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Copositivity Detection of Tensors: Theory and Algorithm
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Abstract

A symmetric tensor is called copositive if it generates a multivariate form taking nonnegative values

over the nonnegative orthant. Copositive tensors have found important applications in polynomial

optimization and tensor complementarity problems. In this paper, we consider copositivity detection

of tensors both from theoretical and computational points of view. After giving several necessary

conditions for copositive tensors, we propose several new criteria for copositive tensors based on the

representation of the multivariate form in barycentric coordinates with respect to the standard simplex

and simplicial partitions. It is verified that, as the partition gets finer and finer, the concerned

conditions eventually capture all strictly copositive tensors. Based on the obtained theoretical results

with the help of simplicial partitions, we propose a numerical method to judge whether a tensor is

copositive or not. The preliminary numerical results confirm our theoretical findings.
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1 Introduction

A symmetric tensor is called copositive if it generates a multivariate form taking nonnegative values over the

nonnegative orthant[15]. Copositive tensors constitute a large class of tensors that contain nonnegative

tensors and several kinds of structured tensors in the even order symmetric case such as M -tensors,

diagonally dominant tensors and so on[3, 6, 9–12, 16, 17, 24]. Recently, it has been found that copositive

tensors have important applications in polynomial optimization [14, 21] and the tensor complementarity

problem [2, 18, 20].

Pena et al. [14] provided a general characterization for a class of polynomial optimization problems that

can be formulated as a conic program over the cone of completely positive tensors or copositive tensors.

As a consequence of this characterization, it follows that recent related results for quadratic problems can

be further strengthened and generalized to higher order polynomial optimization problems. On the other

hand, Che, Qi and Wei [2] showed that the tensor complementarity problem with a strictly copositive

tensor has a nonempty and compact solution set; Song and Qi [18] proved that a real symmetric tensor is

a (strictly) semi-positive if and only if it is (strictly) copositive, and Song and Qi [18, 20] obtained several

results for the tensor complementarity problem with a (strictly) semi-positive tensor; and Huang and Qi

[7] formulated an n-person noncooperative game as a tensor complementarity problem with the involved

tensor is nonnegative. Thus, copositive tensors play an important role in the tensor complementarity

problem. Now, there is a challenging problem that is how to check the copositivity of a given symmetric

tensors efficiently?

Though many structured tensors are copositive, from the practical point of view, it is of great important

to check directly whether a tensor is copositive or not. Several sufficient conditions or necessary and

sufficient conditions for copositive tensors have been presented in [15, 19]. However, it is hard to verify

numerically whether a tensor is copositive or not from these conditions. In [21], Song and Qi gave the

concepts of Pareto H-eigenvalue and Pareto Z-eigenvalue for symmetric tensors. It is proved that a

symmetric tensor A is strictly copositive if and only if every Pareto H-eigenvalue (Z-eigenvalue) of A is

positive, and A is copositive if and only if every Pareto H-eigenvalue (Z-eigenvalue) of A is nonnegative.

Unfortunately, it is NP-hard the compute the minimum Pareto H-eigenvalue or Pareto Z-eigenvalue of a

given symmetric tensors. In fact, for a given tensor, the problem to judge whether it is copositive or not

is NP-complete, even for the matrix case [5, 13]. To the best of our knowledge, there is not any numerical

detection method for copositive tensors with order greater than three. In this paper, we further give

some theoretical studies on various conditions for (strictly) copositive tensors; and based on some of our

theoretical findings, we propose a numerical method to judge whether a tensor is copositive or not. The

algorithm we investigated can be viewed as an extension of some branch-and-bound type algorithm for
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testing copositivity of symmetric matrices [1, 22, 23].

The rest of this paper is organized as follows. In Section 2, we recall some notions and basic facts

about tensors and the corresponding homogeneous polynomials. Three necessary conditions for copositive

tensors are given in Section 3. In Section 4, we give several criteria for (strictly) copositive tensors based

on the simplicial subdivision, and an equivalent condition for a symmetric tensor that is not copositive. In

Section 5, we propose a numerical detection algorithm for copositive tensors based on the results obtained

in Section 4; and show that the algorithm can always capture strictly copositive tensors in finitely many

iterations. The preliminary numerical results are reported in Section 6, and final remarks and some future

work are given in Section 7.

2 Preliminaries

Throughout this paper, we denote the set consisting of all positive integers by N, and always assume that

m,n ∈ N. Let R
n be the n dimensional real Euclidean space and the set of all nonnegative vectors in

R
n be denoted by R

n
+. Let R

n
++ denote the set of vectors with positive entries. Vectors are denoted by

bold lowercase letters i.e. x, y, · · · , matrices are denoted by capital letters i.e. A,B, · · · , and tensors are

written as calligraphic capitals such as A, T , · · · . We denote [n] = {1, 2, · · · , n}. The i-th unit coordinate

vector in R
n is denoted by ei for any i ∈ [n].

A real m-th order n-dimensional tensor A = (ai1i2···im) is a multi-array of real entries ai1i2···im , where

ij ∈ [n] for j ∈ [m]. In this paper, we always assume that m ≥ 3 and n ≥ 2. A tensor is said to be

nonnegative if all its entries are nonnegative. If the entries ai1i2···im are invariant under any permutation

of their indices, then tensorA is called a symmetric tensor. In this paper, we always consider real symmetric

tensors. The identity tensor I with order m and dimension n is given by Ii1···im = 1 if i1 = · · · = im

and Ii1···im = 0 otherwise. For any J ⊆ [n], |J | denotes the number of elements of J , and AJ denotes a

principle subtensor of A.

We denote

Sm,n := {A : A is an m-th order n-dimensional symmetric tensor}.

Clearly, Sm,n is a vector space under the addition and multiplication defined as below: for any t ∈ R,

A = (ai1···im)1≤i1,··· ,im≤n and B = (bi1···im)1≤i1,··· ,im≤n,

A+ B = (ai1···im + bi1···im)1≤i1,··· ,im≤n and tA = (tai1···im)1≤i1,··· ,im≤n.

For any A,B ∈ Sm,n, we define the inner product by 〈A,B〉 :=
∑n

i1,··· ,im=1 ai1···imbi1···im , and the
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corresponding norm by

‖A‖ = (〈A,A〉)1/2 =




n∑

i1,··· ,im=1

(ai1···im)2




1/2

.

For any x ∈ R
n, we use xi to denote its ith component; and use ‖x‖m to denote the m-norm of x.

For m vectors x,y, · · · , z ∈ R
n, we use x◦y◦ · · · ◦z to denote the m-th order n-dimensional symmetric

rank one tensor with

(x ◦ y ◦ · · · ◦ z)i1i2···im = xi1yi2 · · · zim , ∀ i1, · · · , im ∈ [n].

And the inner product of a symmetric tensor and the rank one tensor is given by

〈A,x ◦ y ◦ · · · ◦ z〉 :=
n∑

i1,··· ,im=1

ai1···imxi1yi2 · · · zim .

For m ∈ N and k ∈ [m], we denote

Axkym−k = 〈A,x ◦ · · ·x︸ ︷︷ ︸
k

◦y ◦ · · · ◦ y︸ ︷︷ ︸
m−k

〉 and Axm = 〈A,x ◦ · · ·x︸ ︷︷ ︸
m

〉,

then

Axkym−k =

n∑

i1,··· ,im=1

ai1···imxi1 · · ·xikyik+1
· · · yim and Axm =

n∑

i1,··· ,im=1

ai1···imxi1 · · ·xim . (2.1)

For any A = (ai1i2···im) ∈ Sm,n and x ∈ R
n, we have Axm−1 ∈ R

n with

(Axm−1)i =
∑

i2,i3,··· ,im∈[n]

aii2···imxi2 · · ·xim , ∀ i ∈ [n].

It is known that an m-th order n-dimensional symmetric tensor defines uniquely an m-th degree

homogeneous polynomial fA(x) on R
n: for all x = (x1, · · · , xn)

T ∈ R
n,

fA(x) = Axm =
∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1xi2 · · ·xim ;

and conversely, any m-th degree homogeneous polynomial function f(x) on R
n also corresponds uniquely a

symmetric tensor. Furthermore, an even order symmetric tensor A is called positive semi-definite (positive

definite) if fA(x) ≥ 0 (fA(x) > 0) for all x ∈ R
n (x ∈ R

n\{0}).

3 Necessary conditions for copositivity of tensors

In this section, we first introduce the definition of copositive tensors, and then three necessary conditions

are established, which are given based on binomial expansion, principle subtensor and convex combination

of symmetric tensors, respectively.
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Definition 3.1 [15] Let A ∈ Sm,n be given. If Axm ≥ 0 (Axm > 0) for any x ∈ R
n
+(x ∈ R

n
+\{0}), then

A is called a copositive (strictly copositive) tensor.

To move on, we first prove the following result, which looks like the binomial expansion of two real

variables.

Lemma 3.1 Let A = (ai1i2···im) ∈ Sm,n be given. For any x,y ∈ R
n, it holds that

A(x+ y)m = Axm +

(
m

1

)
Axm−1y +

(
m

2

)
Axm−2y + · · ·+

(
m

m

)
Aym.

Proof. For any x,y ∈ R
n, we know that

A(x+ y)m =〈A, (x+ y) ◦ (x+ y) ◦ · · · ◦ (x+ y)〉

=
∑

i1,i2,··· ,im∈[n]

ai1i2···im(xi1 + yi1)(xi2 + yi2) · · · (xim + yim).

By using the symmetry property of A and (2.1), we further obtain that

A(x + y)m =
∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1xi2 · · ·xim

+

(
m

1

) ∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1 · · ·xim−1yim

+

(
m

2

) ∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1 · · ·xim−2yim−1yim

+ · · · · · ·

+

(
m

m

) ∑

i1,i2,··· ,im∈[n]

ai1i2···imyi1yi2 · · · yim

=Axm +

(
m

1

)
Axm−1y +

(
m

2

)
Axm−2y + · · ·+

(
m

m

)
Aym,

which completes the proof. �

Now, we use Lemma 3.1 to establish a necessary condition for the copositive tensor.

Theorem 3.1 Let A ∈ Sm,n be copositive. If there is x ∈ R
n
+ such that Axm = 0, then Axm−1 ≥ 0.

Proof. Suppose u ∈ R
n
+ and ε > 0, ε ∈ R. Since A is copositive, it follows that

Azm ≥ 0, where z = x+ εu.

So, by Lemma 3.1, we have

Azm =A(x+ εu)m

=Axm +

(
m

1

)
εAxm−1u+

(
m

2

)
ε2Axm−2u2 + · · ·+

(
m

m

)
εmAum.

(3.1)
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Now, assume that there is an index i ∈ [n] such that (Axm−1)i < 0. Take u = ei in (3.1), we obtain that

Azm =A(x + εei)
m

=Axm +

(
m

1

)
εAxm−1ei + · · ·+

(
m

m

)
εmAei

m

=

(
m

1

)
ε(Axm−1)i +

(
m

2

)
ε2Axm−2ei

2 + · · ·+

(
m

m

)
εmAei

m

<0

holds for any sufficiently small ε > 0, which contradicts the fact that A is copositive; and hence, the

desired result follows. �

Next, we establish a necessary condition for the copositive tensor by using the concept of principle

subtensor.

Theorem 3.2 Let A ∈ Sm,n be copositive. Then, for any J ⊆ [n], the system AJx
m−1 ≥ 0 admits a

nonzero solution x ∈ R
|J|
+ .

Proof. We prove it by contradiction. If there is J ⊆ [n] such that

AJx
m−1 < 0 for all nonzero x ∈ R

|J|
+ , (3.2)

then, we may define a vector y ∈ R
n with yi = xi

‖x‖m
when i ∈ J ; and yi = 0 otherwise. By a direct

computation, we obtain Aym = AJx
m

‖x‖m
m

< 0, which contradicts that A is copositive. �

To end this section, we establish a necessary condition for the copositivity of a convex combination of

two symmetric tensors.

Theorem 3.3 Let A,B ∈ Sm,n be given. Suppose that there exists t ∈ [0, 1] such that (1 − t)A + tB is

copositive, then max{Aum +Avm,Bum + Bvm} ≥ 0 for all u,v ∈ R
n
+.

Proof. Since (1− t)A+ tB is copositive, it follows that

(1− t)Aum + tBum ≥ 0, (1− t)Avm + tBvm ≥ 0

for all u,v ∈ R
n
+. Adding these two inequalities, one has that

max{Aum +Avm,Bum + Bvm} ≥ (1− t)(Aum +Avm) + t(Bum + Bvm) ≥ 0

holds for all u,v ∈ R
n
+. This completes the proof. �

When m = 2, Crouzeix, Martinéz-Legaz, and Seeger proved the conclusions of Theorem 3.3 is sufficient

and necessary in the matrix case [4].
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4 Detection criteria based on simplicial partition

In this section, several sufficient conditions or necessary conditions of copositive tensors are characterized

based on some simplices. First of all, we show an useful result obtained by Song and Qi [19].

Lemma 4.1 Let A ∈ Sm,n be given and ‖ · ‖ denote any norm on R
n. Then, we have

(i) A is copositive if and only if Axm ≥ 0 for all x ∈ R
n
+ with ‖x‖ = 1;

(ii) A is strictly copositive if and only if Axm > 0 for all x ∈ R
n
+ with ‖x‖ = 1.

It is well known that the set S0 = {x ∈ R
n
+ | ‖x‖1 = 1} is the so-called standard simplex with vertices

e1, e2, · · · , en. So, it follows from Lemma 4.1 that the copositivity of tensor A ∈ Sm,n can be translated

to check

f(x) = Axm ≥ 0, ∀ x ∈ S0.

Thus, our main goal in this section is to search for conditions that can guarantee the homogeneous

polynomial f(x) to be nonnegative on a simplex. A simple way to describe a polynomial with respect

to a simplex is to use barycentric coordinates, which gives a convenient verifiable sufficient condition for

a tensor to be copositive on a simplex. This approach has been much used for convex surface fitting in

computer aided geometric design [8] and the copositivity detection of matrices [1, 22, 23].

Lemma 4.2 Let S1 = conv{u1,u2, · · · ,un} be a simplex. If

〈A, ui1 ◦ ui2 · · · ◦ uim〉 ≥ 0 (〈A, ui1 ◦ ui2 · · · ◦ uim〉 > 0) (4.1)

for all i1, i2, · · · , im ∈ [n], then Axm ≥ 0 (Axm > 0 respectively) for all x ∈ S1.

Proof. For any x ∈ S1, we have that

x = λ1u1 + · · ·+ λnun,

n∑

i=1

λi = 1, λi ≥ 0, ∀ i ∈ [n]. (4.2)

So, it holds that

Axm =〈A, (λ1u1 + · · ·+ λnun)
m〉

=
∑

j1,j2,··· ,jm∈[n]

λj1λj2 · · ·λjm〈A, uj1 ◦ uj2 · · · ◦ ujm〉.

By (4.1) and (4.2), we further obtain that

Axm ≥ 0 (or Axm > 0),

which completes the proof. �
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If we apply Lemma 4.2 to the standard simplex S0 = {x ∈ R
n
+ | ‖x‖1 = 1}, it shows that

〈A, ei1 ◦ ei2 ◦ · · · ◦ eim〉 = ai1i2···im ≥ 0, ∀ i1, i2, · · · , im ∈ [n].

This means that all nonnegative tensors are copositive tensors.

Let S, S1, S2, · · · , Sr be finite simplices in R
n. The set S̃ = {S1, S2, · · · , Sr} is called a simplicial

partition of S if it satisfies that

S =

r⋃

i=1

Si and intSi

⋂
intSj = ∅ for any i, j ∈ [r] with i 6= j,

where intS denotes the interior of S.

Theorem 4.1 Let A ∈ Sm,n be given. Suppose S̃ = {S1, S2, · · · , Sr} is a simplicial partition of simplex

S0 = {x ∈ R
n
+ | ‖x‖1 = 1}; and the vertices of simplex Sk are denoted by uk

1 ,u
k
2 , · · · ,u

k
n for any k ∈ [r].

Then, the following results hold:

(i) if 〈A, uk
i1
◦ uk

i2
◦ · · · ◦ uk

im
〉 ≥ 0 for all k ∈ [r], ij ∈ [n], j ∈ [m], then A is copositive;

(ii) if 〈A, uk
i1
◦ uk

i2
◦ · · · ◦ uk

im
〉 > 0 for all k ∈ [r], ij ∈ [n], j ∈ [m], then A is strictly copositive.

Proof. By Lemma 4.1, it suffices to prove that

Axm ≥ 0 for all x ∈ S0.

For any x ∈ S0, since S̃ is a simplicial partition of S0, it follows that there is an index k ∈ [r] such that

x ∈ Sk ⊆ S̃. By assumptions and Lemma 4.2, the desired results follow. �

It is easy to see that a simplex S is determined by its vertices, which can be further represented by a

matrix VS whose columns are vertices of the simplex. It is obvious that VS is nonsingular and unique up

to a permutation of its columns. So, analogue to Theorem 4.1, we have the following results.

Theorem 4.2 Let A ∈ Sm,n be given. Suppose S̃ = {S1, S2, · · · , Sr} is a simplicial partition of simplex

S0 = {x ∈ R
n
+ | ‖x‖1 = 1}; and the vertices of simplex Sk are denoted by uk

1 ,u
k
2 , · · · ,u

k
n for any k ∈ [r].

Let VSk
= (uk

1 uk
2 · · · uk

n) be the matrix corresponding to simplex Sk for any k ∈ [r]. Then, the following

results hold:

(i) if V T
Sk
AVSk

is copositive for all k ∈ [r], then A is copositive;

(ii) if V T
Sk
AVSk

is strictly copositive for all k ∈ [r], then A is strictly copositive.
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Proof. It is sufficient to prove (i), since (ii) can be verified similarly. For any k ∈ [r] and i1, i2, · · · , im ∈

[n], we have that

(V T
Sk
AVSk

)i1i2···im =
∑

j1,j2,··· ,jm∈[n]

(V T
Sk
)i1j1aj1j2···jm(VSk

)j2i2 · · · (VSk
)jmim

=
∑

j1,j2,··· ,jm∈[n]

(VSk
)j1i1aj1j2···jm(VSk

)j2i2 · · · (VSk
)jmim

=
∑

j1,j2,··· ,jm∈[n]

aj1j2···jm(uk
i1 )j1(u

k
i2)j2 · · · (u

k
im)jm

=〈A,uk
i1 ◦ u

k
i2 ◦ · · · ◦ u

k
im〉.

(4.3)

For any x ∈ S0, it follows that x ∈ Sk for some k ∈ [r] such that

x = λ1u
k
1 + λ2u

k
2 + · · ·+ λnu

k
n,

n∑

i=1

λi = 1, λi ≥ 0, ∀ i ∈ [n].

Thus,

Axm =〈A, (λ1u
k
1 + λ2u

k
2 + · · ·+ λnu

k
n)

m〉

=
∑

i1,i2,··· ,im∈[n]

λi1λi2 · · ·λim〈A,uk
i1 ◦ u

k
i2 ◦ · · · ◦ u

k
im〉

=
∑

i1,i2,··· ,im∈[n]

(V T
Sk
AVSk

)i1i2···imλi1λi2 · · ·λim

=(V T
Sk
AVSk

)λm,

where λ = (λ1, λ2, · · · , λn) ∈ R
n
+, and the third equality is obtained from (4.3). By conditions and λ ∈ R

n
+,

it holds that Axm ≥ 0 holds for any x ∈ S0; and hence, the desired results follow. �

To show the simplicial partition is fine enough, we will give a necessary condition for strictly copositivity

of tensor. For the standard simplex S0 with a simplicial partition S̃ = {S1, S2, · · · , Sr}, the vertices of

simplex Sk are denoted by uk
1 ,u

k
2 , · · · ,u

k
n for any k ∈ [r]. Let d(S̃) denote the maximum diameter of a

simplex in S̃:

d(S̃) = max
k∈[r]

max
i,j∈[n]

‖uk
i − uk

j ‖2.

Theorem 4.3 Let A ∈ Sm,n be a strictly copositive tensor. Then, there exists ε > 0 such that for all

finite simplicial partitions S̃ = {S1, S2, · · · , Sr} of S0 with d(S̃) < ε, it follows that

〈A, uk
i1 ◦ u

k
i2 ◦ · · · ◦ u

k
im〉 > 0

for all k ∈ [r], ij ∈ [n], j ∈ [m], where uk
1 ,u

k
2 , · · · ,u

k
n are vertices of the simplex Sk.

Proof. First of all, we define the following function:

f(w) = 〈A, x ◦ y ◦ · · · ◦ z︸ ︷︷ ︸
m

〉, ∀ w := (x,y, · · · , z) ∈ S0 × S0 × · · · × S0︸ ︷︷ ︸
m

∈ R
mn.
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The strictly copositivity of A implies that f(wx) > 0 for any wx := (x,x, · · · ,x) ∈ S0 ×S0 × · · ·×S0. By

continuity, it follows that, for any x ∈ S0, there exists εx > 0 such that

f(w) > 0 for all w satisfying ‖w−wx‖2 ≤ εx.

Let ε = minx∈S0 εx > 0. Then, it follows from uniformly continuity of f that

f(w) > 0 for all w satisfying ‖w−wx‖2 ≤ ε for all x ∈ S0. (4.4)

For any simplicial partition S̃ = {S1, S2, · · · , Sr} of S0 with d(S̃) < 1
mε, it holds that

‖uk
i − uk

j ‖2 ≤
1

m
ε, ∀ k ∈ [r], ∀i, j ∈ [n].

Moreover, for any x ∈ Sk ⊆ S̃, it follows that, for any i ∈ [n],

‖uk
i − x‖2 ≤ ‖uk

i − uk
j ‖2 ≤ d(S̃) <

1

m
ε for some j ∈ [n],

which implies that

‖(uk
i1 ,u

k
i2 , · · · ,u

k
im)−wx‖2 ≤ ε, ∀ ij ∈ [n], ∀ j ∈ [m].

Combining this with (4.4), we obtain that

f(uk
i1 ,u

k
i2 , · · · ,u

k
im) = 〈A, uk

i1 ◦ u
k
i2 ◦ · · · ◦ u

k
im〉 > 0

holds for all k ∈ [r], ij ∈ [n], j ∈ [m]; and hence, the desired results follow. �

The following lemma gives a detection criterion for the case of a tensor being not copositive.

Theorem 4.4 Let A ∈ Sm,n be given. Then, the following two assertions are equivalent.

(i) Tensor A is not copositive.

(ii) There exists ε > 0 such that, for all simplicial partition S̃ = {S1, S2, · · · , Sr} of S0 with d(S̃) < ε,

there are at least one k ∈ [r] and one i ∈ [n] satisfying A(uk
i )

m < 0.

Proof. It is obvious that (ii) ⇒ (i). To prove the converse, we assume that A is not copositive. Then,

there is x ∈ S0 such that Axm < 0. By continuity, there exists ε > 0 such that

Aym < 0 for all y satisfying ‖y − x‖2 < ε. (4.5)

For any simplicial partition S̃ = {S1, S2, · · · , Sr} of S0 with d(S̃) < ε, there is at least one k ∈ [r] such

that x ∈ Sk with ‖uk
i − x‖2 ≤ d(S̃) < ε. Thus, it follows from (4.5) that A(uk

i )
m < 0, which implies that

the desired results follow. �
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5 Detection algorithm based on simplicial partition

Based on the results obtained in the last section, we can develop an algorithm to verify whether a tensor

is copositive or not, which is stated as follows.

Algorithm 5.1. Test whether a given symmetric tensor is copositive or not

Input: A ∈ Sm,n

Set S̃ := {S0}, where S0 = conv{e1, e2, · · · , en} is the standard simplex

while S̃ 6= ∅ do

choose S = conv{u1,u2, · · · ,un} ∈ S̃

if there exists i ∈ [n] such that Aum
i < 0, then

return “A is not copositive”

else if 〈A,ui1 ◦ ui2 ◦ · · · ◦ uim〉 ≥ 0 for all i1, i2, · · · , im ∈ [n], then

S̃ = S̃\{S}

else

simplicial partition S = S1

⋃
S2; and set S̃ := S̃\{S}

⋃
{S1, S2}

end if

end while

return “ A is copositive.”

Output: “A is copositive” or “A is not copositive”.

From Theorems 4.3 and 4.4, it is easy to see that the following result holds.

Theorem 5.1 In Algorithm 5.1, if the input symmetric tensor A is strictly copositive or A is not copos-

itive, then the method will terminate in finitely many iterations.

Thus, it is clear that Algorithm 5.1 can capture all strictly copositive tensors and non-copositive tensors.

Unfortunately, when A is copositive but not strictly copositive, it is possible that the partition procedure

of the algorithm leads to d(S̃) → 0; and in this case, the algorithm dose not stop in general. This case

also exists for the matrix detecting process [1, 22]. The reason for this is the following result.

Proposition 5.1 Suppose A ∈ Sm,n is copositive. Let S = conv{u1,u2, · · · ,un} be a simplex with

Aum
i > 0 for all i ∈ [n]. If there exists x ∈ S\{u1,u2, · · · ,un} such that Axm = 0, then there are

i1, i2, · · · , im ∈ [n] such that 〈A,ui1 ◦ ui2 ◦ · · · ◦ uim〉 < 0.

Proof. We prove this proposition by contradiction. Assume that

〈A,ui1 ◦ ui2 ◦ · · · ◦ uim〉 ≥ 0
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for all i1, i2, · · · , im ∈ [n]. By conditions, there is x ∈ S\{u1,u2, · · · ,un} such that Axm = 0. It follows

that there exist λ1, . . . , λn ∈ R+ such that x =
∑n

i=1 λiui and
∑n

i=1 λi = 1. Thus,

Axm =〈A, (λ1u1 + · · ·+ λnun)
m〉

=
∑

i1,i2,··· ,im∈[n]

λi1λi2 · · ·λim〈A,ui1 ◦ ui2 ◦ · · · ◦ uim〉

≥
n∑

i=1

λiAum
i > 0,

which contradicts the result Axm = 0. Therefore, the desired results follow. �

To get rid of the termination problem with the given tensor A being copositive but not strictly copos-

itive, we can first try to check the copositivity of A by Algorithm 5.1. If it terminates in finitely many

iterations, then we get a correct answer; and if not, we can consider a relaxation form ofA, i.e., B = A+σE ,

where E is the tensor of all ones and σ > 0 is a small tolerance.

Theorem 5.2 Let A ∈ Sm,n be given. Then, A is copositive if and only if B = A+σE is strictly copositive

for any σ > 0.

Proof. It is obvious that the necessary condition holds. For the sufficient statement, since

Bxm = (A+ σE)xm = Axm + σ > 0,

for all x ∈ S0 and σ > 0, by letting σ → 0, we can obtain the desired result. �

From Theorems 5.1 and 5.2, the following conclusion holds.

Corollary 5.1 If the given tensor A is copositive but not strictly copositive, by replacing A by B = A+σE

for some σ > 0, then Algorithm 5.1 terminates in finitely many iterations.

For σ > 0, we call the symmetric tensor A a σ-copositive tensor with respect to simplex S0, if Axm ≥

−σ for all x ∈ S0. And we have the following conclusion.

Proposition 5.2 Suppose A ∈ Sm,n is given. Let S = conv{u1,u2, · · · ,un} be a simplex and σ > 0. If

〈A,ui1 ◦ ui2 ◦ · · · ◦ uim〉 ≥ −σ for all i1, i2, · · · , im ∈ [n], then Axm ≥ −σ for any x ∈ S.

Proof. For any x ∈ S, there exist λ1, . . . , λn ∈ R+ such that x =
∑n

i=1 λiui and
∑n

i=1 λi = 1. Thus,

Axm =〈A, (λ1u1 + · · ·+ λnun)
m〉

=
∑

i1,i2,··· ,im∈[n]

λi1λi2 · · ·λim〈A,ui1 ◦ ui2 ◦ · · · ◦ uim〉

≥ − σ,

which implies that the desired result holds. �
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6 Numerical examples

In order to implement Algorithm 5.1, we specify Algorithm 5.1 as follows.

Algorithm 6.1. Test whether a given symmetric tensor is copositive or not

Input: A ∈ Sm,n

Set S̃ := {S1}, where S1 = conv{e1, e2, · · · , en} is the standard simplex

Set k := 1

while k 6= 0 do

set S := Sk = conv{u1,u2, · · · ,un} ∈ S̃

if there exists i ∈ [n] such that Aum
i < 0, then

return “A is not copositive”

else if 〈A,ui1 ◦ ui2 ◦ · · · ◦ uim〉 ≥ 0 for all i1, i2, · · · , im ∈ [n], then

set S̃ := S̃\{Sk} and k := k − 1

else

set

Sk := conv{u1, · · · ,up−1,v,up+1, · · · ,un};

Sk+1 := conv{u1, · · · ,uq−1,v,uq+1, · · · ,un},

where v =
up+uq

2 , [p, q] = argmaxi,j∈[n] ‖ui − uj‖2 and p < q.

set S̃ := S̃\{S}
⋃
{Sk, Sk+1} and k := k + 1

end if

end while

return “ A is copositive.”

Output: “A is copositive” or “A is not copositive”.

In this section, we use this specified version of Algorithm 5.1 to detect whether a tensor is copositive or

not. All experiments are finished in Matlab2014b on a Philips desktop computer with Intel(R) Core(TM)2

Duo CPU E8500 @ 3.16GHz 3.17 GHz and 4 GB of RAM. We detect several classes of tensors from three

aspects, which are given in the following three parts, respectively.

Part 1. Suppose that B ∈ Sm,n is a nonnegative tensor and ρ(B) denotes its spectral radius. Let

I ∈ Sm,n denote the identity tensor. Then, by Definition 3.1 and Theorem 3.12 of [24], we have the

following results: The tensor ηI −B is copositive if and only if η ≥ ρ(B); and the tensor ηI −B is strictly

copositive if and only if η > ρ(B). Based on these results, we construct several tensors for testing. We

first test the following specific tensors.
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Example 6.1 Suppose that A ∈ S3,3 (or A ∈ S4,4) is given by

A = ηI − B, (6.1)

where B ∈ S3,3 (or B ∈ S4,4) is a tensor of ones and η is specified in our numerical results.

The numerical results are given in Table 1, where “ρ” denotes the spectral radius of the tested tensor,

“IT” denotes the number of iterations, “CPU(s)” denotes the CPU time in seconds, and “Result” denotes

the output result in which “No” denotes the output result that the tested tensor is not copositive and

“Yes” denotes the output result that the tested tensor is copositive.

Table 1: The numerical results of the problem in Example 6.1

m n ρ η IT CPU(s) Result

1 2 0.078 No

8.99 43 0.437 No

3 3 9 9 > 100

9.01 59 0.593 Yes

19 11 0.172 Yes

10 14 0.499 No

4 4 64 64 63 2.32 Yes

74 63 2.14 Yes

Next, we test some randomly generated tensors with the form being same as the one by (6.1).

Example 6.2 Suppose that A ∈ Sm,n is given by (6.1), where B ∈ Sm,n is randomly generated with all

its elements are in the interval (0, 1).

In our experiments, we use the higher order power method to compute the spectral radius ρ of every

tensor B. m, n and η are specified in our numerical results. For the same m and n, we generate randomly

every tested problem 10 times, the numerical results are shown in Table 2, where “MinIT” and “MaxIT”

denote the minimal number and the maximal number of iterations among ten times for every tested

problem, respectively, “MinCPU(s)” and “MaxCPU(s)” denote the smallest and the largest CPU times in

second among ten times for every tested problem, respectively, “Nyes” denotes the number of the output

result that the tested tensor is copositive, and “Nno” denotes the number of the output result that the

tested tensor is not copositive. The same notations are also used in Table 6.3.
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Table 2: The numerical results of the problem in Example 6.2

m n η MinIT MaxIT MinCPU(s) MinCPU(s) Nyes Nno

3 3 ρ− 1 6 25 0.0624 0.234 10

ρ+ 1 19 19 0.187 0.187 10

ρ+ 10 11 11 0.109 0.125 10

3 4 ρ− 1 21 65 0.39 1.19 10

ρ+ 1 63 75 1.14 1.36 10

ρ+ 10 49 53 0.905 0.983 10

4 3 ρ− 1 17 17 0.234 0.312 10

ρ+ 1 27 31 0.39 0.452 10

ρ+ 10 19 19 0.265 0.296 10

4 4 ρ− 1 21 25 0.686 0.827 10

ρ+ 1 65 91 2.11 3.15 10

ρ+ 10 63 63 2.09 2.22 10

6 3 ρ− 1 20 28 0.562 0.811 10

ρ+ 1 43 47 1.25 1.36 10

ρ+ 10 27 27 0.764 0.796 10

Part 2. It is obvious that any nonnegative tensor is copositive. By Corollary 6.1 of [19], we also know

that for any A ∈ Sm,n, if A is (strictly) copositive, then (aii···i > 0) aii···i ≥ 0 for all i ∈ [n]. Based on

these results, we consider to detect the tensors given in the following example.

Example 6.3 (i) Consider the tensor A ∈ Sm,n which is randomly generated with all its elements are in

the interval (0, 1); (ii) we set B := A and b11···1 = −1.

In our experiments, for the same m and n, we generate randomly every tested problem 10 times, the

numerical results are shown in Table 3.

Part 3. It is well known that there is a one-to-one relationship between the homogeneous polynomial

and the symmetric tensor. In this part, we consider several tensors which come from several famous

homogeneous polynomials. For convenience, we use the following notation: for any integers i1, i2, . . . , im,

we use π(i1i2 · · · im) to denote a permutation of i1i2 · · · im, and Sπ(i1i2···im) to denote the set of all these

permutations.
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Table 3: The numerical results of the problem in Example 6.3

m n Tensor MinIT MaxIT MinCPU(s) MinCPU(s) Nyes Nno

3 3 A 1 1 0.0624 0.0936 10

B 1 1 0.0624 0.078 10

3 4 A 1 1 0.0624 0.078 10

B 1 1 0.0624 0.078 10

4 3 A 1 1 0.078 0.078 10

B 1 1 0.0624 0.078 10

4 4 A 1 1 0.0936 0.125 10

B 1 1 0.0624 0.078 10

6 3 A 1 1 0.0936 0.125 10

B 1 1 0.0936 0.109 10

Example 6.4 Suppose that A ∈ S6,3 is given by





∑
i1i2i3i4i5i6∈Sπ(111122)

ai1i2i3i4i5i6 = 1,
∑

i1i2i3i4i5i6∈Sπ(112222)
ai1i2i3i4i5i6 = 1,

a333333 = 1,
∑

i1i2i3i4i5i6∈Sπ(112233)
ai1i2i3i4i5i6 = −3,

The corresponding polynomial of the tensor A given in this example is

f(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2.

This is the famous Motzkin polynomial, which is non-negative but not a sum of squares; and hence, the

tensor A is copositive. It is easy to see that the tensor A is not strictly copositive. We use Algorithm 5.1

to test this tensor, the algorithm does not terminate within 100 iterations. We use Algorithm 5.1 to test

the tensor A+ σE with σ > 0, however, the algorithm can correctly detect the copositivity of the tensor;

and we list several cases as follows.

• When σ = 0.01, the algorithm can correctly detect the copositivity of the tensor with 11 iterations

in 0.406 seconds;

• when σ = 0.001, the algorithm can correctly detect the copositivity of the tensor with 27 iterations

in 0.874 seconds; and

16



• when σ = 0.0001, the algorithm can correctly detect the copositivity of the tensor with 71 iterations

in 2.25 seconds.

Example 6.5 Suppose that A ∈ S6,3 is given by





a111111 = 1, a222222 = 1, a333333 = 1,
∑

i1i2i3i4i5i6∈Sπ(111122)
ai1i2i3i4i5i6 = −1,

∑
i1i2i3i4i5i6∈Sπ(112222)

ai1i2i3i4i5i6 = −1,
∑

i1i2i3i4i5i6∈Sπ(111133)
ai1i2i3i4i5i6 = −1,

∑
i1i2i3i4i5i6∈Sπ(113333)

ai1i2i3i4i5i6 = −1,
∑

i1i2i3i4i5i6∈Sπ(222233)
ai1i2i3i4i5i6 = −1,

∑
i1i2i3i4i5i6∈Sπ(223333)

ai1i2i3i4i5i6 = −1,
∑

i1i2i3i4i5i6∈Sπ(112233)
ai1i2i3i4i5i6 = 3,

The corresponding polynomial of the tensor A given in this example is

f(x, y, z) = x6 + y6 + z6 − x4y2 − x2y4 − x4z2 − x2z4 − y4z2 − y2z4 + 3x2y2z2.

This is the famous Robinson polynomial, which is non-negative but not a sum of squares; and hence, the

tensor A is copositive. It is easy to see that the tensor A is not strictly copositive. We use Algorithm 5.1

to test this tensor, the algorithm does not terminate within 100 iterations. We use Algorithm 5.1 to test

the tensor A+ σE with σ > 0, however, the algorithm can correctly detect the copositivity of the tensor;

and we list several cases as follows.

• When σ = 0.01, the algorithm can correctly detect the copositivity of the tensor with 11 iterations

in 0.406 seconds;

• when σ = 0.001, the algorithm can correctly detect the copositivity of the tensor with 27 iterations

in 0.842 seconds; and

• when σ = 0.0001, the algorithm can correctly detect the copositivity of the tensor with 83 iterations

in 2.5 seconds.

Example 6.6 Suppose that A ∈ S6,3 is given by





∑
i1i2i3i4i5i6∈Sπ(111122)

ai1i2i3i4i5i6 = 1,
∑

i1i2i3i4i5i6∈Sπ(222233)
ai1i2i3i4i5i6 = 1,

∑
i1i2i3i4i5i6∈Sπ(333311)

ai1i2i3i4i5i6 = 1,
∑

i1i2i3i4i5i6∈Sπ(112233)
ai1i2i3i4i5i6 = −3,
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The corresponding polynomial of the tensor A given in this example is

f(x, y, z) = x4y2 + y4z2 + z4x2 − 3x2y2z2.

This is the famous Choi-Lam polynomial, which is non-negative but not a sum of squares; and hence, the

tensor A is copositive. It is easy to see that the tensor A is not strictly copositive. We use Algorithm 5.1

to test this tensor, the algorithm does not terminate within 100 iterations. We use Algorithm 5.1 to test

the tensor A+ σE with σ > 0, however, the algorithm can correctly detect the copositivity of the tensor;

and we list several cases as follows.

• When σ = 0.01, the algorithm can correctly detect the copositivity of the tensor with 5 iterations in

0.218 seconds;

• when σ = 0.001, the algorithm can correctly detect the copositivity of the tensor with 27 iterations

in 0.858 seconds; and

• when σ = 0.0001, the algorithm can correctly detect the copositivity of the tensor with 41 iterations

in 1.29 seconds.

From the numerical results given in Part 1-Part 3, we can see that Algorithm 6.1 is effective for the

problems we tested.

7 Conclusions

In this paper, we proposed new criteria to judge whether a tensor is (strictly) copositive or not, including

three necessary conditions which are given based on binomial expansion, principle subtensor and convex

combination, respectively; and several necessary conditions or sufficient conditions which are investigated

by taking advantage of the simplicial partition. These theoretical results can be viewed as extensions of

those obtained in the case of matrix. Moreover, by the obtained criteria based on the simplicial partition,

we proposed a detection algorithm for the copositive tensor. The preliminary numerical results demonstrate

that the proposed algorithm is effective.
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