Skip to main content
Log in

Pontryagin’s Principle for Optimal Control Problem Governed by 3D Navier–Stokes Equations

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper deals with the Pontryagin maximum principle for optimal control problems governed by 3D Navier–Stokes equations with pointwise control constraint. The obtained result is proved by using some results on regularity of solutions of the Navier–Stokes equations and techniques of optimal control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Barbu, V.: Optimal control of Navier–Stokes equations with periodic inputs. Nonlinear Anal. Theory Methods Appl. 31, 15–31 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bewley, T., Temam, R., Ziane, M.: Existence and uniqueness of optimal control to the Navier–Stokes equations. C. R. Acard. Sci. Paris 30, 1007–1011 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Casas, E.: An optimal control problem governed by the evolution Navier–Stokes equations, Chapter 4. In: Sritharan, S. (ed.) Optimal Control of Viscous Flow. Society for Industrial and Applied Mathematics (SIAM), 3600 University City Science Center, Philadelphia (1998)

  4. Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier–Stokes equations. SIAM J. Control Optim. 46, 952–982 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Los Reyes, J.C., Tröltzsch, F.: Optimal control of the stationary Navier–Stokes equations with mixed control-state constraints. SIAM J. Control Optim. 46, 604–629 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Los Reyes, J.C., Griesse, R.: State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations. J. Math. Anal. Appl. 343, 257–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Desai, M., Ito, K.: Optimal controls of Navier–Stokes equations. SIAM J. Control Optim. 32, 1428–1446 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ton, B.A.: An optimal control free boundary problem for the Navier–Stokes equations. Nonliner Anal. 63, 831–839 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, G.: Optimal control of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 41, 583–606 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Casas, E., Tröltzsch, F.: First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48, 688–718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  12. Raymond, J.-P., Zidani, H.: Pontryagin’s principle for time-optimal problems. J. Optim. Theory Appl. 101, 375–402 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Raymond, J.-P., Zidani, H.: Pontryagin’s principle for state-constrained control problems governed by parabolic equations with unbounded controls. SIAM Control Optim. 36, 1853–1879 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, P., Foias, C.: Navier–Stokes Equations. The University of Chicago Press, Chicago and London (1988)

    MATH  Google Scholar 

  15. Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam, New York, Oxford (1979)

  16. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York, Dordrecht, Heidelberg, London (2011)

  17. Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence, Rhode Island (2010)

  19. Zeidler, E.: Nonlinear Functional Analysis and its Applications. II A, Linear Monotone Operator, Springer (1990)

  20. Hartman, P.: Ordinary Differential Equations, Wiley (1964)

  21. Dieudonné, J.: Foundation of Modern Analysis. Academic Press, New York (1969)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the anonymous referees for their helpful suggestions and comments which improved the original manuscript greatly. This research was partially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) period 2016–2018 under Grant Number 101.01-2015.13. A part of this work was done when the first author worked at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the VIASM for their support and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Kien.

Additional information

Communicated by Michael Hinze.

Appendix

Appendix

Proposition A.1

([14, Proposition 6.1]) Let \(\varOmega \subset {\mathbb {R}}^n\) be bounded, open and of class \(C^l\). Let \(s_1, s_2, s_3\) be real number, \(0\le s_1\le l\), \(0\le s_2\le l-1\), \(0\le s_3\le l\). Assume that

  • (i) \(s_1+s_2+s_3\ge n/2\) if \(s_i\ne n/2\) for all \(i=1,2,3\) or

  • (ii) \(s_1+s_2+s_3>n/2\) if \(s_i=n/2\) for at least one i.

Then there exists a constant depending on \(s_1, s_2, s_3, \varOmega \), scale invariant such that

$$\begin{aligned} |\mathbf{b }(u, v, w)|&\le c|\varOmega |^{\frac{s_1+s_2+s_3}{n}-\frac{1}{2}}\Vert u\Vert _{[s_1]}^{1+[s_1]-s_1}\Vert u\Vert _{[s_1]+1}^{s_1-[s_1]} \Vert v\Vert _{[s_2]+1}^{1+[s_2]-s_2}\Vert v\Vert _{[s_2]+2}^{s_2-[s_2]} \nonumber \\&\quad \cdot \Vert w\Vert _{[s_3]}^{1+[s_3]-s_3}\Vert w\Vert _{[s_3]+1}^{s_3-[s_3]} \end{aligned}$$
(61)

for all \(u, v, w\in C^\infty ({{\bar{\varOmega }}})^n.\) Here \([s_i]\) denotes the integer part of \(s_i\) and \(\Vert \cdot \Vert _0\) denotes the norm of \(L^2(\varOmega )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kien, B.T., Rösch, A. & Wachsmuth, D. Pontryagin’s Principle for Optimal Control Problem Governed by 3D Navier–Stokes Equations. J Optim Theory Appl 173, 30–55 (2017). https://doi.org/10.1007/s10957-017-1081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1081-8

Keywords

Mathematics Subject Classification

Navigation