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Abstract

We study connections between optimistic bilevel programming problems and Gener-
alized Nash Equilibrium Problems (GNEP)s. Inspired by the optimal value approach, we
propose a new GNEP model that incorporates some taste of hierarchy and turns out to be
related to the bilevel program. We provide a complete theoretical analysis of the relation-
ship between the vertical bilevel problem and our “uneven” horizontal model: we define
classes of problems for which solutions of the bilevel program can be computed by finding
equilibria of our GNEP. Furthermore, from a modelistic standpoint, by referring to some
applications in economics, we show that our “uneven” horizontal model lies between the
vertical bilevel model and a “pure” horizontal game.
Keywords: Bilevel programming Generalized Nash Equilibrium Problem (GNEP) Hier-
archical optimization problem Stackelberg game

1 Introduction

We aim at building a bridge between optimistic bilevel programming problems and generalized
Nash equilibrium problems. This kind of study, as far as we are aware, has never been
considered in the literature. In particular, we wish to point out differences and similarities
between two-level optimization and one-level game models. Besides being of independent
theoretical and modelistic interest, this analysis gives a new perspective on bilevel problems.

Bilevel programming is a fruitful modeling framework that is widely used in many fields,
ranging from economy and engineering to natural sciences (see [4], the fundamental [5], [6], the
recent [13], the references therein, the seminal paper [34], and [2, 23] for recent applications).
This problem has a hierarchical structure involving two decision, upper and lower , levels.
We focus on the more general and challenging case in which the lower level program is not
assumed to have a unique solution. We recall that, whenever lower level solutions are non-
uniquely determined, the definition itself of the bilevel program is ambiguous. With this in
mind, in this work we refer to the most common optimistic vision. Roughly speaking, in
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optimistic bilevel problems a decision is taken, at the upper level, by considering two blocks
of variables, namely x and y; but, in turn, y is implicitly constrained by the reaction of a
subaltern (lower level) part to the choice of x. Thus, bilevel programs can be viewed, in some
sense, as a special two-agents optimization. The two agents play here an asymmetric role, in
that the variable block x is controlled only by the upper level agent, while the choice of the
second block y is influenced by both the upper and the lower level agents. It is precisely this
asymmetrically shared influence on the variable blocks that makes bilevel problems inherently
hard to solve. It is worth noting that, whenever there is not such a thorny relationship between
the agents, things become conceptually simpler. Indeed, on the one hand, if all the variables
are controlled by both the agents, we have a pure hierarchical problem (in Section 3 we
show that this problem has the same set of solutions of a suitable one-level generalized Nash
equilibrium problem); while, on the other hand, with x being controlled by the upper level
agent, if y is controlled only by the lower level agent, we get a generalized Nash equilibrium
problem, in which the two agents act as players at the same level (see Section 2).

Optimistic bilevel problems have been studied in two different versions (see [39] for a rather
complete discussion on this topic): the Original optimistic Bilevel programming Problem
(OBP)

minimize
x

miny{F (x, y) : y ∈ S(x)}

s.t. x ∈ X,
(1)

and the Standard optimistic Bilevel programming Problem (SBP)

minimize
x,y

F (x, y)

s.t. x ∈ X

y ∈ S(x),

(2)

where F : Rn1 ×R
n2 → R, X ⊆ R

n1 and the set-valued mapping S : Rn1 ⇒ R
n2 describes the

solution set of the following lower level parametric optimization problem:

minimize
w

f(x,w)

s.t. w ∈ U

g(x,w) ≤ 0,

(3)

where f : Rn1 × R
n2 → R and g : Rn1 × R

n2 → R
m and U ⊆ R

n2 .
As observed in [11, 39], OBP and SBP are equivalent in the global case but a local

minimum of SBP may not lead to a local solution of OBP. We underline that, besides [39],
which deals with OBPs, almost all other solution methods cope only with SBPs. The latter
problems are structurally nonconvex and nonsmooth (see [8]); furthermore, it is hard to
define suitable constraint qualification conditions for them, see, e.g., [12, 37]. In fact, the
study of provably convergent and practically implementable algorithms for the solution of
even just SBPs is still in its infancy (see, for example, [3, 6, 9, 10, 25, 27, 30, 33, 35, 36,
39]), as also witnessed by the scarcity of results in the literature. We remark that suitable
reformulations of the SBP have been proposed in order to investigate optimality conditions
and constraint qualifications, as well as to devise suitable algorithmic approaches: to date,
the most studied and promising are optimal value and KKT one level reformulations (see [13],
the references therein and [29, 38]). As far as the KKT reformulation is concerned, it should
be remarked that the SBP has often be considered as a special case of Mathematical Program
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with Complementarity Constraints (MPCC) (see, e.g., [16, 22, 26]). Actually, this is not the
case, as shown in [7]. Indeed, in general, one can provably recast the SBP as an MPCC only
when the lower level problem is convex and Slater’s constraint qualification holds for all x.
Moreover, even in this case, a local solution of the MPCC, which is what one can expect to
compute (since the MPCC is nonconvex), may happen not to be a local optimal solution of
the corresponding SBP and, even less, OBP.

Generalized Nash Equilibrium Problem (GNEP) is another important modeling tool in
multi-agent contexts. GNEPs, that, unlike SBPs, are problems in which all agents act at
the same level, have been extensively studied in the literature and many methods have been
proposed for their solutions in the last decades, see, e.g., [15, 18, 19, 21, 31, 32]. For further
details, we refer the interested reader to [17]. Finally, we would like to cite the interesting
paper [14], which deals with both bilevel problems and GNEPs but without establishing
connections between them, as we do.

In this work, building on the ideas set forth in [24], we propose a new suitable GNEP
model that is closely related to the SBP and proves to be connected with the OBP also. Our
GNEP model is, in some sense, inspired by the optimal value approach, in that, when passing
from the vertical structure of bilevel problems to the horizontal format of GNEPs, we exploit
the value function idea to mimic the original relationship between the agents. Thus, despite
its one-level structure, the latter GNEP incorporates some taste of hierarchy.

To be more specific, here we summarize the theoretical results about the relationship
between SBP/OBP and our GNEP model. In Theorem 3.1 we show that an equilibrium of
our GNEP gives a feasible and, at least, suboptimal (possibly global optimal under some
suitable conditions) solution for the corresponding SBP. With Proposition 3.4, we define a
particular type of global solutions of the SBP that, in any case, can be computed by finding
an equilibrium of our GNEP. With Corollary 3.6 and with Theorem 3.8, we identify classes
of problems (including Stackelberg games and pure hierarchical optimization problems, see
Remarks 3.7 and 3.9, respectively) for which an equilibrium of our GNEP always leads to a
global solution of the SBP. We remind that global solutions of the SBP lead also to global
solutions of the OBP. Thus, the previous relations hold also between equilibria and global
optima of the OBP. In Subsection 3.2, we introduce the concept of strong local minima of the
SBP: unlike general local solutions of the SBP, strong local minima enjoy the nice property
to lead also to local solutions of the OBP (see Proposition 3.13). With Theorem 3.14 we give
sufficient conditions for an equilibrium of our GNEP to lead to a strong local minimum of
the SBP and, thus, also to a local minimum of the OBP. Section 3 is equipped with several
examples: in particular, we wish to cite Example 3.10 in which we compare our GNEP to the
classical MPCC reformulation.

Relying on the previous theoretical results, in Section 4 we consider some applications in
economics to show that our “uneven” horizontal framework, in some sense, lies between the
vertical bilevel model and a “pure” horizontal game. In a market with two firms producing
some goods, we study the system’s behavior in terms of outcomes values by employing three
different points of view: vertical (for which a firm is the leader and the other one is the
follower), horizontal (for which both firms act at the same level) and our uneven horizontal.
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2 Preliminaries

We briefly recall some basic facts. When dealing with SBP/OBP (2)/(1) we rely on the
following standard assumptions: F, f : Rn1×R

n2 → R and g : Rn1×R
n2 → R

m are continuous,
and X ⊆ R

n1 and U ⊆ R
n2 are closed.

Let W , {(x, y) : x ∈ X, y ∈ S(x)} and U ∩ K(x), with K(x) , {v ∈ R
n2 : g(x, v) ≤ 0},

denote the feasible sets of SBP (2) and of lower level problem (3), respectively.
A point (x∗, y∗) is a global solution of SBP (2) if (x∗, y∗) ∈ W and F (x∗, y∗) ≤ F (x, y),

∀ (x, y) ∈ W . More explicitly, feasibility and optimality of (x∗, y∗) can be equivalently rewrit-
ten in the following manner:

(x∗, y∗) ∈ X × U, f(x∗, y∗) ≤ f(x∗, y) ∀y ∈ U ∩K(x∗), g(x∗, y∗) ≤ 0 (4)

F (x∗, y∗) ≤ F (x, y) ∀ (x, y) ∈ W, (5)

where W =
{
(u, v) ∈ X × U : f(u, v) ≤ f(u,w) ∀w ∈ U ∩K(u), g(u, v) ≤ 0

}
.

We would like to mention two particularly interesting and well-studied classes of SBPs:
(optimistic) Stackelberg games and pure hierarchical optimization problems. Stackelberg
games are SBPs in which function g does not depend on the upper variables x. On the other
hand, when, at the lower level, the whole dependence on x is dropped, the SBP boils down
to the following pure hierarchical optimization problem:

minimize
x,y

F (x, y)

s.t. x ∈ X
y ∈ S,

(6)

where S denotes the solution set of the lower level problem

minimize
w

f(w)

w ∈ U
g(w) ≤ 0.

As we have pointed out in the introduction, the characteristic aspect of SBP (2) is the
hierarchical relationship between the leader and the follower: the two agents play here an
asymmetric role, in that the variable block x is controlled only by the upper level agent, while
the second block y is controlled by both the upper and the lower level agents. Question arises
naturally on what happens if the leader loses control on y. In the latter case, we get the
following GNEP:

minimize
x

F (x, y) minimize
y

f(x, y)

s.t. x ∈ X s.t. y ∈ U

g(x, y) ≤ 0.

(7)

Note that in GNEP (7) the two agents are at the same level, unlike in SBP (2).
One may think that in problem (7) the follower has been promoted at an upper level, the

same of the leader; but this is not the case: indeed, the follower acts in the same manner in
(2) and in (7). Is the leader who is downgraded at the follower’s level: in fact, unlike problem
(7), where the leader can no longer directly control y, in SBP (2) the follower is like “a puppet
in leader’s hands”.

Finally, we denote by N (x̄) the collection of open neighborhoods of x̄ and by domM ,

{x |M(x) 6= ∅} the domain of M : Rn ⇒ R
m.

4



3 Taking care of hierarchy: a new GNEP model

In the light of the observations in Section 2, we propose to address a GNEP that better takes
into account the original hierarchy between agents. With the following GNEP, we aim at
positioning the leader in an intermediate level between that in (7) and that in (2).

minimize
x,y

F (x, y) minimize
w

f(x,w)

s.t. (x, y) ∈ X × U s.t. w ∈ U

f(x, y) ≤ f(x,w) g(x,w) ≤ 0.

g(x, y) ≤ 0

(8)

We say that the player controlling x and y is the leader, while the other player is the fol-
lower. Note that, in the leader’s problem, only the feasible set, in particular constraint
f(x, y) ≤ f(x,w), depends on the follower’s variables w; on the other hand, as regards fol-
lower’s problem, the coupling with the leader’s strategy may happen at both the objective
and the feasible set levels.

GNEP (8) is related to the SBP/OBP, as the forthcoming considerations clearly show (see
Theorems 3.1, 3.8, 3.14, Proposition 3.4, Corollary 3.6 and Examples 3.2 and 3.3). We point
out that, in order to devise GNEP (8), we draw inspiration from the optimal value approach
(see [13, 29, 38]). Indeed, the structure of leader’s feasible set in (8) (in particular, constraint
f(x, y) ≤ f(x,w)) is intended to mimic, in some sense, and to deal with the value function
implicit constraint f(x, y) ≤ ϕ(x), where

ϕ(x) , min
y

{f(x, y) : y ∈ K(x) ∩ U}

is the value function. In problem (8) the leader takes back control of variables y: this fact
and the presence of constraint f(x, y) ≤ f(x,w), introducing some degree of hierarchy in a
level playing field, keep memory of the original balance of power between leader and follower.

We note that, as one can expect, it is precisely the “difficult” constraint f(x, y) ≤ f(x,w)
that makes, in general, problem (8) not easily solvable: because of the presence of such
constraint, GNEP (8) may lack convexity and suitable constraint qualifications are not readily
at hand. However, as will become evident in the subsequent sections, one can still define
classes of bilevel problems for which problem (8) is practically solvable.

Moreover, in view of the above considerations, GNEP (8) may also be considered as an
alternative modeling tool, of independent interest, for describing systems in which there is a
hierarchical interaction between agents.

We denote by
T , {(x, y) ∈ X × U : g(x, y) ≤ 0} and U

the “private” constraints sets, and by

H(w) , {(x, y) ∈ R
n1 × R

n2 : f(x, y) ≤ f(x,w)} and K(x)

the “coupling” constraints sets of the leader and the follower, respectively. Moreover, let
V (w) , T ∩H(w) be the feasible set of the leader.

A solution, or an equilibrium, of GNEP (8) is a triple (x∗, y∗, w∗) such that

(x∗, y∗) ∈ X × U, f(x∗, y∗) ≤ f(x∗, w∗), g(x∗, y∗) ≤ 0, (9)

5



F (x∗, y∗) ≤ F (x, y), ∀ (x, y) ∈ V (w∗), (10)

w∗ ∈ U, g(x∗, w∗) ≤ 0, (11)

f(x∗, w∗) ≤ f(x∗, w), ∀w ∈ U ∩K(x∗), (12)

where V (w∗) =
{
(u, v) ∈ X × U : f(u, v) ≤ f(u,w∗), g(u, v) ≤ 0

}
. Conditions (9)-(10) and

(11)-(12) state feasibility and optimality of (x∗, y∗, w∗) for leader’s problem and for follower’s
problem, respectively.

3.1 Global solutions

The following Theorem 3.1 allows us to establish relations between equilibria of GNEP (8)
and global solutions of SBP (2) and, thus, of OBP (1). On the one hand, Theorem 3.1
gives a sufficient condition for an equilibrium of GNEP (8) to lead to a global solution of the
SBP/OBP; on the other hand, as the subsequent developments in this section clearly show,
it provides a theoretical base to define classes of bilevel problems that are tightly connected
to the GNEP (see Corollary 3.6, Theorem 3.8, and Remarks 3.7 and 3.9).

Theorem 3.1 Let (x∗, y∗, w∗) be an equilibrium of GNEP (8). Then

(i) (x∗, y∗) is a feasible point for SBP (2), that is (x∗, y∗) ∈ W ;

(ii) if g(x,w∗) ≤ 0 for all x such that there exists y with (x, y) ∈ W and F (x, y) ≤ F (x∗, y∗),
then (x∗, y∗) is a global solution of SBP (2).

Proof. Under the assumptions of the theorem, (x∗, y∗, w∗) satisfy relations (9)-(12).
(i) We observe that (9), (11) and (12) together imply that (x∗, y∗) satisfies (4), that is

(x∗, y∗) ∈ W .
(ii) We need to show that (5) holds at (x∗, y∗). Let us denote by L∗ the level set of F at

(x∗, y∗), and by (L∗)c its complement:

L∗ , {(x, y) ∈ R
n1 × R

n2 : F (x, y) ≤ F (x∗, y∗)} , (13)

(L∗)c , {(x, y) ∈ R
n1 × R

n2 : F (x, y) > F (x∗, y∗)} . (14)

Let (x̄, ȳ) be any couple in W ∩ L∗: by assumptions, we have g(x̄, w∗) ≤ 0. Therefore,
w∗ ∈ U ∩K(x̄) and, since (x̄, ȳ) ∈ W , in turn (x̄, ȳ) ∈ V (w∗) and

W ∩ L∗ ⊆ V (w∗). (15)

Thanks to (10) and (15), and noting that for every (x, y) ∈ W ∩ (L∗)c we have F (x, y) >
F (x∗, y∗), (5) holds at (x∗, y∗). Hence, (x∗, y∗) is a global solution of SBP (2). �

It is worth noticing that condition (ii) also suggests that (x∗, y∗) can be interpreted as a
suboptimal point for SBP (2). Indeed, we have F (x∗, y∗) ≤ F (x, y) for every (x, y) ∈ W with
x such that g(x,w∗) ≤ 0.

The following example gives a picture of the relationship between GNEP (8) and SBP (2),
as stated in Theorem 3.1.
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Example 3.2 Let us consider the following SBP:

minimize
x,y

x2 + y2

s.t. x ≥ 1

y ∈ S(x),

(16)

where S(x) denotes the solution set of the lower level problem

minimize
w

w

x+ w ≥ 1,

and the corresponding GNEP, that is,

minimize
x,y

x2 + y2 minimize
w

w

s.t. x ≥ 1 s.t. x+ w ≥ 1.

y ≤ w

x+ y ≥ 1

(17)

Point (1, 0) is the unique solution of problem (16), while all the infinitely many points (1 −
λ, λ, λ), with λ ≤ 0, are equilibria of GNEP (17). In particular, we remark that (1, 0, 0) is the
only solution of GNEP (17) that satisfies assumption (ii) of Theorem 3.1 (see Figure 1 and
Figure 2).

Figure 1: The feasible set W and the unique
solution of SBP (16)

Figure 2: A sketch of leader’s problem in
GNEP (17): the feasible set V (w) and the
corresponding solution are depicted for dif-
ferent values of w, namely w = 0 and w =
−1.

It should be remarked (see Example 3.3) that the implications in Theorem 3.1 (ii) can not be
reversed: indeed, in general, given a global solution (x∗, y∗) of SBP (2), (x∗, y∗, y∗) may not
be an equilibrium for GNEP (8).
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Figure 3: The feasible set W and the unique
solution of SBP (18)

Figure 4: A sketch of leader’s problem in
GNEP (19): the feasible set V (w), which
turns out to be a superset of W , and the cor-
responding solution are depicted for w = 1/2.

Example 3.3 Let us consider the following SBP:

minimize
x,y

x2 + y2

s.t. y ∈ S(x),
(18)

where S(x) denotes the solution set of the lower level problem

minimize
w

(x+ w − 1)2

and the corresponding GNEP

minimize
x,y

x2 + y2 minimize
w

(x+ w − 1)2.

s.t. (x+ y − 1)2 ≤ (x+ w − 1)2
(19)

The unique solution of problem (18) is (x∗, y∗) =
(
1

2
, 1
2

)
. However, the triple (x∗, y∗, w∗) =(

1

2
, 1
2
, 1
2

)
is not an equilibrium of GNEP (19), since point (x̃, y∗, w∗) =

(
0, 1

2
, 1
2

)
is feasible for

the first player and x̃2 + (y∗)2 < (x∗)2 + (y∗)2 (see Figure 3 and Figure 4).

On the other hand, as also observed in [1], strengthening conditions in Theorem 3.1, one can
define points for which the relation between SBP (2) and GNEP (8) is stronger than that
already established.

Proposition 3.4 Let (x∗, y∗) belong to W and be such that

F (x∗, y∗) ≤ F (x, y) ∀ (x, y) ∈ T. (20)

Then

(i) (x∗, y∗) is a global solution of SBP (2);

(ii) for all w∗ ∈ U ∩K(x∗) such that (x∗, w∗) ∈ H(y∗), (x∗, y∗, w∗) is a solution of GNEP
(8).
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Proof. (i) Condition (20) implies relation (5) since W ⊆ T .
(ii) Relations (9), (11) and (12) follow from (4) and the fact that w∗ ∈ U , g(x∗, w∗) ≤ 0

and f(x∗, w∗) = f(x∗, y∗). Moreover, (20) implies (10) since V (w∗) ⊆ T . �

Points that satisfy conditions (20) can be considered as “easy” global solutions of SBP (2)
and, thus, lead also to global solutions of OBP (1): such points lie in W but, as for optimality
(see relation (5)), the lower level objective function plays no role for these solutions to be
computed. Clearly, if (x∗, y∗) is an “easy” solution of SBP (2), then, in view of (ii), (x∗, y∗, y∗)
is an equilibrium of GNEP (8).

In the following example, we present an SBP whose unique solution satisfies the assump-
tions in Proposition 3.4.

Example 3.5 Let us consider the following SBP:

minimize
x,y1,y2

x2 + (y1 + y2)
2

s.t. x ≥ 1

2

(y1, y2) ∈ S(x),

(21)

where S(x) denotes the solution set of the lower level problem

minimize
w1,w2

w1

x+w1 + w2 ≥ 1
w1, w2 ≥ 0.

The corresponding GNEP.

minimize
x,y1,y2

x2 + (y1 + y2)
2 minimize

w1,w2

w1

s.t. x ≥ 1

2
s.t. x+ w1 + w2 ≥ 1

y1 ≤ w1 w1, w2 ≥ 0,
x+ y1 + y2 ≥ 1
y1, y2 ≥ 0

(22)

Clearly,
(
1

2
, 0, 1

2

)
is the unique solution of problem (21), while

(
1

2
, 0, 1

2
, 0, 1

2

)
is an equilibrium

of GNEP (22); furthermore,
(
1

2
, 0, 1

2

)
satisfies the assumptions in Proposition 3.4. It is worth

pointing out that “easy” solution
(
1

2
, 0, 1

2

)
can not be calculated by simply minimizing F (x, y)

over set T : if we did this, indeed, we would obtain multiple solutions, namely any point(
1

2
, y1, y2

)
such that y1 + y2 = 1

2
and y1, y2 ≥ 0. But, among these points, only

(
1

2
, 0, 1

2

)

belongs to W . Thus, actually, the “easy” solutions are not so easy to be calculated! Indeed,
although, for optimality, the lower level objective function plays no role for these points to
be computed, nonetheless the “easy” solutions must belong to the feasible set W .

Clearly, as stated above, in general, solving GNEP (8) may happen not to lead to a solution
of SBP (2). However, Theorem 3.1, as well as Proposition 3.4, establish sufficient conditions
for an equilibrium of GNEP (8) to provide a global solution of SBP/OBP (2)/(1). Relying on
these conditions, with the following Corollary 3.6 and Theorem 3.8 we present two significant
classes of problems for which one can establish an even deeper connection between global
solutions of SBP/OBP (2)/(1) and those of GNEP (8).

For example, if the lower level feasible set does not depend on upper level variables x,
then the requirements of Theorem 3.1 (ii) are trivially satisfied and the following result, whose
proof is omitted, holds.
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Corollary 3.6 Suppose that, at the lower level, the feasible set mapping U ∩ K is fixed in
X ∩ dom(U ∩ K). If (x∗, y∗, w∗) is an equilibrium of GNEP (8), then (x∗, y∗) is a global
solution of SBP (2).

Remark 3.7 The class of SBPs in which function g does not depend on the upper variables
x, in view of the previous corollary, can be solved by addressing GNEP (8), whenever at least
an equilibrium exists. Note that Stackelberg games (see Section 2) belong to this category of
problems.

We point out that, as Example 3.3 shows, also the implications in Corollary 3.6 can not be
reversed: given a global solution (x∗, y∗) of SBP (2), (x∗, y∗, y∗) may not be an equilibrium for
GNEP (8), even when the lower level feasible set does not depend on upper level variables x.
On the other hand, this is not the case whenever, at the lower level, the solution set mapping
S is fixed. Indeed, for this class of problems, the implications in Theorem 3.1 (ii) can actually
be reversed.

Theorem 3.8 Suppose that, at the lower level, the solution set mapping S is fixed in X ∩
dom(U ∩K). The following implications hold:

(i) if (x∗, y∗, w∗) is an equilibrium of GNEP (8), then (x∗, y∗) is a global solution of SBP
(2);

(ii) if (x∗, y∗) is a global solution of SBP (2), then, for all w∗ ∈ U such that g(x∗, w∗) ≤ 0
and f(x∗, w∗) = f(x∗, y∗), (x∗, y∗, w∗) is a solution of GNEP (8).

Proof. In view of relations (4), (5) and (9)-(12), in both cases, it suffices to show that, for
every x ∈ X ∩ dom(U ∩K), f(x,w∗) = miny{f(x, y) : y ∈ K(x)∩U} and, thus, W = V (w∗).

(i) The claim follows easily observing that w∗ ∈ S(x∗).
(ii) Clearly, y∗ ∈ S(x∗) but, since w∗ ∈ U, g(x∗, w∗) ≤ 0 and f(x∗, y∗) = f(x∗, w∗), we

also have w∗ ∈ S(x∗). �

Remark 3.9 Whenever in SBP (2), at the lower level, the whole dependence on x is dropped,
the solution set mapping S is obviously fixed. Thus, pure hierarchical program (6) belonging
to this category of problems, can equivalently be reformulated as the following simple GNEP
in which the coupling between leader’s and follower’s problems occurs only at the leader’s
feasible set level:

minimize
x,y

F (x, y) minimize
w

f(w)

s.t. (x, y) ∈ X × U s.t. w ∈ U

f(y) ≤ f(w) g(w) ≤ 0.

g(y) ≤ 0

(23)

Here we consider a particularly interesting example of SBP with a fixed lower level solution
set mapping.

Example 3.10 (see [7]) Let us consider the following SBP:

minimize
x,y

(x− 1)2 + y2

s.t. y ∈ S(x),
(24)
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where S(x) denotes the solution set of the lower level problem

minimize
w

x2w

w2 ≤ 0.

Note that the unique solution of (24) is (1, 0).
Interestingly, as shown in [7], solving the MPCC reformulation of SBP (24) invariably leads

to point (0, 0), which is not the solution of the original problem. In this case, the MPCC
reformulation fails to identify the set of solutions of the SBP, due to the lack of regularity
(Slater’s condition) in the lower level feasible set (see [7]). Our GNEP, instead, in view of
the previous result, effectively provides the unique solution of SBP (24). Indeed, it is worth
remarking that, in order to address SBP/OBP (2)/(1) by means of GNEP (8), we do not
need any convexity or regularity preliminary assumption.

3.2 Strong local solutions

SBPs are inherently nonconvex (see [8]), so that multiple local optimal solutions may occur.
We say that (x∗, y∗) is a strong local solution of SBP (2) if (x∗, y∗) ∈ W and there exists a
neighborhood N∗ ∈ N (x∗) of x∗ such that

F (x∗, y∗) ≤ F (x, y) ∀ (x, y) ∈ W ∩ (N∗ × R
n2). (25)

Of course, global solutions are strong local solutions of SBP (2). As the following example
clearly shows, even if the lower level problem is linear and the upper level objective function
is strongly convex, the resulting SBP may be nonconvex. Moreover, in this case, strong local
solutions that are not global occur.

Example 3.11 Let us consider the following SBP:

minimize
x,y

x2 + y2

s.t. −1 ≤ x ≤ 1
y ∈ S(x),

(26)

where S(x) denotes the solution set of the lower level problem

minimize
w

−w

2x+w ≤ 2
0 ≤ w ≤ 1.

Point
(
4

5
, 2
5

)
is the global solution of problem (26), while (0, 1) is a strong local solution of

SBP (26) that is not global.

We point out that strong local solutions are obviously local solutions for SBP (2). The
converse, in general, is not true, see the following example.

Example 3.12 (see [11]) Consider the following SBP

minimize
x,y

x

s.t. −1 ≤ x ≤ 1
y ∈ S(x),

(27)
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where S(x) denotes the solution set of the lower level problem

minimize
w

xw

0 ≤ w ≤ 1.

Point (0, 0) is a local solution that is not strong. Moreover, notice that the unique global
minimum (−1, 1) is an “easy” global solution of SBP (27) (see Proposition 3.4).

Strong local solutions can be considered as “asymmetric” local solutions, since, in some sense,
variables x play there a more important role. Interestingly, any strong local solution of SBP
(2), which is precisely what we seek for, leads to a local solution of OBP (1), unlike generic
local solutions of SBP (2) (see [11]).

Proposition 3.13 Let (x∗, y∗) ∈ W be a strong local solution of SBP (2). Then x∗ is a local
solution of OBP (1).

Proof. Since (x∗, y∗) ∈ W and there exists a neighborhood N∗ ∈ N (x∗) of x∗ such that
F (x∗, y∗) ≤ F (x, y) ∀ (x, y) ∈ W ∩ (N∗ × R

n2), we have miny{F (x∗, y) : y ∈ S(x∗)} =
F (x∗, y∗) ≤ miny{F (x, y) : y ∈ S(x)} ∀x ∈ X ∩N∗. Hence, x∗ is a local solution of (1). �

We are now in a position to restate Theorem 3.1 (ii) in a local sense. Preliminarily, let
I(x, y) , {i ∈ {1, . . . ,m} : gi(x, y) = 0} be the active index set for constraints g at (x, y).

Theorem 3.14 Let (x∗, y∗, w∗) be an equilibrium of GNEP (8). If, for every i ∈ I(x∗, w∗),
there exists a neighborhood N∗ ∈ N (x∗) of x∗ with gi(x,w

∗) ≤ 0 for all x ∈ N∗ such that
there exists y with (x, y) ∈ W and F (x, y) ≤ F (x∗, y∗), then (x∗, y∗) is a strong local solution
of SBP (2).

Proof. Since (x∗, y∗, w∗) is an equilibrium of GNEP (8), it satisfies relations (9)-(12). Our
aim is to show that (4) and (25) hold at (x∗, y∗).

As done in the proof of Theorem 3.1, we observe that (9), (11) and (12) together imply
that (x∗, y∗) satisfies (4): thus, (x∗, y∗) is feasible for SBP (2).

We recall that, by (11), we have g(x∗, w∗) ≤ 0; let, without loss of generality, N∗ be such
that gj(x,w

∗) ≤ 0 for all x ∈ N∗ and for every j /∈ I(x∗, w∗).
For any couple (x̄, ȳ) in W ∩ (N∗ ×R

n2) ∩L∗ (for the definition of sets L∗ and (L∗)c, see
(13) and (14)) we have, by assumptions, gi(x̄, w

∗) ≤ 0 for every i ∈ I(x∗, w∗). Therefore, since
we have also gj(x̄, w

∗) ≤ 0 for every j /∈ I(x∗, w∗), in view of (11), we get w∗ ∈ U ∩K(x̄).
Inclusions (x̄, ȳ) ∈ W and w∗ ∈ U ∩K(x̄) entail (x̄, ȳ) ∈ V (w∗) and, in turn,

W ∩ (N∗ × R
n2) ∩ L∗ ⊆ V (w∗). (28)

Thanks to (10) and (28), and noting that for every (x, y) ∈ W ∩ (N∗ ×R
n2) ∩ (L∗)c we have

F (x, y) > F (x∗, y∗), (25) holds at (x∗, y∗). Hence, (x∗, y∗) is a strong local solution of SBP
(2). �

We remark that, while Example 3.3 shows that a strong (local) solution of SBP may not lead
to an equilibrium of the corresponding GNEP, if conditions in Theorem 3.14 are satisfied, an
equilibrium of GNEP (8) always provides us with a strong (local) solution of SBP (2).
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Example 3.15 Let us consider again the problem in Example 3.11; the corresponding GNEP
is the following:

minimize
x,y

x2 + y2 minimize
w

−w

s.t. −1 ≤ x ≤ 1 2x+ w ≤ 2
y ≥ w 0 ≤ w ≤ 1.
2x+ y ≤ 2
0 ≤ y ≤ 1

(29)

Point (0, 1, 1) is an equilibrium of the convex GNEP (29). Moreover, it trivially satisfies
assumptions of Theorem 3.14, since constraint 2x+ w ≤ 2 is not active at (0, 1).

4 Applications in economics

Let us consider a market with two firms, each acting as a player. Firm 1 produces quantities
q1 ∈ R

n1 of some goods, while firm 2 produces quantities q2 ∈ R
n2 of other goods. Given

private technological constraints Xν on the production level, each player ν = 1, 2 sets qν in
order to maximize its own profit

Πν(q
1, q2) := pν(q1, q2)T qν − cν(q

1, q2),

where pν and cν are inverse demand and cost functions, respectively. We assume sets X1

and X2 to be convex, compact and nonempty, and functions Π1 and Π2 to be continuously
differentiable and concave with respect to (q1, q2) and q2, respectively. In this setting, two
different classical perspectives can be considered.

Horizontal model: both players decide their strategies qν simultaneously; we assume that
the players act rationally and have complete information, and there is no explicit collu-
sion; we model this case as a “standard” GNEP;

Vertical model: player 1 can anticipate player 2 by setting its variables q1 for first; we
model this case as an SBP.

We illustrate that, in order to model this system, one can also rely on our new GNEP (8),
which in some sense lies in between the horizontal and the vertical models. We call our GNEP
uneven horizontal model.

In the following subsections, considering different instances of the described framework,
we highlight the connections between the three models.

4.1 Π2 not depending on q
1

Assume that Π2 does not depend on q1. From an horizontal point of view, the system can be
modeled by resorting to the following “standard” GNEP:

maximize
q1

Π1(q
1, q2) maximize

q2
Π2(q

2)

s.t. q1 ∈ X1 s.t. q2 ∈ X2.
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In a vertical framework, one can rely to the classical (hierarchical) optimization problem

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1

q2 ∈ S,

where S denotes the solution set of the lower level problem

maximize
w2

Π2(w
2)

s.t. w2 ∈ X2.

Finally, a new intermediate perspective can be given by the uneven horizontal GNEP model

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(w
2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2.

Π2(q
2) ≥ Π2(w

2)

Let us introduce the following sets of values:

ΠHorizontal
1

is the range of values of Π1 with respect to the solution set of the horizontal model:
given an equilibrium (q̃1, q̃2) of the horizontal model, we have Π1(q̃

1, q̃2) ∈ ΠHorizontal
1

;

ΠUneven
1

is the range of values of Π1 with respect to the solution set of the uneven horizon-
tal model: given an equilibrium (q̄1, q̄2, w̄2) of the uneven horizontal model, we have
Π1(q̄

1, q̄2) ∈ ΠUneven
1

;

ΠV ertical
1

is the optimal value of the vertical model.

By assumptions, ΠHorizontal
1

(see [20]) is compact and nonempty, while ΠUneven
1

and ΠV ertical
1

are singletons. Then, the connections between the three modelistic perspectives can be ex-
pressed by the following straightforward relations (see also Theorem 3.8):

max{ΠHorizontal
1 } = ΠUneven

1 = ΠV ertical
1 .

Remark 4.1 It should be remarked that ΠUneven
1

can be computed by simply finding the
optimal value Π∗

2
of the follower’s problem and then addressing the optimization problem

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1, q2 ∈ X2

Π2(q
2) ≥ Π∗

2
.

4.2 Π2 not depending on q
1 and players sharing a budget constraint

In the same setting of subsection 4.1, let players also share a common resource. Thus, for
every player, we consider the additional budget constraint a1(q

1) + a2(q
2) ≤ b, where convex

function aν (ν = 1, 2) indicates the resource consumption to produce quantities qν and scalar

14



b > 0 is the amount of resource available in the market. We assume set {q1 ∈ X1, q2 ∈ X2 :
a1(q

1) + a2(q
2) ≤ b} to be nonempty. In an horizontal framework we have:

maximize
q1

Π1(q
1, q2) maximize

q2
Π2(q

2)

s.t. q1 ∈ X1 s.t. q2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(q

2) ≤ b,

as for the vertical model we get:

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1

q2 ∈ S(q1),

where S(q1) denotes the solution set of the lower level problem

maximize
w2

Π2(w
2)

s.t. w2 ∈ X2

a1(q
1) + a2(w

2) ≤ b.

In the uneven horizontal vision, we have:

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(w
2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(w

2) ≤ b.

Π2(q
2) ≥ Π2(w

2)

In order to point out the relations between the models, in this case it is useful to resort to the
resource-directed parameterization introduced (for jointly convex GNEPs) in [28] and in [21].
Let b1 ∈ B ,

{
b1 ∈ R : 0 ≤ b1 ≤ b, {q1 ∈ X1 : a1(q

1) ≤ b1} 6= ∅ and {q2 ∈ X2 : a2(q
2) ≤

b− b1} 6= ∅
}
be the amount of resource given to player 1; on the other hand, b− b1 ≥ 0 turns

out to be the amount of resource available to player 2. We get the following parameterized
version of the horizontal model:

maximize
q1

Π1(q
1, q2) maximize

q2
Π2(q

2)

s.t. q1 ∈ X1 s.t. q2 ∈ X2

a1(q
1) ≤ b1 a2(q

2) ≤ b− b1.

As parameterized vertical model we have

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1

a1(q
1) ≤ b1

q2 ∈ Sb1 ,

where Sb1 denotes the solution set of the lower level problem

maximize
w2

Π2(w
2)

s.t. w2 ∈ X2

a2(w
2) ≤ b− b1.
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And the corresponding parameterized uneven horizontal version is

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(w
2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2

a1(q
1) ≤ b1 a2(w

2) ≤ b− b1.

a2(q
2) ≤ b− b1

Π2(q
2) ≥ Π2(w

2)

As done for sets ΠHorizontal
1

, ΠUneven
1

and ΠV ertical
1

(see subsection 4.1), let us define the
following sets of values:

ΠHorizontal
1

(b1) is the range of values of Π1 with respect to the solution set of the parameterized
horizontal model: given an equilibrium (q̃1, q̃2) of the parameterized horizontal model
with b1 ∈ B, we have Π1(q̃

1, q̃2) ∈ ΠHorizontal
1

(b1);

ΠUneven
1

(b1) is the range of values of Π1 with respect to the solution set of the parameterized
uneven horizontal model: given an equilibrium (q̄1, q̄2, w̄2) of the parameterized uneven
horizontal model with b1 ∈ B, we have Π1(q̄

1, q̄2) ∈ ΠUneven
1

(b1);

ΠV ertical
1

(b1) is the optimal value of the parameterized vertical model with b1 ∈ B.

Similarly to what observed in subsection 4.1, by assumptions, ΠHorizontal
1

(b1) is compact
and nonempty, while ΠUneven

1
(b1) and ΠV ertical

1
(b1) are singletons for every b1 ∈ B. In this

case ΠHorizontal
1

is nonempty since at least a variational equilibrium exists, see [17]. As for
ΠUneven

1
, let us assume that an equilibrium of the uneven horizontal model exists, thus making

ΠUneven
1

nonempty. We observe that, by relying for example on Ichiishi’s theorem, the latter
assumption holds under mild conditions, see, again, [17] (and also Remark 4.4); we do not go
into details, since this aspect is immaterial to our analysis. Finally, as in the previous case,
ΠV ertical

1
is a singleton.

For all b1 ∈ B, we have

max{ΠHorizontal
1 (b1)} = ΠUneven

1 (b1) = ΠV ertical
1 (b1). (30)

Furthermore, by Theorem 3.1, we get

sup{ΠHorizontal
1 } ≤ sup{ΠUneven

1 } ≤ ΠV ertical
1 . (31)

Interestingly, relations (30) and (31) can be linked to each other according to the following
Propositions 4.2 and 4.3.

Proposition 4.2 ⋃

b1∈B

ΠV ertical
1 (b1) ∋ ΠV ertical

1 .

Proof. Let (q̂1, q̂2) be a solution of the vertical model. With b̂1 , a1(q̂
1) ∈ B, we have

S(q̂1) = S
b̂1
. Then, in turn, since (q̂1, q̂2) is optimal for the parameterized vertical model with

b1 = b̂1, the thesis follows. �
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In view of the previous result and since ΠUneven
1

(b1) = ΠV ertical
1

(b1), we also have

⋃

b1∈B

ΠUneven
1 (b1) ∋ ΠV ertical

1 . (32)

Proposition 4.3 If, for every solution (q̂1, q̂2) of the parameterized horizontal model for
b1 = b̂1 ∈ B, a1(q̂

1) = b̂1 and a2(q̂
2) = b− b̂1, then

sup
b1∈B

ΠUneven
1 (b1) = ΠV ertical

1 .

Proof. Thanks to [28, Theorem 3.6], we have
⋃

b1∈B
ΠHorizontal

1
(b1) = ΠHorizontal

1
, and, in

turn,

sup
b1∈B

max{ΠHorizontal
1 (b1)} = sup





⋃

b1∈B

max{ΠHorizontal
1 (b1)}





≤ sup





⋃

b1∈B

ΠHorizontal
1 (b1)



 = sup{ΠHorizontal

1
}.

Therefore, in view of (30) and (31),

sup
b1∈B

ΠUneven
1 (b1) ≤ ΠV ertical

1 ,

and the thesis follows by (32). �

We remark that assumptions in Proposition 4.3 simply require that, for every choice of b1 ∈ B,
the common resource is entirely consumed by the players.

Remark 4.4 As for the parameterized uneven horizontal game, ΠUneven
1

(b1) can be com-
puted, for every fixed b1 ∈ B, by relying again on the very simple approach described in
Remark 4.1. Furthermore, one can also calculate a single value belonging to ΠUneven

1
by re-

sorting to a similar procedure as the one just illustrated (but, in general, with more than one
leader/follower optimization). It can be proved that this alternating optimization approach
converges to an equilibrium of the uneven horizontal game under mild standard conditions.
For the sake of brevity and since this kind of study goes out of the scope of this work, we do
not go into details.

4.3 Π2 depending on both q
1 and q

2, and players sharing a budget constraint

Let us consider the general case in which Π2 depends also on q1 and players share a common
budget constraint as in subsection 4.2. Both the horizontal

maximize
q1

Π1(q
1, q2) maximize

q2
Π2(q

1, q2)

s.t. q1 ∈ X1 s.t. q2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(q

2) ≤ b,
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and the uneven horizontal

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(q
1, w2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(w

2) ≤ b,

Π2(q
1, q2) ≥ Π2(q

1, w2)

models are GNEPs. Clearly, in order to establish connections between the vertical

maximize
q1,q2

Π1(q
1, q2)

s.t. q1 ∈ X1

q2 ∈ S(q1),

where S(q1) denotes the solution set of the lower level problem

maximize
w2

Π2(q
1, w2)

s.t. w2 ∈ X2

a1(q
1) + a2(w

2) ≤ b,

and the uneven horizontal models, one can resort to Theorems 3.1 and 3.14, or, if there is no
budget (shared) constraint, to Corollary 3.6. In any case (see the definitions introduced in
subsection 4.1), we have

sup{ΠHorizontal
1 } ≤ sup{ΠUneven

1 } ≤ ΠV ertical
1 .

Let us consider now the interesting case in which one wants to design the market in order
to easily compute a solution of the vertical model. For this to be done, one can exploit
Proposition 3.4: letting (q̂1, q̂2, ŵ2) be a solution of the following (jointly convex) GNEP

maximize
q1,q2

Π1(q
1, q2) maximize

w2

Π2(q
1, w2)

s.t. q1 ∈ X1, q2 ∈ X2 s.t. w2 ∈ X2

a1(q
1) + a2(q

2) ≤ b a1(q
1) + a2(w

2) ≤ b,

such that Π2(q̂
1, q̂2) ≥ Π2(q̂

1, ŵ2), (q̂1, q̂2) is an easy solution (see Proposition 3.4) of the
vertical model. In the same spirit, an alternative and easier way to compute such solutions
makes use of variational inequalities: indeed, (q̂1, q̂2) ∈ T = {(q1, q2) ∈ X1 ×X2 : a1(q

1) +
a2(q

2) ≤ b} such that

∇Π1(q̂
1, q̂2)T

(
(q1, q2)− (q̂1, q̂2)

)
≤ 0, ∇q2Π2(q̂

1, q̂2)T
(
q2 − q̂2

)
≤ 0 ∀ (q1, q2) ∈ T,

is an easy solution of the vertical model.
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