Skip to main content
Log in

Optimal Control of a Constrained Bilinear Dynamic System

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, an optimal feedback, for a free vibrating semi-active controlled plant, is derived. The problem is represented as a constrained optimal control problem of a single input, free vibrating bilinear system, and a quadratic performance index. It is solved by using Krotov’s method and to this end, a novel sequence of Krotov functions that suits the addressed problem, is derived. The solution is arranged as an algorithm, which requires solving the states equation and a differential Lyapunov equation in each iteration. An outline of the proof for the algorithm convergence is provided. Emphasis is given on semi-active control design for stable free vibrating plants with a single control input. It is shown that a control force, derived by the proposed technique, obeys the physical constraint related with semi-active actuator force without the need of any arbitrary signal clipping. The control efficiency is demonstrated with a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Recall that \({\mathbf {M}}>0\), \({\mathbf {K}}>0\) iff \({\mathbf {z}}^T{\mathbf {M}}{\mathbf {z}}>0\), \({\mathbf {z}}^T{\mathbf {K}}{\mathbf {z}}>0\) for all \({\mathbf {z}}\in \mathbb {R}^{n_z}\), \({\mathbf {z}}\ne {\mathbf {0}}\) and \({\mathbf {C}}_d\ge 0\) iff \({\mathbf {z}}^T{\mathbf {C}}_d{\mathbf {z}}\ge 0\) for all \({\mathbf {z}}\in \mathbb {R}^{n_z}\).

References

  1. Wang, H.: Feedback stabilization of bilinear control systems. SIAM J. Control Optim. 36(5), 1669–1684 (1998). doi:10.1137/S0363012996305498

    Article  MathSciNet  MATH  Google Scholar 

  2. Krotov, V.F., Bulatov, A.V., Baturina, O.V.: Optimization of linear systems with controllable coefficients. Automat. Remote Control 72(6), 1199–1212 (2011). doi:10.1134/S0005117911060063

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruni, C., DiPillo, G., Koch, G.: Bilinear systems: an appealing class of “nearly linear” systems in theory and applications. IEEE Trans. Autom. Control 19(4), 334–348 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aganovic, Z., Gajic, Z.: The successive approximation procedure for finite-time optimal control of bilinear systems. IEEE Trans. Autom. Control 39(9), 1932–1935 (1994). doi:10.1109/9.317128

    Article  MathSciNet  MATH  Google Scholar 

  5. Chanane, B.: Bilinear quadratic optimal control: a recursive approach. Optim. Control Appl. Methods 18, 273–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lee, S.H., Lee, K.: Bilinear systems controller design with approximation techniques. J. Chungcheong Math. Soc. 18(1), 101–116 (2005)

    Google Scholar 

  7. Costanza, V.: Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems. Optim. Control Appl. Methods 29(3), 225–242 (2008)

    Article  MathSciNet  Google Scholar 

  8. Ribakov, Y., Gluck, J., Reinhorn, A.M.: Active viscous damping system for control of MDOF structures. Earthq. Eng. Struct. Dyn. 30(2), 195–212 (2001). doi:10.1002/1096-9845(200102)30:2<195::AID-EQE4>3.0.CO;2-X

    Article  Google Scholar 

  9. Morales-Beltran, M., Paul, J.: Technical note: active and semi-active strategies to control building structures under large earthquake motion. J. Earthq. Eng. 19(7), 1086–1111 (2015). doi:10.1080/13632469.2015.1036326

    Article  Google Scholar 

  10. Scruggs, J.T.: Structural control using regenerative force actuation networks. Ph.D. thesis, California Institute of Technology (2004)

  11. Patten, W.N., Kuo, C.C., He, Q., Liu, L., Sack, R.L.: Seismic structural control via hydraulic semi-active vibration dampers (savd). In: Proceedings of the 1st world conference on structural control (1994)

  12. Dyke, S.J., Spencer Jr., B.F., Sain, M.K., Carlson, J.D.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct. 5(5), 565 (1996)

    Article  Google Scholar 

  13. Sadek, F., Mohraz, B.: Semiactive control algorithms for structures with variable dampers. J. Eng. Mech. 124(9), 981–990 (1998)

    Article  Google Scholar 

  14. Yuen, K.V., Shi, Y., Beck, J.L., Lam, H.F.: Structural protection using MR dampers with clipped robust reliability-based control. Struct. Multidiscip. Optim. 34(5), 431–443 (2007). doi:10.1007/s00158-007-0097-3

    Article  Google Scholar 

  15. Aguirre, N., Ikhouane, F., Rodellar, J.: Proportional-plus-integral semiactive control using magnetorheological dampers. J. Sound Vib. 330(10), 2185–2200 (2011)

    Article  Google Scholar 

  16. Robinson, W.D.: A pneumatic semi-active control methodology for vibration control of air spring based suspension systems. Ph.D. thesis, Iowa State University (2012)

  17. Ribakov, Y.: Semi-active pneumatic devices for control of MDOF structures. Open Constr. Build Technol. J. 3, 141–145 (2009)

    Article  Google Scholar 

  18. Agrawal, A., Yang, J.: A Semi-active Electromagnetic Friction Damper for Response Control of Structures, Chap. 5. American Society of Civil Engineers, Reston (2000). doi:10.1061/40492(2000)6

    Google Scholar 

  19. Halperin, I., Agranovich, G.: Optimal control with bilinear inequality constraints. Funct. Differ. Equ. 21(3–4), 119–136 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Wang, D.H., Liao, W.H.: Magnetorheological fluid dampers: a review of parametric modelling. Smart Mater. Struct. 20(2), 023001 (2011)

  21. Halperin, I., Ribakov, Y., Agranovich, G.: Optimal viscous dampers gains for structures subjected to earthquakes. Struct. Control Health Monit. 23(3), 458–469 (2016). doi:10.1002/stc.1779

    Article  Google Scholar 

  22. Seierstad, A., Sydsaeter, K.: Sufficient conditions in optimal control theory. Int. Econ. Rev. 18(2), 367–391 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krotov, V.F.: A technique of global bounds in optimal control theory. Control Cybern. 17(2–3), 115–144 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Krotov, V.F.: Global Methods in Optimal Control Theory. Chapman & Hall/CRC Pure and Applied Mathematics. CRC Press (1995)

  25. Khurshudyan, A.Z.: The Bubnov–Galerkin method in control problems for bilinear systems. Autom. Remote Control 76(8), 1361–1368 (2015). doi:10.1134/S0005117915080032

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Ido Halperin is grateful for the support of The Irving and Cherna Moskowitz Foundation for his scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ido Halperin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halperin, I., Agranovich, G. & Ribakov, Y. Optimal Control of a Constrained Bilinear Dynamic System. J Optim Theory Appl 174, 803–817 (2017). https://doi.org/10.1007/s10957-017-1095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1095-2

Keywords

Mathematics Subject Classification

Navigation