Skip to main content
Log in

Common Fixed Point Theorems in Topological Vector Spaces via Intersection Theorems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Our purpose in this paper is to present two methods for obtaining common fixed point theorems in topological vector spaces. Both methods combine an intersection theorem and a fixed point theorem, but the order in which they are applied differs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Markov, A.: Quelques théoremes sur les ensembles abéliens. Dokl. Akad. Nauk. SSSR 10, 311–314 (1936)

    MATH  Google Scholar 

  2. Kakutani, S.: Two fixed point theorems concerning bicompact convex sets. Proc. Imp. Akad. Tokyo 14, 242–245 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agarwal, R.P., Balaj, M., O’Regan, D.: Common fixed point theorems and minimax inequalities in locally convex Hausdorff topological vector spaces. Appl. Anal. 88, 1691–1699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.P., Balaj, M., O’Regan, D.: A common fixed point theorem with applications. J. Optim. Theory Appl. 163, 482–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Kassay, G., Kolumbán, I.: On the Knaster–Kuratowski–Mazurkiewicz and Ky Fans theorem. Babes-Bolyai Univ. Res. Seminars Preprint 7, Cluj-Napoca (1990)

  7. Chang, S.S., Zhang, Y.: Generalized KKM theorem and variational inequalities. J. Math. Anal. Appl. 159, 208–223 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balaj, M.: A common fixed point theorem with applications to vector equilibrium problems. Appl. Math. Lett. 23, 241–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balaj, M.: Three types of variational relation problems. Taiwan. J. Math. 17, 47–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lin, L.J., Chuang, C.S., Yu, Z.T.: Generalized KKM theorems and common fixed point theorems. Nonlinear Anal. 74, 5591–5599 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Himmelberg, C.J.: Fixed points of compact multifunctions. J. Math. Anal. Appl. 38, 205–207 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agarwal, R.P., Balaj, M., O’Regan, D.: Variational relation problems in a general setting. J. Fixed Point Theory Appl. 18, 479–493 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ha, C.W.: Minimax and fixed point theorems. Math. Ann. 248, 73–77 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ha, C.W.: A minimax theorem. Acta Math. Hung. 101, 149–154 (2003)

    Article  Google Scholar 

  15. Fan, K.: Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112, 234–240 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yao, J.C.: Multivalued variational inequalities with K-pseudomonotone operators. J. Optim. Theory Appl. 83, 391–403 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Daniilidis, A., Hadjisavvas, N.: Characterization of nonsmooth semistrictly quasiconvex and strictly quasiconvex functions. J. Optim. Theory Appl. 102, 525–536 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aussel, D., Hadjisavvas, N.: On quasimonotone variational inequalities. J. Optim. Theory Appl. 121, 445–450 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, N.J., Li, J.: \(F\)-implicit complementarity problems in Banach spaces. Z. Anal. Anwend. 23, 293–302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, B.S., Khan, M.F., Salahuddin, : Vector \(F\)-implicit complementarity problems with corresponding variational inequality problems. Appl. Math. Lett. 20, 433–438 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeng, L.C., Lin, Y.C., Yao, J.C.: On weak and strong solutions of \(F\)-implicit generalized variational inequalities with applications. Appl. Math. Lett. 19, 684–689 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, N.J., Li, J., Thompson, H.B.: Generalized vector \(F\)-variational inequalities and vector \(F\)-complementarity problems for point-to-set mappings. Math. Comput. Model. 48, 908–917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Salahuddin, M.A., Agarwal, R.P.: Set valued \(F\)-variational inequalities and set valued vector \(F\)-complementarity problems. Math. Inequal. Appl. 16, 587–599 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Kim, W.K.: A fixed point theorem in a Hausdorff topological vector space. Comment. Math. Univ. Carol. 36, 33–38 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi P. Agarwal.

Additional information

Communicated by Viorel Barbu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R.P., Balaj, M. & O’Regan, D. Common Fixed Point Theorems in Topological Vector Spaces via Intersection Theorems. J Optim Theory Appl 173, 443–458 (2017). https://doi.org/10.1007/s10957-017-1082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1082-7

Keywords

Mathematics Subject Classification

Navigation