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The forward-backward algorithm and the normal problem
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Abstract

The forward-backward splitting technique is a popular method for solving monotone inclu-
sions that has applications in optimization. In this paper we explore the behaviour of the
algorithm when the inclusion problem has no solution. We present a new formula to define
the normal solutions using the forward-backward operator. We also provide a formula for the
range of the displacement map of the forward-backward operator. Several examples illustrate
our theory.
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1 Introduction

Throughout this paper we work under the assumption that

X is a real Hilbert space,

with inner product 〈·, ·〉 and induced norm ‖·‖. A (possibly) set-valued operator A : X ⇒ X
is monotone if any two pairs (x, u) and (y, v) in the graph of A satisfy 〈x − y, u − v〉 ≥ 0, and is
maximally monotone if it is monotone and any proper enlargement of the graph of A (in terms of
set inclusion) will no longer preserve the monotonicity of A. In the following we assume that

A : X ⇒ X and B : X ⇒ X are maximally monotone operators. (1)
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of Science, Mathematics Department, Mansoura 35516, Egypt. E-mail: walaa.moursi@ubc.ca.
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Thanks to the fact that the subdifferential operator associated with a convex lower semicontinuous
proper function is a maximally monotone operator (see Fact 3.6 below), the notion of monotone
operators becomes of significant importance in optimization and nonlinear analysis. For further
discussion on monotone operator theory and its connection to optimization see, e.g., the books
[8], [17], [19], [21], [44], [45], [49], [50], and [51].

The problem of finding a zero of the sum of two maximally monotone operators A and B is to
find x ∈ X such that x ∈ (A + B)−10. When specializing A and B to subdifferential operators of
convex lower semicontinuous proper functions, the problem is equivalent to finding a minimizer
of the sum of the two functions, which is a classical optimization problem.

Suppose that A is firmly nonexpansive1(see Section 2). Let x0 ∈ X and let TFB be the forward-
backward operator associated with the pair (A, B) (see Section 3). When (A + B)−10 6= ∅ the
sequence (Tn

FBx0)n∈N produced by iterating the forward-backward operator converges weakly2 to
a point in (A + B)−10 = Fix TFB =

{

x ∈ X
∣

∣ x = TFBx
}

(see, e.g., [47], [33] or [23]). Applications
of this setting appear in convex optimization (see, e.g., [8, Section 27.3]), evolution inclusions (see,
e.g., [2]) and inverse problems (see, e.g., [24] and [25]).

The goal of this work is to examine the forward-backward operator in the inconsistent case, i.e., when
(A+ B)−10 = ∅, using the framework of the normal problem introduced in [12]. In this case Fix TFB = ∅,
and the classical analysis, which uses the advantage of iterating an averaged operator (see Section 2 below)
that has a fixed point, is no longer applicable.

Let us summarize the main contributions of the paper:

R1 We provide a systematic study of the forward-backward operator when the sum problem
is possibly inconsistent. This is mainly illustrated in Proposition 4.1 where we establish the
connection between the perturbed problem introduced in [12] and the forward-backward
operator.

R2 We prove that the range of the displacement operator associated with the forward-backward
operator TFB coincides with that of the Douglas-Rachford operator TDR. Consequently, the
minimal displacement vectors associated with TFB and TDR coincide (see Theorem 4.2). This
gives an alternative approach to define the normal problem introduced in [12].

R3 A significant consequence of R2 is that it allows to use the advantage of the self-duality of
TDR (which does not hold for TFB as we illustrate in Example 4.11) to draw more conclusions
about TFB. In particular, in Theorem 5.3 we provide a formula for the range of the displace-
ment operator in terms of the ranges of the underlying operators using the notion of near
equality. The result simplifies to more elegant formulae when specializing the operators to
subdifferential operators as illustrated in Proposition 5.7. Our results are sharp in the sense
that near equality cannot be replaced by equality which we illustrate in Example 5.4.

1We point out that the assumption of that A is firmly nonexpansive can be relaxed to A is cocoercive (see Remark 3.1).
2For general conditions on strong convergence of the forward-backward algorithm we refer the reader to [2].
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R4 In the case when A and B are affine, we prove that, in the consistent case, the sequence
produced by iterating TFB converges strongly to the nearest point in the set of zeros of the
sum. If X is finite-dimensional, we also get linear rate of convergence (see Theorem 6.6).

The remainder of this paper is organized as follows: Section 2 provides facts and auxiliary
results concerning averaged and (firmly) nonexpansive operators. In Section 3, we provide an
overview of the Attouch-Théra duality and formulate the primal and dual solutions using the
forward-backward operator. Our main results start in Section 4, which deals with the normal
problem and the connection to the forward-backward operator. In Section 5, we explore the range
of the displacement operator associated with the forward-backward operator. In Section 6, we
study the asymptotic behaviour of asymptotically regular affine nonexpansive operators in the pos-
sibly fixed point free setting. An application to the forward-backward algorithm is provided as
well. Finally in Section 7 we provide some algorithmic consequences.

Notation

Let C be a nonempty closed convex subset of X. We use ιC, NC and PC to denote the indica-
tor function, the normal cone operator and the projector (this is also known as nearest point map-
ping) associated with C, respectively. Let f : X → ]−∞,+∞] be convex, lower semicontinuous,
and proper. The subdifferential of f is the (possibly) set-valued operator ∂ f : X ⇒ X : x →
{

u ∈ X
∣

∣ (∀y ∈ X) f (y) ≥ f (x) + 〈u, y − x〉
}

. Let Id : X → X be the identity operator. The resol-

vent of A is JA := (Id+A)−1 and the reflected resolvent is RA := 2JA − Id. Otherwise, the notation
we adopt is standard and follows, e.g., [8] and [40].

2 Averaged and (firmly) nonexpansive operators

Let T : X → X. Then T is nonexpansive if

(∀x ∈ X)(∀y ∈ X) ‖Tx − Ty‖ ≤ ‖x − y‖; (2)

T is firmly nonexpansive if

(∀x ∈ X)(∀y ∈ X) ‖Tx − Ty‖2 + ‖(Id−T)x − (Id−T)y‖2 ≤ ‖x − y‖2; (3)

and T is averaged if there exists α ∈ ]0, 1[ and a nonexpansive operator N : X → X such that

T = (1 − α) Id+αN. (4)

Fact 2.1. The following hold:

(i) JA is single-valued, maximally monotone and firmly nonexpansive.
(ii) (The inverse resolvent identity) JA−1 = Id−JA.
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Proof. (i): See [35, Corollary on page 344] and [41, Proposition 1(c)]. (ii): See, e.g., [40,
Lemma 12.14]. �

In the sequel we make use of the useful characterization (see, e.g., [31, Equation 11.1 on page 42]):

T is firmly nonexpansive ⇔ (∀x ∈ X)(∀y ∈ X) ‖Tx − Ty‖2 ≤ 〈x − y, Tx − Ty〉. (5)

Definition 2.2 (asymptotic regularity of operators vs. sequences). Let T : X → X and let (xn)n∈N

be a sequence in X. Then T is asymptotically regular if (∀x ∈ X) Tnx − Tn+1x → 0 and (xn)n∈N is
asymptotically regular if xn − xn+1 → 0.

Fact 2.3. Suppose that T : X → X is averaged; in particular, firmly nonexpansive. Then T is asymptoti-
cally regular.

Proof. See [20, Corollary 1.1 & Proposition 2.1] or [8, Proposition 5.15(ii) & Corollary 5.16(ii)]. �

Fact 2.4. Suppose that T : X → X is nonexpansive. Then ran(Id−T) is nonempty closed and convex.
Consequently the minimal displacement vector associated with T is the unique well-defined vector

vT := Pran(Id−T)0. (6)

Proof. See [3], [20] or [38]. �

Unless otherwise stated, throughout this paper we assume that

T : X → X is nonexpansive.

The following result is well-known when T is firmly nonexpansive. We include a simple proof,
when T is averaged, for the sake of completeness (see also [10, Lemma 3.9]).

Proposition 2.5. Suppose that T is averaged and that vT := Pran(Id−T)0 ∈ ran(Id−T). Let x ∈ X. Then
the following hold:

(i) ∑
∞
n=0‖Tnx − Tn+1x − vT‖2

< +∞.
(ii) Tnx − Tn+1x → vT , equivalently; the sequence (Tnx + nvT)n∈N is asymptotically regular.

Proof. It follows from [23, Lemma 2.1] that (∃α ∈ ]0, 1[) such that (∀x ∈ X) (∀y ∈ X)

‖(Id−T)x − (Id−T)y‖2 ≤ α

1 − α

(

‖x − y‖2 − ‖Tx − Ty‖2
)

. (7)

Moreover [6, Proposition 2.5(vi)] implies that (Tnx + nvT)n∈N is Fejér monotone with respect to
Fix(vT + T). Now let n ∈ N and let y0 ∈ Fix(vT + T). Using [6, Proposition 2.5(iv)] we learn that
Tny0 = y0 − nvT . It follows from (7) applied with (x, y) replaced by (Tnx, Tny0) that

‖Tnx − Tn+1x − vT‖2 = ‖(Id−T)Tnx − (Id−T)Tny0‖2 (8a)

≤ α

1 − α

(

‖Tnx − Tny0‖2 − ‖Tn+1x − Tn+1y0‖2
)

. (8b)

(i): This follows from (8) by telescoping. (ii): This is a direct consequence of (i). �
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Proposition 2.6. Suppose that vT := Pran(Id−T)0 ∈ ran(Id−T) and that int Fix(vT + T) 6= ∅. Then
the following hold:

(i) ∑
∞
n=0‖Tnx − Tn+1x − vT‖ < +∞.

(ii) (Tnx + nvT)n∈N converges strongly.

Proof. The proof follows along the lines of [8, Proposition 5.10]. (i): Let x ∈ Fix(vT + T) and let
r > 0 such that ball(x; r) ⊆ Fix(vT + T). Obtain a sequence (yn)n∈N defined as:

(∀n ∈ N) yn =

{

x, if xn+1 = xn;

x − r xn+1−xn

‖xn+1−xn‖ , otherwise.
(9)

Then (yn)n∈N ⊆ ball(x; r). Set (∀n ∈ N) xn := Tnx + nvT . It follows from [6, Proposition 2.5(vi)]
that the sequence (xn)n∈N is Fejér monotone with respect to Fix(v + T), therefore (∀n ∈ N)
‖xn+1 − yn‖2 ≤ ‖xn − yn‖2; equivalently (∀n ∈ N) ‖xn+1 − x +(x− yn)‖2 ≤ ‖xn − x +(x − yn)‖2.
Expanding and simplifying in view of (9) yield (∀n ∈ N) ‖xn+1 − x‖2 ≤ ‖xn − x‖2 − 2〈xn −
xn+1, x − yn〉 = ‖xn − x‖2 − 2r‖xn − xn+1‖. Telescoping yields

∞

∑
n=0

‖xn − xn+1‖ ≤ 1

2r
‖x0 − x‖2. (10)

(ii): It follows from (10) that (xn)n∈N = (Tnx + nv)n∈N is a Cauchy sequence and therefore it
converges. �

Let S be nonempty subset of X and let a ∈ X. Before we proceed further we need the following
useful translation formula (see, e.g., [8, Proposition 3.17]).

(∀x ∈ X) Pa+Sx = a + PS(x − a). (11)

Example 2.7. Let n ≥ 1. Suppose3 that X = R
n, that p ∈ R

n
++ and that T = p+ PR

n
+

. Then T is (firmly)
nonexpansive, Fix T = ∅, ran(Id−T) = −p + R

n
−, vT = −p ∈ ran(Id−T) and int Fix(vT + T) =

R
n
−− 6= ∅. Consequently ∑

∞
n=0

∣

∣

∣
Tnx − Tn+1x − vT

∣

∣

∣
< +∞ and (Tnx + nvT)n∈N converges.

Proof. The claim that T is firmly nonexpansive (hence nonexpansive) follows from e.g., [31, Sec-
tion 3]. Now Id−T = Id−p − PR

n
+
= −p + PR

n
− , hence ran(Id−T) = −p + R

n
− and Fix T = ∅ ⇔

0 6∈ ran(Id−T) = −p+R
n
− ⇔ p 6∈ R

n
−, which is true. Using (11) with (a, S) replaced by (−p, R

n
−)

we have vT = P−p+R
n
−0 = −p + PR

n
− p = −p. Consequently vT + T = −p + p + PR

n
+
= PR

n
+

and
therefore Fix(vT + T) = R

n
+ which implies that int Fix(vT + T) = R

n
++. Now apply Proposi-

tion 2.6. �

Corollary 2.8. Suppose that X = R, that Fix T = ∅ and that vT := Pran(Id−T)0 ∈ ran(Id−T). Then

int Fix(vT + T) 6= ∅ and ∑
∞
n=0

∣

∣

∣
Tnx − Tn+1x − vT

∣

∣

∣
< +∞. Consequently (Tnx + nvT)n∈N converges.

3Let n ∈ N. The positive orthant in R
n is R

n
+ = [0,+∞[n and the strictly positive orthant in R

n is R
n
++ = ]0,+∞[n.

Likewise we define the negative orthant and the strictly negative orthant R
n
− and R

n
−−, respectively.
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Proof. It follows from [6, Proposition 2.5(i)] that Fix(v + T) contains an unbounded interval, and
therefore, since X = R, we conclude that int Fix(v + T) 6= ∅. Now apply Proposition 2.6. (See
also [10, Theorem 3.6]). �

3 The forward-backward operator and duality

The primal problem for the ordered pair (A, B) is

(P) find x ∈ X such that 0 ∈ Ax + Bx. (12)

The Attouch-Théra dual pair [1] for the ordered pair (A, B) is the pair4 (A−1, B−>) and the corre-
sponding dual problem is

(D) find x ∈ X such that 0 ∈ A−1x + B−>x. (13)

The sets of primal and dual solutions for the ordered pair (A, B), denoted respectively by Z and
K are

Z := (A + B)−1(0) and K := (A−1 + B−>)(0). (14)

From now on we assume that

A : X → X is firmly nonexpansive. (15)

The forward-backward algorithm to solve (12) iterates the operator

TFB := TFB(A,B) := JB(Id−A). (16)

On the other hand the Douglas-Rachford algorithm to solve (12) iterates the operator

TDR := TDR(A,B) := Id−JA + JBRA. (17)

Let x ∈ X. If Z 6= ∅ then each of the sequences (Tn
FBx)n∈N (see, e.g., [23, Corollary 6.5] or [8,

Section 25.3]) and (JATn
DRx)n∈N (see, e.g., [46] or [34]) converges weakly to a (possibly different)

solution of (12).

Remark 3.1. Let α > 0. Since zer(A + B) = zer(αA + αB), the assumption that A is firmly nonexpan-
sive could be replaced by A is α-cocoercive5 . In this case (16) and (17) can be applied with the ordered pair
(A, B) is replaced by (αA, αB).

Definition 3.2 (paramonotone and 3∗ monotone operators). Let C : X ⇒ X be monotone. Then

4Let B : X ⇒ X. Then B> := (− Id) ◦ B ◦ (− Id) and B−> := (B−1)> = (B>)−1 (see [7, Equation (10)]).
5Recall that A : X → X is cocoercive if (∃α > 0) such that αA is firmly nonexpansive.
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(i) C is paramonotone6 if (∀(x, u) ∈ gra C) (∀(y, v) ∈ gra C) we have

(x, u) ∈ gra C
(y, v) ∈ gra C

〈x − y, u − v〉 = 0







⇒
{

(x, v), (y, u)
}

⊆ gra C. (18)

(ii) C is 3∗ monotone7 (this is also known as rectangular) if

(∀x ∈ dom C)(∀v ∈ ran C) inf
(z,w)∈gra C

〈x − z, v − w〉 > −∞. (19)

Lemma 3.3. The following hold:

(i) A is maximally monotone.
(ii) A is paramonotone.

(iii) A is 3∗ monotone.

Proof. (i): This is [8, Example 20.27]. (ii) & (iii): Note that A = Id−(Id−A) and Id−A is firmly
nonexpansive. The conclusion follows from [14, Theorem 6.1]. �

Proposition 3.4. The following hold:

(i) TFB is averaged.
(ii) TFB is asymptotically regular.

(iii) K is a singleton.
(iv) Z = Fix TFB.
(v) K = A(Z) = A(Fix TFB).

Proof. (i): Since A is firmly nonexpansive so is Id−A (see, e.g., [23, Lemma 2.3]). Note that JB

is firmly nonexpansive by [41, Proposition 1(c)]. It follows from [8, Remark 4.24(iii)] that Id−A
and JB are 1/2-averaged and therefore T = JB(Id−A) is 2/3-averaged by [23, Lemma 2.2(iii)].
(ii): Combine (i) and Fact 2.3. (iii): Let k1 and k2 be in K. It follows from [7, Proposition 2.4]
that (∃zi ∈ Z) such that ki ∈ Azi ∩ (−Bzi) = Azi, i ∈ {1, 2}. Since A is single-valued, we
conclude that ki = Azi, i ∈ {1, 2}. Using [7, Corollary 2.13] we learn that 〈z1 − z2, k1 − k2〉 =
〈z1 − z2, Az1 − Az2〉 = 0. Now combine with Lemma 3.3(ii) and use that A is single-valued to
learn that k1 = k2. (iv): This follows from [8, Proposition 25.1(iv)]. (v): In view of (iii), let K = {k}.
It follows from [7] that (∀z ∈ Z) k = Az ∩ (−Bz), which implies, since A is single-valued, that
k = Az; equivalently K = {k} = A(Z). Now combine with (iv). �

Fact 3.5 (Baillon-Haddad). Let f : X → R be convex and differentiable. Then

∇ f is nonexpansive ⇔ ∇ f is firmly nonexpansive. (20)

Proof. See [5, Corollaire 10]. �

6For detailed discussion and examples of paramonotone operators we refer the reader to [30].
7For detailed discussion and examples of 3∗ monotone operators we refer the reader to [18].
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Fact 3.6. Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. Then the following hold:

(i) ∂ f is maximally monotone.
(ii) (∂ f )−1 = ∂ f ∗.

Proof. (i): See, e.g., [43, Theorem A]. (ii): See, e.g., [43, Remark on page 216], [29, Théorème 3.1], or
[8, Corollary 16.24]. �

Suppose that C is a nonempty closed convex subset of X. It is well-known (see, e.g., [8, Exam-
ple 23.4]) that

JNC
= PC. (21)

Proposition 3.7. Suppose that f : X → R is convex and differentiable such that ∇ f is nonexpansive and
that g : X → ]−∞,+∞] is convex, lower semicontinuous, and proper. Suppose that A = ∇ f and that
B = ∂g. Then the following hold8,9:

(i) Fix TFB = zer(∇ f + ∂g) = argmin( f + g).
(ii) TFB = Proxg(Id−∇ f ).

If in addition, g = ιV where V is a nonempty closed convex subset of X, then we have

(iii) TFB = PV(Id−∇ f ).

Proof. Note that dom f = X and that A = ∇ f is firmly nonexpansive by Fact 3.5. (i): The first
identity is Proposition 3.4(iv) applied with (A, B) replaced by (∇ f , ∂g). It follows from [22, Propo-
sition 3.2 & Corollary 3.4] that A + B = ∇ f + ∂g = ∂( f + g). Now apply [8, Proposition 26.1]. (ii):
Combine (16) and [8, Example 23.3]. (iii): Combine (ii) and (21). �

Remark 3.8. Let f : X → R be convex and differentiable with 1/β Lipschitz continuous gradient, where
β > 0. Then β∇ f is nonexpansive, hence firmly nonexpansive by Fact 3.5. Since argmin( f + g) =
argmin(β f + βg), Proposition 3.7 can be applied, with ( f , g) replaced by (β f , βg), to find a minimizer of
f + g.

Suppose that10 C is a nonempty closed convex subset of X. In the sequel we make use of the
following useful result (see, e.g., [37, Exemple on page 286] or [8, Corollary 12.30]).

∇
(

1
2 d2

C

)

= Id−PC. (22)

Example 3.9 (Method of Alternating Projections (MAP) as a forward-backward iteration). Sup-
pose that U and V are nonempty closed convex subsets of X, that f = 1

2 d2
U and that g = ιV . Suppose that

A = ∇ f = Id−PU and that B = ∂g = NV . Then A is firmly nonexpansive and

TFB(Id−PU ,NV) = PV PU. (23)

8Let h : X → ]−∞,+∞] be proper. The set of minimizers of h, {x ∈ X | h(x) = inf h(X)}, is denoted by argmin h.
9Suppose that g : X → ]−∞,+∞] is convex, lower semicontinuous, and proper. Then Proxg is the Moreau prox

operator associated with g defined by Proxg : X → X : x 7→ (Id+∂g)−1(x) = argminy∈X

(

g(y) + 1
2‖x − y‖2

)

.
10Let C be a nonempty closed convex subset of X. We use dC to denote the distance from the set C defined by

dC : X → [0,+∞[ : x 7→ minc∈C‖x − c‖ = ‖x − PCx‖.

8



Proof. It follows from (22) that ∇ f = Id−PU, which is firmly nonexpansive by e.g., [48, Equa-
tion 1.7 on page 241]. Moreover (21) implies that JB = JNV

= PV . Consequently, TFB(A,B) =
JB ◦ (Id−A) = PV(Id−(Id−PU)) = PV PU. �

4 The forward-backward operator and the normal problem

Let C : X ⇒ X and let w ∈ X. The inner shift and outer shift of an operator C by w at x ∈ X are
defined by

Cwx := C(x − w) and wCx := −w + Cx, (24)

respectively.

Let w ∈ X. The w-perturbed problem introduced in [12] is:

(Pw) find x ∈ X such that 0 ∈ w Ax + Bwx = Ax + B(x − w)− w, (25)

and the corresponding set of zeros is

Zw :=
{

x ∈ X
∣

∣ 0 ∈ 0 ∈ w Ax + Bwx
}

=
{

x ∈ X
∣

∣ w ∈ Ax + B(x − w)
}

. (26)

Proposition 4.1. Let w ∈ X. Then

TFB(w A,Bw) = −wTFB = w + TFB, (27)

and
Zw = Fix(w + TFB). (28)

Moreover, the following are equivalent:

(i) Zw 6= ∅.
(ii) w ∈ ran(A + Bw).

(iii) w ∈ ran(Id−TFB).
(iv) w ∈ ran(Id−TDR).

Proof. Let x ∈ X. Using (16) and [8, Proposition 23.15(ii)&(iii)] we have TFB(w A, Bw)x =
JBw (Id−w A)x = JB((x − (Ax − w))− w) + w = JB(x − Ax) + w = JB(Id−A)x + w = w + TFBx,
which proves (27). To prove (28) apply Proposition 3.4(iv) with (A, B) replaced by (w A, Bw) and
use (27). “(i)⇔(ii)": This follows from (26). “(i)⇔(iii)": Indeed, using (28) we have Zw 6= ∅ ⇔
Fix(w + TFB) 6= ∅ ⇔ (∃x ∈ X) such that x = w + TFBx ⇔ w ∈ ran(Id−TFB). “(i)⇔(iv)": This
follows from [12, Proposition 3.3]. �

Theorem 4.2. We have11

(i) ran(Id−TDR) = ran(Id−TFB).

11For convenience we shall use vFB and vDR to denote vTFB
and vTDR

respectively.
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(ii) ran(Id−TFB) ⊆ ran A + ran B.
(iii) vDR = vFB.

Proof. (i): This is clear from the equivalence of (iii) and (iv) in Proposition 4.1. (ii): Combine (i) and
[28, Proposition 4.1]. (iii): Indeed, using (i) and (6) we have vDR = Pran(Id−TDR)0 = Pran(Id−TFB)0 =
vFB. �

In view of Theorem 4.2(i), it is tempting to ask whether we can derive a similar conclusion for
the equality of ran TFB and ran TDR. The next example gives a negative answer to this conjecture.

Example 4.3 (ran TDR 6= ran TFB). Suppose that A = Id. Then TDR = 1
2 Id+JB0 and TFB ≡ JB0.

Consequently,
X = ran TDR 6= ran TFB = {JB0} . (29)

Proof. One can easily verify that JA = 1
2 Id, hence RA ≡ 0. Therefore,

TDR = Id−JA + JBRA = Id− 1
2 Id+JB0 = 1

2 Id+JB0, (30)

and
TFB = JB(Id−A) = JB(Id− Id) ≡ JB0, (31)

and the conclusion readily follows. �

Unlike the Douglas–Rachford operator, where we can learn about ran TDR (see [11, Corol-
lary 5.3]), we cannot obtain accurate information about the range of TFB as we show next.

Lemma 4.4. ran TFB ⊆ dom B.

Proof. Indeed, ran TFB ⊆ ran JB = ran(Id+B)−1 = dom(Id+B) = dom B. �

The result in Lemma 4.4, cannot be improved as we illustrate now.

Example 4.5 (ran TFB $ dom B). Suppose that A = Id and that dom B is not a singleton. Then Exam-
ple 4.3 implies that {JB0} = ran TFB $ dom B.

Example 4.6 (ran TFB = dom B). Let C be a nonempty closed convex subset of X. Suppose that A ≡ 0
and that B = NC. Then (21) implies that TFB = JB = PC, hence ran TFB = C = dom B.

The normal problem (see [12, Definition 3.7]) associated with the ordered pair (A, B) is the v-
perturbed problem where v is the minimal displacement vector defined by

v := vFB := Pran(Id−TFB)0; (32)

and the corresponding set of normal solutions is Zv.

Corollary 4.7. Zv = Fix(v + TFB).
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Proof. This follows from Proposition 4.1. �

We point out that, even though the normal problem is well-defined in view of Fact 2.4, the set
of normal solution may or may not be empty, as we illustrate now.

Example 4.8 (Z = ∅ but normal solutions exist). Let a∗, b∗ ∈ X such that a∗ + b∗ 6= 0. Suppose that
A : X → X : x 7→ a∗, and that B : X → X : x 7→ b∗. Then Z = ∅, ran(Id−TFB) = {a∗ + b∗}, therefore
v = a∗ + b∗ ∈ ran(Id−TFB) and Zv = X 6= ∅.

Proof. We have JB = (Id+b∗)−1 = Id−b∗, and TFB = JB(Id−A) = Id−(a∗ + b∗). Consequently,
ran(Id−TFB) = ran(Id−TFB) = {a∗ + b∗} and v = a∗ + b∗ ∈ ran(Id−TFB). Therefore, (∀x ∈ X)
x − TFBx = a∗ + b∗ = v, which in view of Corollary 4.7, implies that Zv = X, as claimed. �

Example 4.9 (Z = ∅ and normal solutions do not exist). Suppose that X = R
2, that U =

{

(x, y) ∈ R
2
∣

∣ x > 0, y ≥ 1/x
}

, that V = R × {0}, that β < 0, that w = (β, 0) 6= (0, 0) and that

f = 1
2 d2

U . Set A = ∇ f and set B = w + NV . Then TFB = −w + PV PU, v = w, v 6∈ ran(Id−TFB) and
therefore Zv = ∅.

Proof. In view of (22) we have A = Id−PU. Moreover (21) and [8, Proposition 23.15(ii)] implies
that JB = PV(· − w) = PV − w, where the last identity uses that PV is linear and that w ∈ V.
Consequently TFB = JB(Id−A) = PV(Id−(Id−PU))− w = PV PU − w. We claim that

ran(Id−TFB) = w + ran(Id−PV PU). (33)

Indeed, let y ∈ X. Then y ∈ ran(Id−TFB) ⇔ (∃x ∈ X) such that y = w + x − PV PUx ⇔ y ∈ w +

ran(Id−PV PU). It follows from Example 5.8 below that ran(Id−PV PU) = (rec U)⊖ + (rec V)⊖ =

R2
− + V⊥ = R

2
− + ({0} × R) = R− × R. Using (11) applied with S replaced by ran(Id−PV PU)

we have v = w + Pran(Id−PVPU)(−w) = w. Consequently (33) becomes ran(Id−TFB) = v +
ran(Id−PV PU). Furthermore, using [13, Lemma 2.2(i)] v ∈ ran(Id−TFB) = v + ran(Id−PV PU) ⇔
0 ∈ ran(Id−PV PU) ⇔ Fix PV PU 6= ∅ ⇔ U ∩ V 6= ∅, which does not hold, hence Zv = ∅ by
Proposition 4.1. �

Remark 4.10. Suppose that A−1 is firmly nonexpansive. Then one can define the forward-backward op-
erator for the dual pair (A−1, B−>). Nonetheless, the self-duality property, which is a key feature of TDR

(see, e.g., [7, Corollary 4.3] or [28, Lemma 3.6 on page 133]), does not hold for TFB as we illustrate in
Example 4.11.

Example 4.11 (TFB is not self-dual). Suppose that V is a closed linear subspace of X and let u ∈ V r {0}.
Suppose that A : X → X : x 7→ x − u and that B = NV . Then A−1 is firmly nonexpansive, however

u ≡ TFB(A,B) 6= TFB(A−1,B−>) ≡ 0. (34)

Proof. First note that A−1 : X → X : x 7→ x + u, hence A−1 is firmly nonexpansive, as claimed.
Since B is linear we learn that B−1 is linear and so are JB and JB−1 by [15, Theorem 2.1(xviii)]. By [7,
Proposition 4.1(ii)] and Fact 2.1(ii) we have JB−> = J(B−1)> = JB−1 = Id−JB = Id−PV = PV⊥ . Now,

TFB(A,B) = JB(Id−A) = PV(Id− Id+u) = PVu = u, whereas TFB(A−1,B−>) = JB−>(Id−A−1) =
PV⊥(Id− Id−u) = PV⊥(−u) = −PV⊥(u) ≡ 0. �
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Remark 4.12. Clearly the forward-backward operator is not symmetric in A and B, however, it is critical
to consider the order in (16) when only A is firmly nonexpansive. If, in addition, B is firmly nonexpansive
we can also define TFB(B,A).

Corollary 4.13. Suppose that B : X → X is firmly nonexpansive. Then TFB(B,A) := JA(Id−B) is
averaged and

‖vFB(A,B)‖ = ‖vFB(B,A)‖. (35)

Proof. Combining Theorem 4.2(iii) and [12, Proposition 3.11] we have ‖vFB(A,B)‖ = ‖vDR(A,B)‖ =
‖vDR(B,A)‖ = ‖vFB(B,A)‖. �

5 The range of the displacement operator

Unless otherwise stated, in this section we work under the assumption that

H is a finite-dimensional Hilbert space.

The results in this section provide information on the range of the displacement map Id−TFB.

Definition 5.1 (nearly convex and nearly equal sets). Let C and D be subsets12 of H.

(i) We say that D is nearly convex13 (see [40, Theorem 12.41]) if there exists a convex set subset E of
H such that E ⊆ D ⊆ E.

(ii) We say that C and D are nearly equal14 if

C ≃ D :⇔ C = D and ri C = ri D. (36)

Fact 5.2. Let H be a finite-dimensional Hilbert space. Let C : H ⇒ H be maximally monotone. Then
dom C and ran C are nearly convex.

Proof. See [40, Theorem 12.41]. �

Theorem 5.3. Let H be a finite-dimensional Hilbert space. The following hold:

(i) ran(Id−TFB) ≃ ran A + ran B.
(ii) Suppose that A and B are affine15. Then ran(Id−TFB) = ran(Id−TFB) = ran A + ran B.

If, in addition, A or B is surjective then we additionally have:

(iii) ran(Id−TFB) = X.
(iv) Fix TFB = Z 6= ∅.

12Let C be a subset of H. We use ri C to denote the interior of C with respect to the affine hull of C.
13For detailed discussion on the algebra of nearly convex sets we refer the reader to [42, Section 3].
14For detailed discussion on the properties of nearly equal and nearly convex sets we refer the reader to [15].
15Let B : X ⇒ X. Then B is an affine relation if gra B is an affine subspace of X × X.
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Proof. (i): Note that A is 3∗ monotone (by Lemma 3.3(iii)) and dom A = X. It follows from
[11, Theorem 5.2] that ran(Id−TDR) ≃ (dom A − dom B) ∩ (ran A + ran B). Now combine with
Theorem 4.2(i) and use that dom A = X. (ii): On the one hand, ran A and ran B are closed affine
subspaces of X, so is their sum ran A + ran B. On the other hand, since the resolvent JB is affine
(see [15, Theorem 2.1(xix)]), so are TFB and Id−TFB. Therefore, in view of (i), ran(Id−TFB) =
ran(Id−TFB) = ran A + ran B = ran A + ran B. (iii): Using Theorem 5.3(i) we have X = ri X =
ri(ran A + ran B) ⊆ ran(Id−TFB) ⊆ ran(Id−TFB) = ran A + ran B = X. (iv): Note that in view of
Proposition 3.4(iv) 0 ∈ ran(Id−TFB) ⇔ Fix TFB 6= ∅ ⇔ Z 6= ∅. Now combine with (iii). �

In the conclusion of Theorem 5.3(i), we cannot replace near equality by equality as we illustrate
in Example 5.4.

Example 5.4. Suppose that H = R
2 and let f : R

2 → ]−∞,+∞] : (ξ1, ξ2) 7→ max {g(ξ1), |ξ2|},
where g(ξ1) = 1 − √

ξ1 if ξ ≥ 0 and g(ξ1) = +∞ otherwise. Set16 A = P
R2

+
and B = ∂ f ∗.

Then A is firmly nonexpansive and B is maximally monotone. Moreover, ran A = R
2
+, ran B =

{

(ξ1, ξ2)
∣

∣ ξ1 > 0, ξ2 ∈ R
}

∪
{

(0, ξ2)
∣

∣ |ξ2| ≥ 1
}

, hence ran A + ran B =
{

(ξ1, ξ2)
∣

∣ ξ1 ≥ 0, ξ2 ∈ R
}

but ran(Id−TFB) =
{

(ξ1, ξ2)
∣

∣ ξ1 > 0, ξ2 ∈ R
}

∪
{

(0, ξ2)
∣

∣ ξ2 ≤ −1
}

. Therefore

ri(ran A + ran B) $ ran(Id−T) $ ran A + ran B = ran A + ran B. (37)

Proof. The claim about firm nonexpansiveness of A follows from e.g., [48, Equation 1.6 on page 241]
or [31, Section 3] and maximal monotonicity of B follows from Fact 3.6(i) applied to f ∗. Us-
ing Fact 3.6(ii) and [42, Example on page 218] we see that dom ∂ f = ran(∂ f )−1 = ran ∂ f ∗ =
ran B =

{

(ξ1, ξ2)
∣

∣ ξ1 > 0, ξ2 ∈ R
}

∪
{

(0, ξ2)
∣

∣ |ξ2| ≥ 1
}

. Note that in view of Theorem 5.3(i)

we have
{

(ξ1, ξ2)
∣

∣ ξ1 > 0, ξ2 ∈ R
}

= ri(ran A + ran B) ⊆ ran(Id−T) ⊆ ran A + ran B =
{

(ξ1, ξ2)
∣

∣ ξ1 ≥ 0, ξ2 ∈ R
}

. Therefore we only need to check the points in
{

(0, β)
∣

∣ β ∈ R
}

. To

16Let f : X → ]−∞,+∞] be convex, lower semicontinuous, and proper. We use f ∗ to denote the convex conjugate
(a.k.a. Fenchel conjugate) of f , defined by f ∗ : X → ]−∞,+∞] : x 7→ supu∈X(〈x, u〉 − f (x)).
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proceed further we recall that (see [36, Example 6.5])

∂ f (ξ1, ξ2) =























































































































∅, if ξ1 < 0;

∅, if ξ1 = 0 and |ξ2| < 1;

R− × {1} , if ξ1 = 0 and ξ2 ≥ 1;

R− × {−1} , if ξ1 = 0 and ξ2 ≤ −1;

conv
{

(− 1
2 ξ1

−1/2, 0), (0, 1)
}

, if ξ2 = 1 −√
ξ1 and 0 < ξ1 < 1;

conv
{

(− 1
2 ξ1

−1/2, 0), (0,−1)
}

, if −ξ2 = 1 −√
ξ1 and 0 < ξ1 < 1;

(− 1
2 ξ1

− 1
2 , 0), if 0 < ξ1 < 1 and 1 −√

ξ1 > |ξ2|;
(0, 1), if 0 < ξ1 < 1 and ξ2 > 1 −√

ξ1;

(0,−1), if 0 < ξ1 < 1 and − ξ2 > 1 −√
ξ1;

conv
{

(− 1
2 , 0), (0, 1), (0,−1)

}

, if ξ1 = 1 and ξ2 = 0;

conv {(0, 1), (0,−1)} , if ξ1 > 1 and ξ2 = 0;

(0, 1), if ξ1 > 1 and ξ2 > 0;

(0,−1), if ξ1 > 1 and − ξ2 > 0.

(38)

Let β ∈ R. In view of Proposition 4.1 and Fact 3.6(ii) we have

(0, β) ∈ ran(Id−TFB) ⇔ (∃(ξ1, ξ2) ∈ R
2) (0, β) ∈ P

R2
+
(ξ1, ξ2) + ∂ f ∗(ξ1, ξ2 − β) (39a)

= P
R2

+
(ξ1, ξ2) + (∂ f )−1(ξ1, ξ2 − β) (39b)

⇔ (∃(ξ1, ξ2) ∈ R
2) (0, β)− P

R2
+
(ξ1, ξ2) ∈ (∂ f )−1(ξ1, ξ2 − β) (39c)

⇔ (∃(ξ1, ξ2) ∈ R
2) (ξ1, ξ2 − β) ∈ ∂ f

(

(0, β)− P
R2

+
(ξ1, ξ2)

)

. (39d)

We argue by cases using (38) and (39).

Case 1: ξ1 ≥ 0 and ξ2 ≥ 0. Then (0, β) ∈ ran(Id−TFB) ⇔ (∃(ξ1, ξ2) ∈ R
2) (ξ1, ξ2 − β) ∈

∂ f ((0, β)− P
R2

+
(ξ1, ξ2)) = ∂ f (−ξ1, β − ξ2))⇔ [(∃(ξ1, ξ2) ∈ R

2) ξ1 = 0, ξ2 − β = 1 and β − ξ2 ≥ 1

or ξ1 = 0, ξ2 − β = −1 and β − ξ2 ≤ −1], which is impossible.

Case 2: ξ1 ≤ 0 and ξ2 ≤ 0. Then (0, β) ∈ ran(Id−TFB) ⇔ (∃(ξ1, ξ2) ∈ R
2) (ξ1, ξ2 − β) ∈

∂ f ((0, β) − P
R2

+
(ξ1, ξ2)) = ∂ f (0, β)) ⇔ [(∃(ξ1, ξ2) ∈ R

2) ξ1 ≤ 0, ξ2 − β = 1 and β ≥ 1 or ξ1 ≤
0, ξ2 − β = −1 and β ≤ −1 ] ⇔ [ (∃(ξ1, ξ2) ∈ R

2) ξ1 ≤ 0, ξ2 = β + 1 ≥ 2 or ξ1 ≤ 0, ξ2 = β − 1 ≤
−2]. Since ξ2 ≤ 0 we conclude that β ≤ −1.

Case 3: ξ1 > 0 and ξ2 < 0. Then (0, β) ∈ ran(Id−TFB) ⇔ (∃(ξ1, ξ2) ∈ R
2) (ξ1, ξ2 − β) ∈

∂ f ((0, β) − P
R

2
+
(ξ1, ξ2)) = ∂ f (−ξ1, β) ⇒ [ξ1 > 0 and by (38) −ξ1 > 0] which is impossible.

Case 4: ξ1 < 0 and ξ2 > 0. Then (0, β) ∈ ran(Id−TFB) ⇔ (∃(ξ1, ξ2) ∈ R
2) (ξ1, ξ2 − β) ∈

∂ f ((0, β) − P
R2

+
(ξ1, ξ2)) = ∂ f (0, β − ξ2) ⇔[ξ1 < 0, ξ2 − β = 1 and β − ξ2 ≥ 1 or ξ1 < 0, ξ2 − β =

−1 and β − ξ2 ≤ −1], which never occurs.
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Altogether we conclude that ran(Id−TFB) =
{

(ξ1, ξ2)
∣

∣ ξ1 > 0, ξ2 ∈ R
}

∪
{

(0, ξ2)
∣

∣ ξ2 ≤ −1
}

,
as claimed. �

Suppose that C and D are nonempty nearly convex subsets of H. Then [15, Proposition 2.12]
implies that

C ≃ D ⇔ C = D. (40)

Lemma 5.5. Let H be a finite-dimensional Hilbert space. Suppose that f : H → ]−∞,+∞] is convex,
lower semicontinuous, and proper. Then the dom ∂ f ≃ dom f and ran ∂ f ≃ dom f ∗.

Proof. It follows from Fact 5.2 and Fact 3.6(i) that dom ∂ f is nearly convex. Moreover, [8, Corol-
lary 16.29] implies that dom ∂ f = dom f . Therefore (40) implies that dom ∂ f ≃ dom f . Using
Fact 3.6(ii) we have ran ∂ f = dom(∂ f )−1 = dom ∂ f ∗. Now apply the same argument to f ∗. �

We recall that (see [48, Theorem 3.1]) for a nonempty closed convex subset C of X the following
holds17:

ran(Id−PC) = (rec C)⊖. (41)

Example 5.6. Let H be a finite-dimensional Hilbert space. Suppose that C is a nonempty closed convex
subset of H. Set f = ιC and suppose that A = ∂ f = NC. Then dom A = C and ran A ≃ (rec C)⊖.

Proof. Clearly dom A = C. It follows from [8, Proposition 23.2(i)], Fact 2.1(ii) and (21) that ran A =
dom A−1 = ran JA−1 = ran(Id−JA) = ran(Id−PC). In view of (41) we have ran(Id−PC) =
(rec C)⊖. Note that JA−1 = Id−PC is maximally monotone by Fact 2.1(ii)&(i), therefore Fact 5.2
implies that ran(Id−PC) is nearly convex. Now apply (40). �

Suppose that C1 and C2 are nearly convex subsets of H and that D1 and D2 are subsets of H
such that Ci ≃ Di for every i ∈ {1, 2}. It follows from [15, Theorem 2.14] that

C1 + C2 ≃ D1 + D2. (42)

Proposition 5.7. Let H be a finite-dimensional Hilbert space. Suppose that f : H → R is convex and
differentiable such that ∇ f is nonexpansive and that g : H → ]−∞,+∞] is convex, lower semicontinuous,
and proper. Suppose that A = ∇ f and that B = ∂g. Then the following hold:

(i) ran(Id−TFB) ≃ dom f ∗ + dom g∗.

If in addition, g = ιV where V is a nonempty closed convex subset of H, then we have:

(ii) ran(Id−TFB) ≃ dom f ∗ + (rec V)⊖.

Proof. It follows from Fact 3.5 that ∇ f is firmly nonexpansive. (i): Combine Theorem 5.3(i),
Lemma 5.5 and (42). (ii): It follows from Lemma 5.5 and Example 5.6 respectively that ran A ≃
dom f ∗ and ran B ≃ (rec V)⊖. Now combine with Theorem 5.3(i) and (42). �

17Let C be a nonempty closed convex subset of X. The recession cone of C is rec C := {x ∈ X | x + C ⊆ C}, and the
polar cone of C is C⊖ :=

{

u ∈ X
∣

∣ supc∈C〈c, u〉 ≤ 0
}

,
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Example 5.8 (range of the displacement map of alternating projections). Let H be a finite-
dimensional Hilbert space. Suppose that U and V are nonempty closed convex subsets of X, that f = 1

2 d2
U

and that g = ιV . Suppose that A = ∇ f = Id−PU and that B = ∂g = NV . Then

ran(Id−TFB) = ran(Id−PV PU) ≃ (rec U)⊖ + (rec V)⊖. (43)

Proof. It follows from (41) and (40) that ran A = ran(Id−PU) ≃ (rec U)⊖. On the other hand
Example 5.6 implies that ran B ≃ (rec V)⊖. Now combine with [15, Theorem 2.12]. �

6 Affine operators and applications

Fact 6.1. Let L : X → X be linear and nonexpansive, let b ∈ X and suppose that T : X → X : x 7→ Lx+ b.
Let vT := Pran(Id−T)0 and let x ∈ X. Then

(∀n ∈ N) Tnx + nvT = (T−vT
)nx = (vT + T)nx. (44)

Proof. See [6, Theorem 3.2(iv) and (v)]. �

Lemma 6.2. Let L : X → X be linear and nonexpansive, let b ∈ X, suppose that T : X → X : x 7→ Lx + b
and that vT := Pran(Id−T)0 ∈ ran(Id−T). Let x ∈ X. Then there exists a point a ∈ X such that
vT + b = a − La and vT + Tx = a + L(x − a). Moreover we have

(∀n ∈ N) Tnx + nvT = (T−vT
)nx = (vT + T)nx = a + Ln(x − a) (45)

and
Fix(vT + T) = a + Fix L. (46)

Proof. Note that vT ∈ ran(Id−T) = ran(Id−L) − b ⇔ vT + b ∈ ran(Id−L). Now let a ∈ X
be such that vT + b = a − La. The first two identities in (45) follow from Fact 6.1. We prove the
last identity in (45) by induction. The case n = 0 is obvious. Now suppose that for some n ∈ N

(vT + T)nx = a + Ln(x − a). Then (vT + T)n+1x = vT + b + L(a + Ln(x − a)) = vT + b + La +
Ln+1(x − a) = a + Ln+1(x − a). We now turn to (46). In view of (45) applied with n = 1 we have
x ∈ Fix(vT + T) ⇔ x = vT + Tx ⇔ x = a + L(x − a) ⇔ x − a ∈ Fix L ⇔ x ∈ a + Fix L, hence
Fix(vT + T) = a + Fix L. �

Proposition 6.3. Let L : X → X be linear and nonexpansive, let b ∈ X, suppose that T : X → X : x 7→
Lx + b and that vT := Pran(Id−T)0 ∈ ran(Id−T). Let x ∈ X. Then Fix(vT + T) 6= ∅. Moreover the
following are equivalent:

(i) L is asymptotically regular.
(ii) Lnx → PFix Lx.

(iii) Tnx + nvT = (vT + T)nx = (T−vT
)nx → PFix(vT+T)x.

(iv) T−vT
= vT + T is asymptotically regular.
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(v) (Tnx + nvT)n∈N is asymptotically regular.

Proof. The proof uses the same techniques as in [16]. “(i)⇔(ii)": See [4, Proposition 4], [3, Theo-
rem 1.1], [9, Theorem 2.2] or [8, Proposition 5.27]. “(ii)⇒(iii)": Using (45) and (11) we learn that

Tnx + nvT = (T−vT
)nx = (vT + T)nx = a + Ln(x − a) (47a)

→ a + PFix L(x − a) = Pa+Fix Lx = PFix(vT+T)x. (47b)

Now combine with (46). “(iii)⇒(iv)": Clear. “(iv)⇒(v)": This follows from Fact 6.1. “(v)⇒(i)":
Using (45) we have Lnx − Ln+1x = Tn(x + a) + nvT − (Tn+1(x + a) + (n + 1)vT) → 0. �

Let B(X) denote the set of bounded linear operators on X. We have the following result.

Proposition 6.4. Let L : X → X be linear and nonexpansive, let b ∈ X, suppose that T : X → X : x 7→
Lx + b and that vT := Pran(Id−T)0 ∈ ran(Id−T). Let x ∈ X and let µ ∈ ]0, 1[. Then the following are
equivalent:

(i) Tnx + nvT = (vT + T)nx = (T−vT
)nx → PFix(vT+T)x µ-linearly.

(ii) Lnx → PFix Lx µ-linearly.
(iii) Ln → PFix L µ-linearly (in B(X)).

Proof. Note that L is asymptotically regular by Fact 2.3. “(i)⇔(ii)": In view of (45), (46) and (11)
we learn that Tnx + nvT − PFix(vT+T)x = (vT + T)nx − PFix(vT+T)x = (T−vT

)nx − PFix(vT+T)x =
a+ Ln(x− a)− Pa+Fix Lx = a+ Ln(x− a)− a− PFix L(x− a) = Ln(x− a)− PFix L(x− a). “(ii)⇔(iii)":
This follows from [16, Lemma 2.6]. �

Corollary 6.5. Suppose that X is finite-dimensional. Let L : X → X be linear, nonexpansive and asymp-
totically regular, let b ∈ X, set T : X → X : x 7→ Lx + b and suppose that vT := Pran(Id−T)0. Let x ∈ X.
Then vT ∈ ran(Id−T) and

Tnx + nvT = (vT + T)nx = (T−vT
)nx → PFix(vT+T)x linearly. (48)

Proof. Since X is finite-dimensional we learn that ran(Id−T) is a closed affine subspace of X,
hence vT ∈ ran(Id−T). Now Proposition 6.3 implies that Lnx → PFix Lx, which when combined
with [16, Corollary 2.8] yields Lnx → PFix Lx linearly. Now apply Proposition 6.4 �

Theorem 6.6 (application to the forward-backward algorithm). Suppose that A and B are affine and
let x ∈ X. Then the following hold:

(i) (TFB(v A, Bv))nx = (v + TFB)
nx = ((TFB)−v)

nx = Tn
FBx + nv.

(ii) If v ∈ ran(Id−TFB) then

(v + TFB)
nx = ((TFB)−v)

nx = Tn
FBx + nv → PFix(v+T)x = PZv x. (49)

(iii) We have the implication

v = 0 ∈ ran(Id−TFB) ⇒ Tn
FBx → PFix Tx = PZx. (50)
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If, in addition, X is finite-dimensional, then we also have

(iv) v ∈ ran(Id−TFB) and

(v + TFB)
nx = ((TFB)−v)

nx = Tn
FBx + nv → PFix(v+T)x = PZv x linearly. (51)

(v) We have the implication

v = 0 ⇒ Tn
FBx → PFix Tx = PZx linearly. (52)

Proof. Proposition 3.4(ii) implies that TFB is asymptotically regular and, since JB is affine, (see [15,
Theorem 2.1(xix)]) so is v + TFB. (i): The first identity follows from (27) applied with w replaced
by v. Now combine with Fact 6.1. (ii): Combine Proposition 6.3 and Corollary 4.7. (iii): This is a
direct consequence of (ii). (iv) & (v): Combine Corollary 6.5 with (ii) and (iii), respectively. �

Example 6.7. Let L : X → X be linear and firmly nonexpansive, let b ∈ X and suppose that U is an affine
subspace of X. Suppose that A : X → X : x 7→ Lx + b and that B = NU . Then the following hold18:

(i) Zv = (v + U) ∩ (L−1((par U)⊥ − b + v)).

If, in addition, X is finite-dimensional then we also have:

(ii) ran(Id−TFB) = ran L + (par U)⊥ + b.
(iii) v = Ppar U∩ker Lb.

Proof. (i): Let x ∈ X. Then x ∈ Zv ⇔ 0 ∈ Lx + b − v + NU(x − v) = Lx + b − v + (par U)⊥

⇔ [x − v ∈ U and Lx ∈ (par U)⊥ − b + v] ⇔ [x ∈ v + U and Lx ∈ (par U)⊥ − b + v] ⇔ x ∈
(v + U) ∩ (L−1((par U)⊥ − b + v)). (ii): Using Theorem 5.3(ii) we have

ran(Id−TFB) = ran(Id−TFB) = ran A + ran B (53a)

= ran L + b + ran NU = ran L + (par U)⊥ + b. (53b)

(iii): Using Lemma 3.3(i) we learn that L is (maximally) monotone. Combining (ii), (11), (53), [27,
Theorem 2.19] and [8, Proposition 20.17] we have

v = Pran(Id−TFB)0 = Pran L+(par U)⊥+b0 = b − Pran L+(par U)⊥b (54a)

= P(ran L+(par U)⊥)⊥b = P(ran L)⊥∩(par U)b = Pker L∗∩par Ub = Pker L∩par Ub. (54b)

�

Example 6.8 (MAP in the affine-affine feasibility case). Suppose that U and V are closed linear
subspaces of X. Let w ∈ X. Suppose that f = 1

2 d2
w+U , that g = ιw+V , that A = ∇ f and that B = ∂g.

Then (∀n ∈ N)
(TFB)

n = (Pw+V Pw+U)
n = (PV PU)

n(· − w) + w. (55)

Proof. Indeed, let x ∈ X. It follows from Example 3.9 applied with (U, V) replaced by (w+U, w+V) and
(11) that TFB = Pw+UPw+Vx = Pw+V(PU(x − w) + w) = PV(PU(x − w) + w − w) + w = PV PU(x −
w) + w. Now (55) follows by simple induction. �

18Suppose that U is a closed affine subspace of X. We use par U to denote the parallel space of U defined by par U :=
U − U.
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We now provide an application of the forward-backward algorithm that employs Pierra’s prod-
uct space technique introduced in [39]. For a general and more flexible framework of using the
forward-backward algorithm to find a zero of the sum of more than two operators we refer the
reader to the work by Combettes in [2, Section 2] and [26, Section 5].

Proposition 6.9 (application to parallel splitting). Suppose that m ∈ {2, 3, . . .}. For every
i ∈ {1, 2, . . . , m}, let αi > 0 and suppose that Ai : X → X are αi-cocoercive. Set ∆ :=
{(x, . . . , x) ∈ Xm | x ∈ X}, set α = min

{

αi

∣

∣ i ∈ {1, 2, . . . , m}
}

, set A = ×m
i=1αAi, set B = N∆, set

T = TFB(A,B), let j : X → Xm : x 7→ (x, x, . . . , x), and let e : Xm → X : (x1, x2, . . . , xm) 7→ 1
m (∑m

i=1 xi).
Let x ∈ Xm and suppose that v := Pran(Id−T)0 ∈ ran(Id−T). Then the following hold:

(i) ∆
⊥ = {(u1, . . . , um) ∈ Xm | ∑

m
i=1 ui = 0}.

(ii) Zv := Z(vA,Bv) = (v + ∆) ∩ (A−1(v + ∆
⊥)).

(iii) v = 0 ⇔ zer(∑m
i=1 Ai) 6= ∅.

(iv) X is finite-dimensional ⇒ ran(Id−T) ≃ ∆
⊥ +×m

i=1 ran Ai.

If (∀i ∈ {1, 2, . . . , m}) Ai is affine, then we additionally have:

(v) (v + T)nx = (T−v)
n
x = Tnx + nv → PFix(v+T)x = PZvx.

(vi) X is finite-dimensional ⇒ (v + T)nx → PFix Tx = PZv linearly.
(vii) X is finite-dimensional ⇒ ran(Id−T) = ∆

⊥ +×m
i=1 ran Ai.

Proof. Note that (∀i ∈ {1, . . . , m}) Ai is α-cocoercive hence A is firmly nonexpansive. (i): This is
[8, Proposition 25.5(i)]. (ii): Let z ∈ Xm. Then z ∈ Zv ⇔ v ∈ N∆(z − v) + Az ⇔ [z − v ∈ ∆ and
Az− v ∈ ∆

⊥] ⇔ [z ∈ v+∆ and z ∈ A−1(v+∆
⊥)] ⇔ z ∈ (v+∆)∩ (A−1(v+∆

⊥)). (iii): It follows
from (32), Proposition 3.4(iv) applied to A and B and (i) that v = 0 ⇔ Fix T 6= ∅ ⇔ (∃z ∈ Xm)
such that 0 ∈ Az + N∆z = Az + ∆

⊥ ⇔ [z ∈ ∆ and Az ∈ ∆
⊥] ⇔ [(∃z ∈ X) z = (z, z, . . . z)

and ∑
m
i=1 Aiz = 0] ⇔ z ∈ zer(∑m

i=1 Ai). (iv): Apply Theorem 5.3(i) to A and B and note that
ran A = ×m

i=1 ran Ai. (v) & (vi): Apply Theorem 6.6(ii) and (iv) respectively to A and B. (vii):
Apply Theorem 5.3(ii) to A and B. �

7 Some algorithmic consequences

In this section we make use of the following useful fact that is well-known in analysis.

Fact 7.1. Suppose that (an)n∈N is a decreasing sequence of nonnegative real numbers such that ∑
∞
n=0 an <

+∞. Then
nan → 0. (56)

Proof. See [32, Section 3.3, Theorem 1]. �

Lemma 7.2. Let L : X → X be linear, nonexpansive and asymptotically regular, let b ∈ X, and suppose
that T : X → X : x 7→ Lx + b and that vT := Pran(Id−T) ∈ ran(Id−T). Let x ∈ X. Then the sequence

(‖Tnx − Tn+1x − vT‖)n∈N is a decreasing sequence of nonnegative real numbers that converges to 0.
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Proof. Let n ∈ N. It follows from Fact 6.1 that Tnx + nvT = (vT + T)nx. Moreover, since L is
nonexpansive so is vT + T. Now

‖Tnx − Tn+1x − v‖ = ‖Tnx + nvT − (Tn+1x + (n + 1)vT)‖
= ‖(vT + T)nx − (vT + T)n+1x‖
≤ ‖(vT + T)n−1x − (vT + T)nx‖
= ‖Tn−1x + (n − 1)vT − (Tnx + nvT)‖
= ‖Tn−1x − Tnx − vT‖. (57)

The claim about convergence follows from Proposition 6.3. �

Theorem 7.3. Let L : X → X be linear, nonexpansive and asymptotically regular, let b ∈ X, and suppose
that T : X → X : x 7→ Lx + b and that vT := Pran(Id−T) ∈ ran(Id−T). Let x ∈ X and set

(∀n ∈ N) xn := Tnx + n(Tn2
x − Tn2+1x). (58)

Then xn → PFix(vT+T)x.

Proof. We have

‖xn − (vT + T)nx‖ = ‖Tnx + n(Tn2
x − Tn2+1x)− (Tnx + nvT)‖

= n‖Tn2
x − Tn2+1x − vT‖ =

√
n2‖Tn2

x − Tn2+1x − vT‖ → 0, (59)

where the limit follows by applying Fact 7.1 with an replaced by ‖Tnx − Tn+1x − vT‖2. It follows
from Proposition 6.3 that (vT + T)nx → PFix(v+TT)x, hence the conclusion follows. �

Corollary 7.4. Suppose that A and B are affine and that v ∈ ran(Id−TFB). Let x ∈ X and set

(∀n ∈ N) xn := Tn
FBx + n(Tn2

FBx − Tn2+1
FB x). (60)

Then xn → PFix(v+TFB)x = PZv x.

Proof. Combine Proposition 3.4(i), Fact 2.3, Theorem 7.3 and Theorem 6.6(ii). �
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