Skip to main content
Log in

Copositivity and Sparsity Relations Using Spectral Properties

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A standard quadratic optimization problem consists in minimizing a quadratic form over the standard simplex. This problem has a closer connection with copositive optimization, where the copositivity appears in local optimality conditions. In this paper, we establish a relationship between the sparsity of a solution of the standard quadratic optimization problem, from one hand, and the copositivity of the Hessian matrix of the Lagrangian from other hand. More precisely, if the Hessian matrix is copositive we prove that the number of zero components, of a local minimizer associated with a standard quadratic optimization problem, is greater or equal to the number of negative eigenvalues counting multiplicities. Moreover, we show that if the number of zero components of a local minimizer is equal to the number of negative eigenvalues of the Hessian matrix, then the strict complementarity condition is satisfied and the critical cone is a linear subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Motzkin, T.S.: Copositive quadratic forms. Natl. Bureau Stand. Rep. 1818, 11–22 (1952)

    Google Scholar 

  2. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jacobson, D.H.: Extensions of Linear-Quadratic Control, Optimization and Matrix Theory. Academic, London (1977)

    MATH  Google Scholar 

  4. Jones, P.C.: A note on the Talman, Van der Heyden linear complementarity algorithm. Math. Program. 25, 122–124 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Johnson, C.R., Reams, R.: Spectral theory of copositive matrices. Linear Algebra Appl. 395, 275–281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaplan, W.: A test for copositive matrices. Linear Algebra Appl. 313(1–3), 203–206 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jargalsaikhan, B.: Indefinite copositive matrices with exactly one positive eigenvalue or exactly one negative eigenvalue. Electron. J. Linear Algebra. 26, 754–761 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, P., Feng, Y.Y.: Criteria for copositive matrices of order four. Linear Algebra Appl. 194, 109–124 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bundfuss, S., Dür, M.: Algorithmic copositivity detection by simplicial partition. Linear Algebra Appl. 428, 1511–1523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dür, M.: Copositive programming—a survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, Berlin (2010)

    Chapter  Google Scholar 

  11. Bomze, I.M., Eichfelder, G.: Copositivity detection by difference-of-convex decomposition and \(\omega \)-subdivision. Math. Program. 138(1–2), 365–400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Väliaho, H.: Quadratic-programming criteria for copositive matrices. Linear Algebra Appl. 119, 163–182 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Väliaho, H.: Criteria for copositive matrices. Linear Algebra Appl. 81, 19–34 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bomze, I.M.: Copositive optimization-recent developments and applications. Eur. J. Oper. Res. 216(3), 509–520 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bomze, I.M., Schachinger, W., Uchida, G.: Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization. J. Global Optim. 52(3), 423–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hiriart-Urruty, J.B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52(4), 593–629 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Micchelli, C.A., Pinkus, A.: Some remarks on nonnegative polynomials on polyhedra. In: Anderson, T.W., Athreya, K.B., Iglehart, D.L. (eds.) Probability, Statistics, and Mathematics Papers in Honor of Samuel Karlin, pp. 163–186. Academic, Boston (1989)

    Chapter  Google Scholar 

  18. Borwein, J.M.: Necessary and sufficient conditions for quadratic minimality. Numer. Funct. Anal. Optim. 5(2), 127–140 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoffman, A.J., Pereira, F.: On copositive matrices with \(-1\), 0, 1 entries. J. Comb. Theory Ser. A. 14(3), 302–309 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chabrillac, Y., Crouzeix, J.P.: Definiteness and semidefiniteness of quadratic forms revisited. Linear Algebra Appl. 63, 283–292 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han, S.P., Fujiwara, O.: An inertia theorem for symmetric matrices and its applications to nonlinear programming. Linear Algebra Appl. 72, 47–58 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jongen, H.T., Möbert, T., Rückmann, J., Tammer, K.: On inertia and Schur complement in optimization. Linear Algebra Appl. 95, 97–109 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Naffouti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccari, A., Naffouti, M. Copositivity and Sparsity Relations Using Spectral Properties. J Optim Theory Appl 171, 998–1007 (2016). https://doi.org/10.1007/s10957-016-0997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-016-0997-8

Keywords

Mathematics Subject Classification

Navigation