INFINITE HORIZON SPARSE OPTIMAL CONTROL

DANTE KALISE, KARL KUNISCH, AND ZHIPING RAO

ABSTRACT. A class of infinite horizon optimal control problems involving L?-type cost functionals
with 0 < p <1 is discussed. The existence of optimal controls is studied for both the convex case
with p = 1 and the nonconvex case with 0 < p < 1, and the sparsity structure of the optimal controls
promoted by the LP-type penalties is analyzed. A dynamic programming approach is proposed to
numerically approximate the corresponding sparse optimal controllers.

1. INTRODUCTION

In this paper, we investigate the following infinite horizon optimal control problem: given A > 0,
and U a convex compact subset of R, solve for any x € R¢

(L.1) inf /wefmﬁ(y(s),u(s))ds

ueL>(0,00;U) JO

subject to the dynamical constraint

(1.2) { igf)); J)ZQ(SW(S)) ae. s>0,

Here f: RY x U — R? and £ : RY x U — R are continuous functions. Given ¥ > 0 and p € (0,1],
{(-,-) is defined as follows: for any x € R? and u = (u',...,u™) € U,

Ex,u) = €1(x) + vllull5,

with /1 a nonnegative and strictly convex function, and

m X
leellp = | X I
k=1

The most remarkable issue of the problem (T.I) is the presence of the nonsmooth term || - |5 in the
cost functional. Moreover, the problem is nonconvex when 0 < p < 1, which induces new properties
of the optimal controls and also makes the analysis of the problem more complicated. The use of
these functionals implies that optimal controls can be identically O on subsets of positive measure.
This is referred to as sparsity. Intuitively, the controls are switched off completely in intervals where,
in the case smooth cost functionals were used, they would be small but nonzero. Finite-dimensional,
finite horizon, optimal control problems with nonsmooth penalizations in the control variable were
originally studied in the context of the so-called minimum fuel optimal control problem, [1, 2]]. In
the linear case, necessary conditions for L' optimal control problems were derived in [3]]. Linear-
quadratic optimal control problems with an additional L'-cost on the control were recently discussed
in [4]]. For the nonlinear case, first order necessary and second order sufficient optimality conditions
for control problems involving an L'-term in the cost functional were obtained in [5]. Applications
to sparse optimal control for multi-agent systems were addressed in [6]].

For infinite-dimensional dynamics, one of the areas of application for sparsity functionals is op-
timal actuator timing and placement [[7, 8]]. Vanishing of the control in temporal or spatial regions
indicates that it is not worthwhile to assert control force on the system there. Such a type of infor-
mation is not available from quadratic control penalties. Open loop, finite horizon, optimal control
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problems with sparsity enhancing functionals in the context of partial differential equations were
addressed in several papers in the recent past. Here we can just mention only a few of them, see
(9, 10, [11]).

The analysis in the present work is focused on the existence of solutions and the sparsity proper-
ties of infinite horizon optimal controls invoked by L control penalties with 0 < p < 1. The problem
is formulated in Section 2. To derive the existence result, we discuss the convex case p = 1 in Sec-
tion 3, and the nonconvex case 0 < p < 1 in Section 4. For the convex case, the existence result is
established for fully nonlinear dynamics f. A similar result has been obtained in [12] for finite hori-
zon problems. For the nonconvex case, the existence of solutions is not guaranteed in general. We
consider the case when u arises linearly in the dynamics, and pose it as a time-discretized noncon-
vex problem in the infinite dimensional sequence space ¢P. The existence result for the reformulated
problem is then derived following the method introduced in [[13]]. Subsequently, first order optimality
conditions are derived and the sparsity structure of optimal controls is investigated for both convex
and nonconvex cases in Section 5. In [5| 4] control constraints of L™ type are used, whereas we
allow for L?-constraints with 1 < g < co. An example with Eikonal dynamics is analyzed in Section
6 and the sparse region of the optimal control is explicitly given.

Turning to Section 7, we acknowledge that the numerical approximation of infinite horizon op-
timal control problems is a challenging task. In the open-loop context, the infinite horizon problem
can be treated either by a sequential approximation of finite horizon control problems or via pseu-
dospectral collocation methods [14, [15]. In the case of closed-loop optimal controls, there exists
a solid computational framework based on the solution of the algebraic Riccati equations for the
linear quadratic case. For the more general case with nonlinear dynamics and nonquadratic costs,
computations can be carried out via dynamic programming. More precisely, we compute the value
function associated to the control problem by solving a Hamilton-Jacobi-Bellman (HJB) equation,
and then the optimal control and the associated optimal trajectories are reconstructed through an on-
line feedback mapping which requires the solution of a nonlinear optimization problem. Comparing
the HIB approach to open-loop methods, it has the advantage of being in feedback form, yielding ro-
bust controllers in the presence of perturbations . In the HIB approach we are, of course, confronted
with the so-called curse of dimensionality. However, for low-dimensional dynamics, the design of
numerical schemes is well-established (we refer to [L6, Chapter 8] for an updated introduction to
this topic). In Section 7, numerical simulations are carried out based on the algorithms introduced
in [[17, [18]. For the example with Eikonal dynamics, the numerical results confirm our analysis on
the sparsity properties of the optimal controls.

2. THE OPTIMAL CONTROL PROBLEM

Recalling that the infinite horizon, optimal control problem is given by
inf {J(x,u) ;:/ e 5 U(y(s),u(s))ds = ¥(s) = f(y(s),u(s)) for s > 0, y(0) =X},

ueL>(0,00;U) 0
we make the following assumptions.

(H1) There exists L > 0 such that

IIf (x1,u) = f(x2,u)|]a < L||x; —x2|]2, forallueU.
(H2) For each x € R?, there exists (y*(-),u*(-)) satisfying (T.2) such that
J(x,u™) < oo

Remark 2.1. Assumption (H2) is a condition on the dynamics f, in combination with the factor
A. It is also related to controllability assumptions. For example, consider the linear-quadratic case
with

f(x,u) = Ax+Bu, £1(x) = ||x[|3,
where A € R™" and B € R™". Then (H2) is satisfied if A > 2p(A), where p(A) is the spectral
radius of A. On the other hand, (H2) also holds if the Kalman’s controllability rank condition is
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satisfied. In this case, for each initial point x € R%, there exists a trajectory leading x to the origin
in finite time, and then the control is switched off so that the running cost stays zero from then on.

The value function v : RY — R is introduced as follows:

= inf  J(x,u), VxeR%
v(x) MGLJ&DO;U) (x,u) X

The value function satisfies the following dynamic programming principle: for any x € R? and 7 >0,
h
v(x)=  inf e M0(y(s),u(s))ds + e Mv(y(h)).
()=, inf [ e (), uts) (+())

By standard arguments, it is deduced that v is the unique viscosity solution to the stationary HJB
equation:

(2.1 Av(x)+H(x,Dv(x)) =0 forx € RY,

where the Hamiltonian H : R¢ x R — R is given by

(22) H(x,p)zsug{—f(x,u)p—ﬁ(x,u)}.
ue

Note that for 0 < p < 1, £ is not a convex function. Therefore, the existence of a minimizer for the
problem (1.1} is not guaranteed. In the following, we will discuss the convex case with p = 1 and
the nonconvex case with 0 < p < 1 separately.

3. THE CONVEX CASE: p=1

In this section, the following general convexity condition is assumed.
(H3) For each x € R?, the following subset of R¢ x R is convex:

((Fru).&) < € > Uxu), ue U},
Remark 3.1. If f is affine in u, then (H3) is satisfied.

In [19], existence of a minimizer for the problem (I.I) is obtained through an approximation
approach in the case of control-affine dynamics. The idea is to approximate the infinite horizon
problem (I.T)) by a family of finite horizon problems. We extend this approach to the nonlinear case.
For any fixed T > 0 and x € R9, consider the problem:

G- " (x) = uEL"}%})f:T;U) JT(X,M)’

where ,
Jr () = / e 25 0(y(s), u(s))ds,
0
and (y(),u(-)) satisfies the dynamical system

{ y(s) = f(y(s),u(s)) ae.s>0,
y(0) =x.

Let G: R? x R — R4 x R be the set-valued multifunction defined by

G(x,n) :={(f(xu), An+&) : &> l(xu), uc U}, VxeR? neR.
Given T > 0, consider the following problem: for any x € R?
3.2) wr(x) = igfe’”n(T),

where 1 (+) together with a corresponding y(-) satisfies the following differential inclusion

(5(5),11(5)) € Gy(s). n(s), ae. s € (0.T),
G- {u@mw»:mw

Lemma 3.2. There exists a minimizer Ny for problem (3.2).
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Proof. For any x € R?, let (1), ),en be a minimizing sequence for (3.2), i.e.
wr(x) = lim e AT n,(T).
n—oo

For each n € N, let y, be the corresponding trajectory such that (y,,n,) satisfies (3:3). By the
definition of G and the selection theorem [20l Corollary 1, pp. 91], there exists a measurable u, such

that
= f(yu(s),un(s)) ae.s€(0,7),
M (8) = ANn(s) 4+ Lyn(s),un(s)) ae.s€(0,7),

We introduce

S /
in(s) / e M=) (yu(s' ), un(s'))ds', Vs € [0,T], n €N,
0
which satisfies that

)] =Pt ) < 5 [eFmas)]

ds ds
and thus,
e i,(s) < e nu(s), Vs €[0,T], neN.
Note that
wr(x) <e M a,(T) < e (T), neN,
and hence

wr(x) = r}iﬁnoloefkTﬁn(T).

By setting &,(s) := e 47, (s) for s € [0,T], we have
Eu(s) = e U (ya(s),un(s)), ae.s € (0,T).

Since f(x,u) is L-Lipschitz continuous w.r.t x uniformly on u, by Gronwall inequality there exists a

constant C > 0, such that
[y () [le < &\ /|Ix[I3+CT, Vs € [0,T).

Due to the continuity of f and ¢, we deduce that |[y,(-)|| and ||&,(-)|| are uniformly bounded
in [0,T]. Therefore, the Arzela-Ascoli Theorem and the Dunford-Pettis Theorem imply that there
exists yr,z € L'(0,T;R?) and &7, 7 € L'(0,T;R) such that, after possibly passing to a subsequence,

(¥n,&n) = (y7,6r) uniformly in [0,T], as n — oo,
i, &1) = (z,7) weakly in L' (0, T;R*1), as n — oo,
By definition of &,, the following holds:
(s fin) = (yr, fir) uniformly in [0, 7], as n — eo,
(Y, Tin) — (z, %) weakly in L' (0, T; R, as n — oo,
where
fir(s) = & (s), T(s) = " (2(s) + A&r (s))-
Recall that (y,(-),(-)) satisfies (3:3) and G is locally Lipschitz continuous with convex images. By
[20, Theorem 1, pp. 60], we deduce that

(Vs fin) — (7, Tir) weakly in L'(0, T;R¥H1), as n — oo,
and (yr, fir) satisfies (3:3). Moreover,
wr(x) = e i (7),
which implies that 17 is a minimizer for (3.2)) with corresponding trajectory yr. O

Lemma 3.3. For any x € R?, we have vr(x) = wr(x) and there exists a minimizer i for problem

@).
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Proof. For any (y(-),u(-)) satisfying (T.2), we define

n(s) = /OS e*MSLS)é(y(s'),u(s’))ds/7 Vs e[0,T].
Then
n(s) = An(s) +£(y(s),u(s)), ae.s € (0,T),
which implies that (y(-),n(-)) satisfies (3.3). It follows that
wr(e) < e M) = [P0, u(s)ds,

and thus,

wr(x) < vr(x).
On the other hand, let (7,7) be optimal for the problem (3.2) by Lemma Then there exists
i€ L*(0,T;U) such that

T g T
G4 wrlo) = e MR(T) = / e )] ds > / 5 0(5(s), a(s))ds,
o ds 0

where the last inequality holds due to the definition of G. Thus,

wr (x) >vr ()C)
It follows that wr (x) = vr(x). Together with (3.4), we obtain that i is a minimizer for (3.I). O
Theorem 3.4. Assume (H1)-(H3). Then there exists a minimizer ii € L*(0,o0;U) for problem (L.1).

For the sake of conciseness, we defer this technical proof to the Appendix.

4. THE NON-CONVEX CASE: 0 < p <1

In this section, we consider the particular case where f is affine in u, i.e. there exists a Lipschitz

continuous functions f; : RY — R¥ for k= 1,...,m such that
m
4.1) Fou) = fox)+ ka(x)uk, VxeRy, u= (u',....u™ eU.
k=1

Note that when 0 < p < 1, the convexity assumption (H3) is not satisfied by f,¢. Therefore, the
existence of an optimal control needs special attention.

It is well known that if there exists a minimizer for (I.I)), the dynamic programming approach will
provide an optimal feedback control which is a measurable function in general. Since in numerical
practice the HIB-based feedback is typically piecewise constant in time, the idea here is to consider
a subspace of piecewise constant functions instead of considering the whole space of measurable
functions on (0, o). For this case existence can be derived.

For the time sequence:

O=tr<h <...<ti<tiy1 <...<oo, i €EN|
the set of piecewise constant controls 7%/ is defined by
U ={u=@,... . u"):[0,00) > U : uf(s) =ul fors € [t;,t;11), U €U, i €N, k=1,...,m}.
Forany u € %,

oo ) moX [t m. oo
[ e u@lpas=Y Y [ e M ludirds = Y Y el
0 k=1i=0"1 k=1i=0

where .
ci = 7(67111' _ e*ll,ur] )

A
Then, the optimization problem (I.IJ) over % can be expressed as for any x € R?

) m. oo
(4.2) inf [ e, (y(s))ds+yz Zc,-\uﬂ”,
uew Jo k=1i=0
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subject to

4.3) { ;]EB))ZJ;O())(S))"FZ;?]fk()’(s))uf fors € (tivti+l)’ i=0,1,...

We denote by v*(x), x € RY the associated value function. For any p > 0 we define the space
7 = {(w)ien : X7 |ui|P < oo} endowed with

- 1/p
luler = (Z |u,~p> , foru e (7.
i=1
It is anorm if p > 1 and a quasi-norm if 0 < p < 1. We recall the following result.

Lemmad.1. For 1 <r<s<oo {" C /{5,

Proof. The case when s = oo is trivial. Consider s # co. For any (u;);en € ¢, we have that |u;| — 0
as [ — oo, Then, there exists iy € N such that

Vi> g, |u] < 1.

We set

.....

Thus, for s € (r,00)

l/t,'S

Z|M’|Y MYZ M

=1

<wy Al

i=1

— Msfrz Wj|r7
i=1
which concludes the proof. (]

Due to the ¢P-penalty in the distributed cost, problem (@.2)) turns into

@4  Au) = inf /0 e 50, (y( el

u=(ul o U (c Pk )P k=1,

To establish an existence result for problem #.4), we follow the idea in [I3]] by introducing the
reparametrization y : 2 — (7 with
2
w(w); = |wi|? sgn(w;), forw e %, i € N.

Using the fact that y is an isomorphism, (@.4) is equivalent to
45) A= inf / 230, (y(s))ds + w2
(43 ( ) w=(wl . W) W(wW)EX wkel k=1,...mJ0 10 ')’Z Z | ‘
where (y,w) satisfies

. -1 )
4.6) { Y(S):fo()’(S)H'Z fk( ( )) /pW(Wk)i fOrSE(Ii,ti+1), i=0,1,...

¥(0) =x.
Let us recall [[13, Lemma 2.1] as follows.

Lemma 4.2. The mapping v : > — (% is weakly (sequentially) continuous, i.e. W' — w weakly in
(% implies that y(w") — w(W) weakly in ?.

Theorem 4.3. If (H1)-(H2) hold, there exists a minimizer w € (Ez)m to @, and hence a solution
i€ U to @3).

Proof. Let (w'”,... w™") be a minimizing sequence of @3). For k=1,...,m, we set ubn =
(") ;e such that

Wt = c;]/pyl(wk’”)i, VieN.

1
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Let y" be the solution of (T.2) associated to u" = (u'",...,u™"). Note that for k= 1,...,m,
- 2/py kn2 - k4
ZC,‘ ""i | :Z|W,‘ | /p7
i=0 i=0

and 2 < %. Since 2 C 64/1’, we deduce that

wh € 047 and (c;/puf’"),-eN e .

It follows that {((c}/”u"")icr, w*™) }pen is a bounded sequence in £2 x (2. Hence there exists a

1
1/p kn

subsequence such that ((c;/”u;");cy, W) converges weakly to some ((c:/"ﬁf)ieN,W") € X x 2.

From Lemmal4.2] we have that
@.7) i = c; Py (k) Vie N,

Weak convergence of wk” to wX in ¢ implies that
k.n

w{ — 3w for each i € N.

Let y, be the solution to {#.6) with the control (w!” ..., w™"). Then on each interval [t;,t;1],
i=0,1,...,1itis deduced by the same arguments as in Lemma|3.3[that there exists ; : [t;,#i+1] — R4
such that

yn — ¥; uniformly in [f;,f;41], as n — co.
For j : [0,00) — R? defined by
y(s) =73i(s), fors € [t;,ti41], i=0,1,...,
it follows that
Yu — ¥ uniformly in [0,00), as n — oo,

and hence y is the solution to {.6) corresponding to w := (w!,...,w™). Here we use that f is affine
in w(wk), k=1,...,m. By convexity of £; and the lower semi-continuity of the /> norm, we deduce
that W is a minimizer for the problem (@3)). Hence i := (it!,...,&") satisfying (@.7) is a minimizer
for the problem #4). O

5. SPARSITY PROPERTIES

In this section, the control set U is given by ¢?-type constraints of the form

(5.1 U:{u:(ul,...,um)eRm:Z|u,~|"§p"},
i=1

where ¢ > 1 and p > 0 are fixed. We focus on control-affine dynamics as in (1)) which are recalled
here

m
Sx,u) = folx) —|—Zf,-(x)ui, VxeRY u=(uy,...,un) €U.
i=1
Let us also recall the running cost: given p € (0, 1],
E(x,u) = £y (x) + yllul|D, Vx e R u= (uy,...,un) €U.

In this framework, we investigate the sparsity properties for the optimal controls which can be de-
rived from the optimality condition. In general, the first order necessary optimality conditions for
the infinite horizon problem (I-1)) are the following ([21, Remark II1.2.55]).

Lemma 5.1. Assume that (H1)-(H2) hold and suppose in addition that f,¢ are C' with respect to
the first variable. Given x € RY, let it € L=(0,00,U) be a locally optimal control for problem (1)
with the initial point x and corresponding optimal trajectory y. Then there exists an adjoint state
@ : [0,00) — RY satisfying:
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(i) For almost all s € (0,0), the following equality holds in the Carathéodory sense

T
(52) o(s) = — [jyf(y@),ﬁ(s))} o(s) —e“jye<y-<s>,u<s>>.
(ii)
lim ¢(T) =0.

(iii) For almost all s € (0,0) and allu € U,
—f(3(8),(5)) - @(s) — e M E(5(s),ai(s)) = —f(3(s),u) - @(s) = E(3(s),u).
The optimality condition shows that for almost all s > 0, a local optimal control # maximizes

—f(3(s),u) - @(s) = U3 (s).u)

m

Y (—AG6) - 9(s)ur—ve M ul”) = fo5(5)) - 9(s) — e 1 (5(5))

i=1

m

=y MY (cils)ui— [uil?) = fo(3(s)) - @(s) — e H 1 (5(s)),

i=1
where
(53) ai(s) =~ 0 90) (S); 0) s
will be of importance throughout this section. The cases 0 < p < 1 and p =1 will be treated
separately.
Denote by (e;)i—1,... the Euclidean basis of R™. The first sparsity result that can be obtained for
0 < p < 11is the following.

Proposition 5.2. Given 0 < p <1, g > 1 and p > 0, let ii be a locally optimal control, y be the
corresponding optimal trajectory and @ be the adjoint state. Then the following holds in the almost
everywhere sense: if

ci(s)(g—1)

pl P <1, VYi=1,...,m,
plg—p

5.4

then
i(s) =0 ifp P maxi—,._mlci(s)] <1,

ii(s) = peisgnei(s) if plPlei(s)] > mane{l....,m,j;éi}{Pl_p|cj(5)\» 1}.
Proof. The arguments are carried out for an arbitrary s € (0,0), and to simplify the notation the
dependence of c; on s is not indicated.
By Lemmal[5.1] & maximizes the following function

m

g(u):= Y (ciu—|wif?), foru = (u1,....un) € R".
i=1

At first consider the case when ¢; > 0 fori = 1,...,m. For any u = (uy,...,u,) € R™, if there exists
some i € {1,...,m} such that u; < 0, then due to the fact that ¢; > 0 we have

g(u) < g(d) with it = (ur, ..., ui—1, —Ui, Uity - Upm),
and consequently
ie {MER’” cu; >0,
Fori=1,...,m, we set
L 1
wi =ul and h(w) =} (ciwi/q—wf/q) , forw = (wi,...,wn), w; >0.
i=1
Then the maximization of g is transformed to
max{h(w) : w € Q},
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where Q is the polygon defined as

m
Q:{weRm:wi>O, Zwi<pq,i:1,...,m}.

i=1
For any w € Q\JQ, we have

2 — (a— 2
LIZ _pla X . 1 (1 _cilg 1)W(1p)/£1) g
Iw; @ WP\ pla—p)

1

The constraints satisfied by w imply that
2
— 1 i(g—1
J f; Zp(qu)_ 1 (l_cz(q )p1p>
ow; q pa-r p(g—p)
Thus, A is strongly convex in Q\JQ. It is also strongly convex in Q since % is continuous. Thus the

maximum of / is obtained at the vertices of the polygon Q. By comparing the values of % at each
vertex, we get the following properties for the maximum w € Q

w=0 ifpl_/’maxizl,‘_ﬂmc,- <1,

w=ple; if p'~Pe;i>maxjeq iz {p' Pej 1}
The desired result for ¢; > 0, for i = 1,...,m, is obtained by replacing w; by ﬁ?. The other cases
when c¢; have different signs can be treated analogously. U

Remark 5.3. Condition (5.4) is always satisfied for g = 1.

We proceed to give the next sparsity result for the case with /”-constraints. For any a,b € R, the
following notation is used:
[a,b] := [min{a,b},max{a,b}].

Proposition 5.4. Given 0 < p < 1 and q = oo, assume that it is a local optimal control for problem

(L1) with

m
U=[]l-pipi
i=1
where p; > 0. Let ¥ be the corresponding optimal trajectory and @ be the adjoint state. Then the
following holds: for almost all s € (0,0)

ij(s) =0 ifp'Plei(s)| < 1,
ils) = —pisgneils) P Pleils)| > 1,
G0 € (0. pusnis) 0! lelo| =1 p# L
i;(s) € [0, —pisgnci(s)] if p'Plei(s)| =1,

Proof. Again the dependence of ¢; on s is not indicated to simply the notation.
Fori=1,...,m,let g; : R — R be defined by

gi(v)=civ—|v]?, forv eR.
It is trivial to see that
i;(s) € arg max g;(v).
ve[=pi:pi]
At first consider the case with ¢; < 0. Then
gi(v) <0=g;(0), forv >0,
and hence i; € (—e0,0]. For v < 0, we have
gi(v) =ci+p(—v)P~\.
Let v* < 0 be the solution of g;(v) = 0. We obtain that g}(v) > 0 for v € (v*,0). Thus the maximum
of g; on [—p;,0] is either obtained at v = —p; or v = 0. Due to the fact that

gi(—pi) = —cipi—p! <0 —c;<pl",
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it is deduced that
IZ,‘(S)ZO ifOS*Ci<pl-1]71,
I/_ti(S) =—p; if —¢;> pl-pil.
Besides, if —¢; = p;’F1 and p # 1, then g/(v) = 0 has a unique solution v* and g(—p;) = g(0). Thus,
IZ,'(S) € {_pho}
Otherwise, for p =1 and —¢; = pip*l =1, we have g;(v) =0 for v € [—p;,0]. Thus,
ii(s) € [=pi, 0].
The case ¢; > 0 can be treated analogously. The desired result is obtained by combining the two

cases. ]
The last sparsity result concerns the case when p = 1 and g € [1,0).

Proposition 5.5. Given p=1, 1 < g <o and p > 0, let ii be a locally optimal control, j be the
corresponding optimal trajectory and @ be the adjoint state. For s > 0, we set
I(s):={i:|ci(s)| > 1,i=1,...,m}.
If g = 1, then the following holds for i in the almost everywhere sense
{ i(s) € co{0, pe;sgnci(s), for|ci(s)| =1} ifl(s)=0,

i(s) € co{peisgneils), for [ei(s)] = maxj=1__mle;(s)|} i 1(s) # 0.
If g > 1, then the following holds for ii in the almost everywhere sense

i(s) € co{0, pe;isgnei(s), for |ci(s)| =1} ifI(s) =0,

ii(s)=0 ifI(s) # 0 and |c;(s)] <1,

ii(s) = psgn ci(s) ()= ! ~77 if1(s) #0and |ci(s)] > 1.
Eifey(o1 (i) =1)7')

(5.5)

Proof. For p = 1, n maximizes the function

g(u) =) (ciui— |uil).

on

i=1
We start by proving the results with ¢ = 1. Consider first the domain

Q :={uelR”:u; >0, Zuiép, i=1,...,m}.
i=1

In Ql,

m
g(u) =Y (ci—1)uj.
i=1
Note that g is linear in €1 which is a polyhedron. Hence the maximizer of g in Q; is either a vertex
of the polyhedron Q| or a convex combination of some vertices. The value of g at the vertices are
the following
g(0)=0and g(pe;) =p(c;—1), fori=1,...,m.
It is then deduced that
i(s) € co{0, pe;, forc; =1} if max;—;
{ i(s) € co{pe;, for c; =maxj—i __,c;} if max,—

mCi < 17

mci > 1.

The domain U defined by (5.1) can be divided into 2 polyhedra of the form Q; but with different
signs of the u;, and in each polyhedron analogous results on maximizers can be obtained by the
arguments as in Q1. The desired result concerning the maximizers in U is then obtained.

We proceed to the case with g > 1. Analogous to the previous case, let us consider first the
maximization of g in

m
Q) ::{MGRm cu; >0, Zu?ﬁpq, i:l,...,l’i’l}.
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We set the index set / and ¢’ > 1 as follows
1 1
I={i:¢;>1,i=1,...,m},and -4+ — = 1.
e hand oty

If I = 0, we deduce the same result as in the previous case with g = 1.
If I # 0, by Holder’s inequality

1/4d 1/q 1/4d
gu) <Y (ci—u; < <Z(Ci—1)ql> <Z’47> <p <Z(0i—1)q/> ;

i€l i€l iel i€l
where the equality holds when
ul
———— is constant fori € I, u; =0 for j &I, and Zuf’ =p9.
(ci—1)4 i€l
Direct computations show that
(ci—1)7!

N1
(Tier(ei— 1))
Again the domain U defined by (5.1) can be divided into 2" parts with the same structure as 5, and
in each part analogous results on maximizers can be obtained. This concludes the proof. (]

uj=p foriel

6. THE EIKONAL CASE WITH L!-COST

In order to get additional insight into the structure of the optimal controls with |u||5 cost, the
problem with Eikonal dynamics is analyzed in this section. The Eikonal dynamics system is the
following: for x € R¢

(6.1) { igg))zlifs) for s € (0,00),

where u takes value in
d
U:={u=(uy,...,us) eR: Zu,z < p?} for some p > 0.
i=1

The running cost is
1 d
) = I3+ 7 Y
i=1

where (x,u) € R? x U. Note that the dynamical system is linear and the cost functional is strictly
convex in x and convex in u, consequently the optimal state is unique, and as a consequence of
the optimal control is unique as well (in the almost everywhere sense).

Let i be the optimal control and y be the corresponding optimal trajectory. By Lemma [5.1] there
exists @ : [0,00) — R satisfying the adjoint state equation in the Carathéodory sense

{ o(s) = —eM55(s)  for s € (0,00),
limg_,0 @(s) = 0.

Proposition [5.5]implies that
supp(ir) C {s € [0,00) : [ei(s)| > 1},
where
ci(s) = —%em(pi(s), for s € [0,00).
The optimal control has the following property.

Lemma 6.1. The support of the optimal control it is bounded.
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Proof. At first we consider the case x = (x1,...,x4) with x; > 0 for i = 1,...,d. The proof is given
in several steps.

Step 1: The optimal state y is nonnegative.
If this were not the true, then there exists an interval (¢1,#,) with 0 < #; < f, < e and a component
of the state, which without loss of generality we assume to be the first one, such that 7, (z) < 0 on
(t1,12), §1(t1) = 0, and 7 () = 0 if 1 < oo. Let us define a new control # such that

i :{ 0 on(t1,0),

_ . and @; =a; fori=2,...,d.
ii; otherwise, P L

Let 7 be the associated trajectory. We note that i is feasible, 7;(¢) = 0 on (#1,%2), and J; = y; for
i=2,...,d. Therefore,
J(x, i) < J(x,i),
which is a contradiction to the optimality of .
Step 2: j; and |c;| are monotonically decreasing for eachi=1,...,d.
By the adjoint state equation we have

o) = [ e Fslsds

Hence, ¢; is nonnegative and monotonically decreasing for i = 1,...,d. Therefore, c; is nonpositive
and we deduce from Proposition [5.5] that i#; < 0. This implies that y; is monotonically decreasing.
Moreover, integration by parts yields that

lei(t)] = —cilt) = %elt / " Ry (s)ds = %/ (y-,-(z) + /, ) el<f—s)a,-(s)ds> ,

t
where we use that 7 — () has sublinear growth (note that i is bounded) and hence lim; .. e *§(z) =
0. We further have

1 /e :
6.2) el = [ mis)as <o,
t

which implies that |¢;| is monotonically decreasing. In particular this implies that if /(7) = @ for
some f > 0, then I(¢) = 0 for all t > 7.

Step 3: Let us assume that /(r) # @ for all > 0 and that |c;(¢)| > 1 forallz >0andi=1,...,d.
Let ¢&; := lim;_ |c;(#)| > 1, and denote
ci(t)|—1
pin=——2L o
VEL (e = 1)

Since lim;_;e Z?Zl Bi(t)> = 1 there exists i € {1,...,d} and B such that

lim Bi(1) — B > 0.

Hence there exists f > 0 such that f:(¢) > E; for all t > 7, and thus

us(t) < —% forall ¢ > 7.
This implies that lim;c. 7;(t) = —eo which contradicts that y; is nonnegative.
Step 4: Next we consider the case that 1(z) # 0 for all # > 0, then there exists some coordinate i
and a 7; > 0 such that |c;(;)| < 1. Next let us choose all coordinates with this property and assume

that these are the first k. Note that k < d since otherwise I(¢) is not different from empty set for all
t > 0. Thus,

lei(@)| < 1for ie{1,...,k}.
Since 7 ~ |c;(¢)| is monotonically decreasing we have that |¢;| < 1 for all # > 7 := max{% }*_, and
i€{l,...,k}. Thus by (5.3) we have

ai(t)=0forallt >fandi=1,...,k.
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Turning to the remaining coordinates, by the same argument as in the previous step, it then follows
that there exists i € {k+1,...,d}, t; and > 0 such that

(1) < —% forallz > r.
Thus lim;_,e y7(¢) = —oo which is a contradiction.

Step 5: The only remaining possibility is that there exists 7 such that I(¢r) = 0 for all r > 7. By
(6.2) and monotone decay of ¢ — |c;(t)| we have u(t) = 0 on (7,0). This concludes that i has a
bounded support for x; > 0,i=1,...,d.

We proceed to prove that i has a bounded support for any x € RY.
Step 6: If x; =0and x; >0fori=2,...,d, then it = j; = 0 by optimality. We can use the above
arguments to show that i;(¢) = 0 for all 7 sufficiently large and i = 2,...,d.

Step 7: The remaining cases for the signs of the initial conditions now easily follow.

Now we investigate the behavior of the optimal trajectory.

Lemma 6.2. Fori=1,...,d, the following holds.
(i) If |xi| < A7, then 3; = x; on [0, o).
(ii) If |xi| > A7, then there exists T; > 0 such that 3;(t) = sgn(x;)Ay for all t > T,
Proof. The proof is given by several steps.
Step 1: If x; = 0, then y; = 0 is optimal.
Step 2: Consider the case 0 < x; < Ay. Arguing by contradiction, if there exists some 7 > 0 with
¥i(f) < x;, then there exists some 7, € (0,7) such that
¥i(f) < 7i(te) =x; — &, for some € € (0,x; — ;).
For any 7 > 1, y(¢) < 3i(t) since ¥; is monotonically decreasing. Thus,
L, [~ 1
()] < = ’/ A (xi—€)ds < —(Ay—e¢ <1, fort > t,
Icz()l_ye e )S_M(Y ) ort > e
which by Proposition [5.5] yields that i;(r) = 0 for ¢ > t¢. Therefore y;(f) = yi(t¢), which is a contra-
diction.
Step 3: Consider the case x; > Ay. Since y; is nonnegative and monotonically decreasing, there
exists z > 0 such that

(6.3) lim 5;(t) = z.

t—roo
Arguing by contradiction, if z > A, then ¥;(¢) > z > Ay for any > 0. Consequently,
N — i LA [T A _z
th_}rg\c,(t)\ 7th_>n°10376 /r e Myi(s)ds = 17 > 1.
Using Proposition there exists 7 > 0 and 8 > 0 such that
ui(t) < —PB, forall t >T.

This implies that lim,_,e. y;(¢) = —oo, which contradicts that y;(t) > 0 for all 7 > 0.
By a similar argument we can exclude the case that z < Ay. Therefore, we conclude that lim,_e. y; (#) =
A 7. Since u; has a bounded support, there exists 7; > 0 such that y;(¢) = Ay for all ¢ > T;.

Step 4: The remaining cases for x; < 0 now easily follow. O
Remark 6.3. Lemma [6.1| and Lemma imply that the original infinite horizon problem can be

reduced to a finite horizon problem for the Eikonal case. In fact, there exists T > O sufficiently large
such that i(t) = 0 and y(t) = Ay for t > T. Consider the following finite horizon problem:

(6.4) inf {/T e M0(y(s), u(s))ds, ¥(s) = u(s) in (0,T), y(0) =x, y(T) = ly} .

uel=(0,7;U) (Jo
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This problem has a unique optimal solution. Since (¥, Q) satisfies the optimality conditions in
Lemma (7,4, 0)| [0,7) satisfies Pontryagin’s maximum principle for the problem (6.4) as well. By
[22, Corollary, pp.220], (¥,)|(,7] is the optimal solution of (6.4).

Now let us construct the optimal control i precisely. We start by the 1d case.

Theorem 6.4. For any x € R, the following holds:
o if |x| < Ay, then ii = 0 is the optimal control.
o ifx| > Ay lett= @ Then
a(t) = —psgn(x) forte[0,1),
10 fort € [T,00),
is the optimal control.
Proof. Assume without loss of generality that x > 0. The case x < A7 has already been discussed in
Lemmal6.2

If x> Ay, we set T = Ay

P
(){ x—pt forrel0,1), ﬁ(t){ —p forte|0,1),

, and note that T > 0. Define

Y x—pt fort € [r,00), 0 fort € [1,).
By direction computation the adjoint state @ is the following:

1 M P (AT A
q')(t):{ ?uipt)e,;:,jLﬁ(e T—e ™M) forte|0,7),
T(x—p7)e fort € [1,00).
We claim that (¥, i, ) satisfy the optimality conditions.
In fact, for t € (7,0),

Pl1) = 2 Are M =y,

and for ¢ € (0, 7),
= _ At
% = (pt—x+Ay)e M < (pr—x+Ay)e M =0.

Thus,
@(1)>ye ™M forre|0,1),
{ @(t) =ye ™ forr e [t,0).
Hence, the optimality conditions in Proposition and Lemma are satisfied by (7, i, ¢). There-
fore, (¥,)|[o,7] is the optimal solution of the problem for a sufficient large T > 0 by Remark
If u* is the optimal control, then it is also optimal for[6.4]by Remark[6.3] Thus i = u* on [0, T]. Note
that i(¢r) = u*(t) = 0 for t > T, consequently & = u* is the optimal control. O

We proceed to give the optimal control in the 2d case.

Theo