktform und Gleichgewicht. Springer, Berlin, 1934), there are local controls called followers and global controls called leaders. In fact, one considers situations where there are two cost (objective) functions. One possible way is to cut the control into two parts, one being thought of as “the leader” and the other one as “the follower.” This situation is studied in the paper, with one of the cost functions being of the controllability type. We present the following results: the existence and uniqueness of Nash equilibrium, the approximate controllability with respect to the leader control, and the optimality system for the leader control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nash, J.: Noncooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pareto, V.: Cours d’économie politique. Rouge, Laussane (1896)

    Google Scholar 

  3. von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Berlin (1934)

    Google Scholar 

  4. Lions, J.-L.: Hierarchic control. Math. Sci., Proc. Indian Acad. Sci. 104, 295–304 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lions, J.-L.: Contrôle de Pareto de Systèmes Distribués. Le cas d’ évolution C.R. Acad. Sc. Paris, série I. 302(11), 413–417 (1986)

    MATH  Google Scholar 

  6. Lions, J.-L.: Some remarks on Stackelberg’s optimization. Math. Mod. Methods Appl. Sci. 4, 477–487 (1994)

    Article  MATH  Google Scholar 

  7. Díaz, J., Lions, J.-L.: On the approximate controllability of Stackelberg-Nash strategies. In: Díaz, J.I. (ed.) Ocean Circulation and Pollution Control Mathematical and Numerical Investigations, pp. 17–27. Springer, Berlin (2005)

    Google Scholar 

  8. Díaz, J.: On the von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems. Rev. R. Acad. Cien., Ser. A. Math. 96(3), 343–356 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Glowinski, R., Ramos, A., Periaux, J.: Nash equilibria for the multi-objective control of linear differential equations. J. Optim. Theory Appl. 112(3), 457–498 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glowinski, R., Ramos, A., Periaux, J.: Pointwise control of the burgers equation and related Nash equilibrium problems : computational approach. J. Optim. Theory Appl. 112(3), 499–516 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. González, G., Marques-Lopes, F., Rojas-Medar, M.: On the approximate controllability of Stackelberg-Nash strategies for Stokes equations. Proc. Amer. Math. Soc. 141(5), 1759–1773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Limaco, J., Clark, H., Medeiros, L.A.: Remarks on hierarchic control. J. Math. Anal. Appl. 359, 368–383 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Araruna, F.D., Fernández-Cara, E., Santos, M.C.: Stackelberg-Nash exact controllability for linear and semilinear parabolic equations. ESAIM: Control, Optim. Calc. Var. 21(3), 835–856 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ramos, A.M., Roubicek, T.: Nash equilibria in noncooperative predator-prey games. Appl. Math. Optim. 56(2), 211–241 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cui, L., Song, L.: Controllability for a wave equation with moving boundary. J. Appl. Math. (2014). doi:10.1155/2014/827698

  16. Araruna, F.D., Antunes, G.O., Medeiros, L.A.: Exact controllability for the semilinear string equation in non cylindrical domains. Control Cybern. 33, 237–257 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Bardos, C., Chen, G.: Control and stabilization for the wave equation. Part III: domain with moving boundary. SIAM J. Control Optim 19, 123–138 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cui, L., Liu, X., Gao, H.: Exact controllability for a one-dimensional wave equation in non-cylindrical domains. J. Math. Anal. Appl. 402, 612–625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cui, L., Song, L.: Exact controllability for a wave equation with fixed boundary control. Bound. Value Problems (2014). doi:10.1186/1687-2770-2014-47

  20. Jesus, I.: Remarks on hierarchic control for the wave equation in moving domains. Arch. Math. 102, 171–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miranda, M.: Exact controlllability for the wave equation in domains with variable boundary. Rev. Mat. Univ. Complut. Madr. 9, 435–457 (1996)

    MATH  Google Scholar 

  22. Miranda, M.: HUM and the wave equation with variable coefficients. Asympt. Anal. 11, 317–341 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Lions, J.-L.: L’analyse non Linéaire et ses Motivations Économiques. Masson, Paris (1984)

    Google Scholar 

  24. Lions, J.-L.: Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968)

    MATH  Google Scholar 

  25. Hörmander, L.: Linear partial differential operators. Die Grundlehren der mathematischen Wissenschaften, Bd. 116. Academic Press. Inc., Publishers, New York (1963)

  26. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1969)

    MATH  Google Scholar 

  27. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Springer, Berlin (2010)

    Book  Google Scholar 

  28. Ekeland, I., Teman, R.: Analyse convexe et problèmes variationnels Dunod. Gauthier-Villars, Paris (1974)

    Google Scholar 

Download references

Acknowledgments

The author wants to express his gratitude to the anonymous reviewers for their questions and commentaries; they were very helpful in improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaías Pereira de Jesus.

Additional information

Communicated by Roland Glowinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesus, I.P. Hierarchical Control for the Wave Equation with a Moving Boundary. J Optim Theory Appl 171, 336–350 (2016). https://doi.org/10.1007/s10957-016-0984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0984-0

Keywords

Mathematics Subject Classification

Navigation