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certain constraints. To this problem, where the uncertainty only affects the

constraints, we associate a robust (pessimistic) counterpart and several dual

problems. The paper provides corresponding dual variational principles for

the robust counterpart in terms of the closed convexity of different associated

cones.

Keywords Robust convex optimization · Lagrange duality · strong duality ·

robust strong duality · uniform robust strong duality · robust reverse strong

duality.

AMS subject classification 90C25, 46N10, 90C31

1 Introduction

Robust optimization has recently emerged as a useful methodology in the

treatment of uncertain optimization problems. In this paper we consider a

convex optimization problem posed in a locally convex decision space with an

arbitrary number of uncertain constraints. Following the robust approach, we

associate to this uncertain problem a deterministic one called robust coun-

terpart ensuring the feasibility of all possible decisions for any conceivable

scenario. To this problem we associate five different robust dual problems, two

of them already known (the Lagrange dual and the optimistic dual problems),

the remaining three dual problems being apparently new in the literature.

The paper provides robust strong duality theorems for the five duality

pairs guaranteeing the zero-duality gap with attainment of the dual optimal

value which are expressed in terms of the closedness of suitable sets regarding
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the vertical axis. It also provides corresponding stable robust strong duality

theorems guaranteeing robust strong duality for arbitrary linear continuous

perturbations of the objective function which are expressed in terms of the

closedness and convexity of the above sets. Moreover, the paper gives uniform

strong duality theorems guaranteeing the same for the larger class of pertur-

bations of the objective function formed by the proper, lower semicontinuous,

and convex functions which are continuous at some robust feasible solution,

this time expressed in terms of the closedness and convexity of the so-called

robust moment cones. The mentioned duality theorems are specialized in a

non-trivial way to uncertain linear optimization problems, obtaining results

which are new even for deterministic problems (with singleton uncertainty

sets).

We also give reverse strong duality theorems guaranteeing the zero-duality

gap together with the solvability of the primal problem which are expressed in

terms of the weak-inf-local compactness of certain Lagrange function for par-

ticular multipliers, recession conditions on the intersection of sublevel sets of

the data functions, and the closedness of certain set associated to the problem

regarding the vertical axis.

The mentioned duality theorems are finally applied to a given convex opti-

mization problem with uncertain objective function and (possibly) uncertain

constraints by reformulating it as a convex optimization problem with deter-

ministic objective function and uncertain constraints.
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2 Background

This paper deals with uncertain convex optimization problems of the form

(P )

{
inf
x∈X
{f(x) s.t. gt(x, ut) ≤ 0, ∀t ∈ T}

}
(ut)t∈T∈

∏
t∈T

Ut

, (1)

where X is a locally convex Hausdorff topological space (in brief, lcHtvs),

T is a possibly infinite index set, and f and gt(·, ut), t ∈ T , ut ∈ Ut, are

convex functions defined on X. We assume that f is deterministic, while the

uncertainty falls on the constraints in the sense that ut is not deterministic and

belongs to an uncertainty set Ut ⊂ Zt, a lcHtvs depending on t. Additionally,

we assume that the functions gt are real-valued, i.e., gt : X × Ut → R.

The objective of the paper is to provide duality principles for the robust

counterpart of (P ), which is known to be the problem that all the uncertain

inequality constraints are satisfied, namely:

(RP ) inf
x∈X
{f(x) s.t. gt(x, ut) ≤ 0, ∀t ∈ T, ∀ut ∈ Ut} . (2)

In the formulation of (P ) and (RP ) we used the notation in [1]. As asserted

in [2, p. 472], ‘since duality has been shown to play a key role in the tractability

of robust optimization, it is natural to ask how duality and robust optimization

are connected’. The reaction of the researchers to this question, implicitly

posed in 2009 by the seminal paper of Beck and Ben-Tal [3], has been to

expand the literature on robust duality in two opposite directions:

1. Generalization: getting duality theorems under assumptions, which are as

weak as possible for very general robust optimization problems in order to
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gain a better understanding of the robust duality phenomena.

2. Specialization: getting duality theorems for particular types of uncertain

optimization problems in order to ensure the computational tractability of

both pessimistic (primal) and optimistic (dual) problems.

Different dual problems can be associated with (RP ). Let us denote by

(RD) one of these dual problems, which are generically called robust du-

als. Robust zero duality gap means the coincidence of their optimal values,

i.e., inf(RP ) = sup(RD). If, additionally, the dual optimal value sup(RD)

is attained, then it is said that robust strong duality holds, i.e., inf(RP ) =

max(RD). Analogously, when the primal optimal value inf(RP ) is attained, it

is said that reverse robust strong duality occurs, i.e., min(RP ) = sup(RD). Fi-

nally, if both problems are solvable and their values coincide, then we say that

robust total duality holds, i.e., min(RP ) = max(RD). These desirable proper-

ties are said to be stable when they are preserved under arbitrary continuous

linear perturbations of the objective function f.

With few exceptions (as [4] and [5]), almost any paper on robust duality

considers the constraints as a source of uncertainty, in few cases together

with the objective function ([3,6]). Most published papers deal with uncertain

optimization problems as (1), not necessarily convex.

Defining the uncertainty set

U :=
∏
t∈T

Ut,

and G : X × U −→ RT such that G (x, u) := (gt (x, ut))t∈T ∈ RT , for any

x ∈ X and u ∈ U, one can reformulate the robust counterpart of (P ) in (2) as
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the cone constrained problem

(R̃P ) inf
x∈X

f(x) s.t. −G (x, u) ∈ C, ∀u ∈ U,

where C = RT+ is the positive cone in the product space RT . Conversely, the

robust counterpart of any uncertain cone constrained problem can be refor-

mulated as an uncertain inequality constrained problem of the form

(R̂P ) inf
x∈X

f(x) s.t. 〈λ,G (x, u)〉 ≤ 0, ∀λ ∈ C ′,∀u ∈ U,

where C ′ denotes the dual cone to a given closed and convex cone C contained

in some lcHtvs.

The works published up to now on robust duality can primarily be classified

by the type of constraints of the given uncertain problem, either inequality

constraints or conic constraints. Other criteria are the nature of the objective

function and the constraints (either ordinary or conic functions).

Table 1 presents a summary of the existing literature on robust optimiza-

tion problems with uncertain inequality constraints. In almost all references,

which are chronologically ordered, the number of variables is finite. We say

that a function is co/co when it is the quotient of a convex function by a

positive concave function, it is max/co/co when it is the maximum of finitely

many co/co functions, it is sos/co/po when it is sum-of-squares, and it is lo-

cally C1 when it is continuously differentiable on some open set. The codes for

the last column, informing about the nature of the duality theorems contained

in each paper, are as follows: ”zero-gap” stands for the results guaranteeing
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robust zero duality gap, ”strong” means robust strong duality, and ”total” for

robust zero duality gap with attainment of both problems.

Table 1

Refs. f gt (·, ut) T Ut Dual problem Ths.

[3] convex convex finite compact convex Lagrange zero-gap

[7] convex convex finite compact Lagrange strong

[8] co/co convex finite compact convex Wolfe total

[9] locally C1 locally C1 finite compact convex Lagrange strong

[10] linear affine infinite arbitrary Lagrange strong

[11] max/co/co convex finite compact convex Lagrange strong

[12] convex convex finite arbitrary in Rq Lagrange zero-gap

[6] quasiconvex convex finite arbitrary in Rq surrogate strong

[13] linear affine finite compact convex Dantzig robust

[14] sos/co/po polynomial finite finite Lagrange total

[15] ‖·‖2 quadratic finite ellipsoids Lagrange total

The meager literature on robust optimization problems with uncertain cone

constraints is compared in Table 2. In all references, the decision space X is

a lcHtvs, G is C−convex (equivalent to the convexity of gt for all t ∈ T

in the case of inequality constraints) and the feasible set is the convex set

F = {x ∈ S : −G (x, u) ∈ C, ∀u ∈ U} , where S ⊂ X is a given convex set. A

function is said to be DC when it is the difference of two convex functions. The

setting of this paper is intermediate between those of the two types of works

reported in Tables 1, and 2 as the decision space X here is infinite dimensional,

but we prefer inequality constraints to conic ones as we try to investigate
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Table 2

Reference f Dual problem Theorems

[4] convex Lagrange strong

[16] convex Lagrange total

[17] co/co Wolfe total

[18] convex Lagrange stable zero-gap

[19] DC, convex Fenchel, Lagrange stable strong

[20] convex Lagrange stable strong

the dependence of the duality principles from several cones associated with

the constraint functions (more precisely, from the epigraphs of the conjugate

functions of gt(., ut), t ∈ T, ut ∈ Ut). Indeed, we associate with the robust

counterpart (RP ) a convex, infinite optimization parametric problem

(RPx∗) inf
x∈X
{f(x)− 〈x∗, x〉 s.t. gt(x, ut) ≤ 0, ∀t ∈ T, ∀ut ∈ Ut} ,

where 〈x∗, x〉 denotes the duality product of x ∈ X by x∗ ∈ X∗ (the topological

dual of X, whose null vector we denote by 0X∗). Obviously, (RP0X∗ ) coincides

with (RP ), so that we have embedded (RP ) into the parametric problem.

Let us give a simple example of robust infinite optimization problem.

Example 2.1 Let X be the Hilbert space L2 := L2 ([0, 1]) . We denote by ‖·‖

the L2-norm and consider the unit closed ball B := {x ∈ L2 : ‖x‖ ≤ 1}.

Given a ∈ L2 and two families of positive numbers, {αt}t∈T and {βt}t∈T , we

consider the uncertain linear problem

(P )

{
inf
x∈L2

{∫ 1

0

a (s)x (s) ds s.t.

∫ 1

0

ut (s)x (s) ds ≤ βt, t ∈ T
}}

(ut)t∈T∈
∏

t∈T
αtB

.
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The feasible set of the robust counterpart (RP ) of (P ) is

{
x ∈ L2 :

∫ 1

0
ut (s)x (s) ds ≤ βt, ∀t ∈ T, ∀ut ∈ αtB

}
=

{
x ∈ L2 : sup

‖ut‖≤αt

∫ 1

0
ut (s)x (s) ≤ βt, ∀t ∈ T

}
=
{
x ∈ L2 : αt ‖x‖ ≤ βt, ∀t ∈ T

}
,

and we have

(RP ) inf
x∈L2

∫ 1

0

a (s)x (s) ds s.t. ‖x‖ ≤ inf
t∈T

βt
αt
,

equivalently,

(RP ) − sup
x∈L2

∫ 1

0

a (s) (−x (s))ds s.t. ‖x‖ ≤ inf
t∈T

βt
αt
,

and so, inf(RP ) = −‖a‖ inft∈T
βt

αt
.

Appealing to the standard notation of convex analysis recalled in Section 2,

we introduce the following moment cones, whose subindexes are the initials of

the five robust dual problems, that we introduce in next section:

MO :=
⋃

u=(ut)t∈T∈U
conv cone

{
{(0X∗ , 1)} ∪

( ⋃
t∈T

epi (gt(·, ut))∗
)}

,

MC := conv cone

{
{(0X∗ , 1)} ∪

( ⋃
u∈U

⋃
t∈T

epi (gt(·, ut))∗
)}

,

MW :=
⋃

u=u(t)t∈T∈U
cl conv cone

{ ⋃
t∈T

epi(gt(., ut))
∗
}
,

MLh
:= conv cone

{
{(0X∗ , 1)} ∪

( ⋃
t∈T

cl conv
⋃

ut∈Ut

epi(gt(., ut))
∗

)}
,

MLk
:= conv cone

{
{(0X∗ , 1)} ∪

( ⋃
u∈U

cl conv
⋃
t∈T

epi(gt(., ut))
∗
)}

.
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The conesMO andMC are called robust moment cone and robust characteristic

cone in [10], respectively. The above five cones have the same w∗-closed and

convex cone hull, clMC , which determines the feasible set F of (RP ) as, F 6= ∅

if and only if (0X∗ , 1) /∈ clMC [21, Theorem 3.1], in which case, by [21,

Theorem 4.1] and the separation theorem,

F =
{
x ∈ X : 〈v∗, x〉 ≤ α, ∀ (v∗, α) ∈MC

}
. (3)

The cone cl(MC) can be called robust reference cone following the linear semi-

infinite programming terminology [22].

The paper is organized as follows. Section 3 introduces the necessary con-

cepts and notations, and yields the basic results to be used later. Section 4

establishes and characterizes various dual variational principles for (RPx∗) in

terms of w∗-closed convexity of MO and MW , or in terms of w∗-closedness of

MC , MLh
, and MLk

. Section 5 is devoted to uniform robust strong duality

(i.e., the fulfilment of robust duality for arbitrary convex objective functions),

robust duality for convex problems with linear objective function, the par-

ticular case of robust linear optimization and, finally, robust reverse strong

duality. The last section is focused on the general uncertain problem, where

the constraints and the objective functions are all uncertain. Our approach

consists in rewriting such problem in one of the types studied previously, i.e.,

with deterministic objective function, and applying the results obtained in the

first part of the paper.
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3 Preliminaries

We start this section with some necessary notation. Given a non-empty subset

A of a (real) lcHtvs, we denote by convA, coneA := R+A, and clA, the convex

hull of A, the cone generated by A, and the closure of A, respectively. Given

two subsets A,B of a lcHtvs, A is said to be closed (respectively, closed and

convex ) regarding B if (clA)∩B = A∩B (respectively, (cl convA)∩B = A∩B).

We represent by R(T )
+ the positive cone in R(T ), the so-called space of

generalized finite sequences λ = (λt)t∈T such that λt ∈ R, for each t ∈ T, and

with only finitely many λt different from zero. The supporting set of λ ∈ R(T )

is suppλ := {t ∈ T : λt 6= 0}.

Having a function h : X → R := R ∪ {±∞}, we denote by epih and

h∗ the epigraph and the Legendre-Fenchel conjugate of h, respectively. The

function h is proper if epih 6= ∅ and never takes the value −∞, it is convex if

epih is convex, and it is lower semicontinuous (lsc, in brief) if epih is closed.

We denote by Γ (X) the class of all lsc proper convex functions on X. The

indicator function of A ⊂ X is represented by iA (i.e., iA(x) = 0 if x ∈ A,

and iA(x) = +∞ if x /∈ A). If A is a non-empty, closed and convex set, then

iA ∈ Γ (X) . We also denote by Υ (X) ⊂ Γ (X) the class of (real-valued)

convex continuous functions on X.

Following [23], we define the characteristic cone of a system

σ = {ht(x) ≤ 0, t ∈ T} such that {ht, t ∈ T} ⊂ Γ (X) as

K(σ) := conv cone

{
{(0X∗ , 1)} ∪

⋃
t∈T

epih∗t

}
.
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Concerning the data in the robust counterpart problem (RPx∗) introduced in

(2), we assume that, for each t ∈ T , Ut is an arbitrary subset of the lcHtvs Zt.

Along all the paper we will assume that

f ∈ Γ (X)

gt(·, ut) ∈ Υ (X) , ∀t ∈ T, ∀ut ∈ Ut,

∃x̄ ∈ dom f : gt(x̄, ut) ≤ 0, ∀t ∈ T, ∀ut ∈ Ut.

(4)

If we denote by

U := {(t, ut) : t ∈ T, ut ∈ Ut}

the disjoint union of the sets Ut, t ∈ T , then the robust counterpart to the

uncertain problem (Px∗) can be rewritten as

(RPx∗) inf
x∈X
{f(x)− 〈x∗, x〉 s.t. gt(x, ut) ≤ 0, ∀(t, ut) ∈ U} ,

whose feasible set F is represented by the (possibly) infinite convex system of

constraints σ := {gt(x, ut) ≤ 0, (t, ut) ∈ U}.

Throughout the paper we assume that F ∩ dom f 6= ∅, and so

inf(RPx∗) < +∞. Given u = (ut)t∈T ∈
∏
t∈T Ut = U , let us consider the

convex infinite problem

(Pux∗) inf
x∈X
{f(x)− 〈x∗, x〉} s.t. gt(x, ut) ≤ 0, ∀t ∈ T,

whose feasible set Fu and constraint inequality system σu are independent of

x∗, and whose characteristic cone Ku := K (σu) can be expressed as

Ku = conv cone

{
{(0X∗ , 1)} ∪

( ⋃
t∈T

epi (gt(·, ut))∗
)}

= R+{(0X∗ , 1)} ∪

 ⋃
λ∈R(T )

+

∑
t∈T

λt epi (gt(·, ut))∗
 .
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Since the functions gt(·, ut) are convex we have that, by Moreau-Rockafellar

formula and from the continuity assumption in (4) (entailing the w∗- closedness

of
∑
t∈T

epi (λtgt(·, ut))∗), we get

epi

(∑
t∈T

λtgt(·, ut)

)∗
=


∑
t∈T

λt epi (gt(·, ut))∗ , if λ = (λt)t∈T 6= 0T ,

R+{(0X∗ , 1)}, else.

Hence,

Ku =
⋃

λ∈R(T )
+

epi

(∑
t∈T

λtgt(·, ut)

)∗
. (5)

By analogy (up to the sign) with [10], on uncertain linear semi-infinite case

(the terminology being a bit different in [7] for robust convex programming),

we have defined the robust moment cone (non-convex in general) by

MO :=
⋃
u∈U

Ku, (6)

and the robust characteristic cone as

MC := convMO.

Proposition 3.1 MC coincides with the characteristic cone K(σ) of the con-

vex system σ.
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Proof Since MO is a cone, we have

MC = conv coneMO

= conv cone

(⋃
u∈U

conv cone

{
{(0X∗ , 1)} ∪

(⋃
t∈T

epi (gt(., ut))
∗

)})

= conv cone

{(0X∗ , 1)} ∪

 ⋃
(u,t)∈U×T

epi (gt(., ut))
∗


= conv cone

{(0X∗ , 1)} ∪

 ⋃
(t,ut)∈U

epi (gt(., ut))
∗

 ,

which is nothing else than the characteristic cone of σ. ut

Given u = (ut)t∈T ∈ U , let us introduce the Lagrangian dual of (Pux∗):

(Du
x∗) sup

λ∈R(T )
+

inf
x∈X

{
f(x)− 〈x∗, x〉+

∑
t∈T

λtgt(x, ut)

}
.

Robust duality can be defined via the so-called optimistic dual problem of

(RPx∗), that is,

(RDO
x∗) sup

(u,λ)∈U×R(T )
+

inf
x∈X

{
f(x)− 〈x∗, x〉+

∑
t∈T

λtgt(x, ut)

}
.

The optimistic dual problem (RDO
x∗) is different from the classical dual (RDC

x∗)

of the totally explicitly constrained infinite convex problem (RPx∗), i.e.,

(RDC
x∗) sup

(λ(t,ut))(t,ut)∈U
∈R(U)

+

inf
x∈X

f(x)− 〈x∗, x〉+
∑

(t,ut)∈U

λ(t,ut)gt(x, ut)

 .

Next we introduce a different type of duality inspired in [7], where only

finite index sets are considered. For each u ∈ U let us consider the Lagrangian

Lux∗ associated with the convex infinite problem (Pux∗),

Lux∗(x, λ) := f(x)− 〈x∗, x〉+
∑
t∈T

λtgt(x, ut), (x, λ) ∈ X × R(T )
+ ,
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and define the robust Lagrangian L : X × R(T )
+ → R by Lx∗ := supu∈U L

u
x∗ .

One has

sup
λ∈R(T )

+

Lx∗(x, λ) = f(x)− 〈x∗, x〉+ iF (x), ∀x ∈ X,

and, consequently, (RPx∗) can be rewritten as

(RPx∗) inf
x∈X

sup
λ∈R(T )

+

Lx∗(x, λ).

The associated Lagrangian robust dual problem is defined by

(RDLh
x∗ ) sup

λ∈R(T )
+

inf
x∈X

sup
u∈U

{
f(x)− 〈x∗, x〉+

∑
t∈T

λtgt(x, ut)

}
.

Let us give a clarifying interpretation of this Lagrangian robust dual. We start

by defining, for each t ∈ T, the function

ht := sup
ut∈Ut

gt(·, ut),

which brings together the uncertain constraints gt(x, ut) ≤ 0, ut ∈ Ut, giving,

for each t ∈ T, the worse possible constraint. Observe that ht ∈ Γ (X), and it

is continuous (and belongs to Υ (X)) if Ut is a compact subset of Zt and the

function gt : X × Ut → R is continuous for all t ∈ T . Moreover

sup
u∈U

∑
t∈T

λtgt(x, ut) =
∑
t∈T

λtht(x), ∀(x, λ) ∈ X × R(T )
+ ,

and (RDLh
x∗ ) can be written as

(RDLh
x∗ ) sup

λ∈R(T )
+

inf
x∈X

{
f(x)− 〈x∗, x〉+

∑
t∈T

λtht(x)

}
;

in other words (RDLh
x∗ ) is the classical dual of the partially and explicitly

constrained infinite convex problem

(RPLh
x∗ ) inf

x∈X
{f(x)−〈x∗, x〉 s.t. ht(x) ≤ 0, ∀t ∈ T}.
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In a similar way, for each u = (ut)t∈T ∈ U , we can define the function

ku := sup
t∈T

gt(·, ut),

which is a proper function thanks to (4), bringing together the constraints

gt(x, ut) ≤ 0, t ∈ T , for each u ∈ U . So, ku ∈ Γ (X), and it is continuous (and

belongs to Υ (X)) if T is a compact topological space and the function

(x, t) ∈ X × T 7→ gt(x, ut) is continuous, ∀u = (ut)t∈T ∈ U.

Then, the problem (RPx∗) can be rewritten as the partially and explicitly

constrained infinite convex problem

(RPLk
x∗ ) inf

x∈X
{f(x)−〈x∗, x〉 s.t. ku(x) ≤ 0, ∀u ∈ U},

and we consider its classical dual

(RDLk
x∗ ) sup

λ∈R(U)
+

inf
x∈X

{
f(x)− 〈x∗, x〉+

∑
u∈U

λuku(x)

}
.

The problem (RDLk
x∗ ) constitutes another kind of Lagrangian robust dual prob-

lem of (RPx∗). It is absolutely obvious that

inf(RPx∗) = inf(RPLh
x∗ ) = inf(RPLk

x∗ ).

Let us explore next the relationship among the optimal values of the different

duals introduced above.

Proposition 3.2 For every x∗ ∈ X∗ and i ∈ {Lh, Lk} , one has

sup(RDO
x∗) ≤

sup
u∈U

inf(Pux∗)

sup(RDC
x∗) ≤ sup(RDi

x∗)

≤ inf(RPx∗). (7)
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Proof • For each (u, λ) ∈ U × R(T )
+ one has

∑
t∈T λtgt(·, ut) ≤ iFu

and

inf
X

{
f − 〈x∗, ·〉+

∑
t∈T

λtgt(·, ut)

}
≤ inf

Fu

(f − 〈x∗, ·〉) = inf(Pux∗).

Taking the supremum over (u, λ) ∈ U×R(T )
+ we get sup(RDO

x∗)≤ sup
u∈U

inf(Pux∗).

• If (ū, λ̄) ∈ U × R(T )
+ , let us define

λ(t,ut) :=


λ̄t, if ut = ūt,

0, if ut 6= ūt.

We have (λ(t,ut))(t,ut)∈U ∈ R
(U)
+ , and

∑
t∈T

λ̄tgt(·, ūt) =
∑

(t,ut)∈U
λ(t,ut)gt(·, ut). It

easily follows that sup(RDO
x∗) ≤ sup(RDC

x∗).

• Besides, since for each u ∈ U , the feasible set Fu of (Pux∗) contains the feasible

set F of (RPx∗), we have sup
u∈U

inf(Pux∗) ≤ inf(RPx∗).

• We now prove that sup(RDC
x∗) ≤ sup(RDLh

x∗ ). If λ ∈ R(U)
+ then we will show

that

inf
x∈X

f(x)− 〈x∗, x〉+
∑

(t,ut)∈U

λ(t,ut)gt(x, ut)

 ≤ sup(RDLh
x∗ ).

For each t ∈ T , define λt :=
∑

(t,ut)∈suppλ
λ(t,ut). Then, λ̄ := (λ̄t)t∈T belongs to

R(T )
+ and we have, for each x ∈ X,

∑
(t,ut)∈U

λ(t,ut)gt(x, ut) ≤
∑

(t,ut)∈U

λ(t,ut)ht(x) =
∑
t∈T

λ̄tht(x).

It follows that

inf
x∈X

f(x)− 〈x∗, x〉+
∑

(t,ut)∈U

λ(t,ut)gt(x, ut)

 ≤ inf
x∈X

{
f(x)− 〈x∗, x〉+

∑
t∈T

λ̄tht(x)

}
≤ sup(RDLh

x∗ ).
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• We also have that sup(RDC
x∗) ≤ sup(RDLk

x∗ ). If λ ∈ R(U)
+ then we will see

that

inf
x∈X

f(x)− 〈x∗, x〉+
∑

(t,ut)∈U

λ(t,ut)gt(x, ut)

 ≤ sup(RDLk
x∗ ).

For each u = (ut)t∈T ∈ U , define λu :=
∑

(t,ut)∈suppλ
λ(t,ut). Then, λ̄ := (λ̄u)u∈U

belongs to R(U)
+ and we have, for each x ∈ X,

∑
(t,ut)∈U

λ(t,ut)gt(x, ut) ≤
∑

(t,ut)∈U

λ(t,ut)ku(x) =
∑
u∈U

λ̄uku(x).

It follows that

inf
x∈X

f(x)− 〈x∗, x〉+
∑

(t,ut)∈U

λ(t,ut)gt(x, ut)

 ≤ inf
x∈X

{
f(x)− 〈x∗, x〉+

∑
u∈U

λ̄uku(x)

}
≤ sup(RDLk

x∗ ).

• It is easy to see that sup(LRDi
x∗) ≤ inf(RPx∗), i ∈ {Lh, Lk} , and the proof

is complete. ut

We illustrate next the case when T is a singleton, U is a compact topological

space and g : X × U → R is such that g(., u) is continuous and convex for

each u ∈ U and g(x, .) is upper semicontinuous for each x ∈ X. We thus have

(RDO
x∗) sup

λ≥0
sup
u∈U

[
inf
x∈X
{f(x)− 〈x∗, x〉+ λg(x, u)}

]
,

(RDC
x∗) = (RDLk

x∗ ) sup
λ∈R(U)

+

[
inf
x∈X

{
f(x)− 〈x∗, x〉+

∑
u∈U

λug(x, u)

}]
,

(RDLh
x∗ ) sup

λ≥0

[
inf
x∈X
{f(x)− 〈x∗, x〉+ λh(x)}

]
,

where h(x) = maxu∈U g(x, u).
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Now, if Slater condition holds, namely, there exists x ∈ dom f such that

g(x, u) < 0, for all u ∈ U, then h(x) < 0 and

inf(RPx∗) = max(RDLh
x∗ ). (8)

If additionally, U is convex and g(x, .) is (upper semicontinuous) concave for

each x ∈ X, then Sion Theorem [24] yields

sup(RDO
x∗) = sup(RDLh

x∗ ). (9)

Consequently, if the two conditions above are satisfied, then (7) - (9) yield

inf(RPx∗) = sup(RDO
x∗) = max(RDLh

x∗ ) = sup(RDLk
x∗ ) = sup(RDC

x∗).

Let us consider the worst value possible among the values of the programs

(Pux∗), u ∈ U . That leads to the problem [20]:

(RDW
x∗) sup

u∈U
inf(Pux∗).

By Proposition 3.2 we have

sup(RDO
x∗) ≤ sup(RDW

x∗) ≤ inf(RPx∗).

Definition 3.1 Let i ∈ {O,C,W,Lh, Lk} .

(a)
(
RDi

)
−robust strong duality holds at a given x∗ ∈ X∗ iff

inf(RPx∗) = max(RDi
x∗).

(b) The
(
RDi

)
−robust strong duality holds stably iff

(
RDi

)
− robust strong

duality holds at each x∗ ∈ X∗.
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(c) The
(
RDi

)
−robust strong duality holds uniformly iff

(
RDi

)
−robust strong

duality holds at x∗ = 0X∗ for any function f in the family

F := {f ∈ Γ (X) : f is continuous at some point of F} .

(Observe that f ∈F entails f − 〈x∗, .〉 ∈F , ∀x∗ ∈ X∗).

From the proof of Proposition 3.2 it is clearly that optimistic robust strong

duality entails classical robust strong duality, Lagrangian robust strong duality

of both types and worst-value robust strong duality. Robust strong duality of

the types defined in (a) and (b) in Definition 3.1 will be studied in next section

(Section 4), while the last one and some more complements will be given in

Section 5.

We conclude this section by the following note: For the sake of simplicity,

in the case when x∗ = 0X∗ the robust dual problems (RDi
0X∗

) will be denoted,

respectively, by (RDi), i ∈ {O,C,W,Lh, Lk}.

4 The Main Results

In this section, we will study common duality principles between (RPx∗)

and the dual problems (RDi), i ∈ {O,C,W,Lh, Lk}. For this, let us as-

sociate the mentioned dual problems with the functions ϕi : X∗ −→ R,
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i ∈ {O,C,W,Lh, Lk} , defined as

ϕO := inf
(u,λ)∈U×R(T )

+

(
f +

∑
t∈T

λtgt(., ut)

)∗
,

ϕC := inf
λ∈R(U)

+

f +
∑

(t,ut)∈U

λ(t,ut)gt(., ut)

∗ ,
ϕW := inf

u∈U
(f + iFu

)
∗
,

ϕLh
:= inf

λ∈R(T )
+

(
f +

∑
t∈T

λtht

)∗
, where ht := sup

ut∈Ut

gt(., ut),

ϕLk
:= inf

λ∈R(U)
+

(
f +

∑
u∈U

λuku

)∗
, where ku := sup

t∈T
gt(., ut),

and with the corresponding sets

AO :=
⋃

(u,λ)∈U×R(T )
+

epi

(
f +

∑
t∈T

λtgt(., ut)

)∗
,

AC :=
⋃

λ∈R(U)
+

epi

f +
∑

(t,ut)∈U

λ(t,ut)gt(., ut)

∗ ,
AW :=

⋃
u∈U

epi (f + iFu)
∗
,

ALh
:=

⋃
λ∈R(T )

+

epi

(
f +

∑
t∈T

λtht

)∗
,

ALk
:=

⋃
λ∈R(U)

+

epi

(
f +

∑
u∈U

λuku

)∗
.

Let us equip the space X∗ ×R with the product topology of the w∗-topology

on X∗ and the natural topology on R. We denote by clA the corresponding

w∗-closure of any subset A ⊂ X∗ × R. Recall that A is said to be w∗-closed

(respectively, w∗-closed and convex) regarding a subset B ⊂ X∗ × R if

(clA)∩B = A∩B (respectively, (cl convA)∩B = A∩B). The following facts
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can easily be checked (the convexity of the sets and functions below can be

proved by a similar reasoning to the one followed in Lemma 3.1 in [25]):



Ai ⊂ epiϕi ⊂ cl(Ai), i ∈ {O,C,W,Lh, Lk} ,

AC ,ALh
, and ALk

are convex sets,

ϕC , ϕLh
, and ϕLk

are convex functions.

(10)

Let us give some equivalent expressions of the sets Ai, i ∈ {O,C,W,Lh, Lk} ,

respectively in terms of the robust moment cones with the same indexes and

the characteristic cones Ku, u ∈ U .

Proposition 4.1 (a) One has

AO = epi f∗ +MO, AC = epi f∗ +MC , AW =
⋃
u∈U

cl (epi f∗ +Ku) .

(b) If f ∈ F , then AW = epi f∗ +
⋃
u∈U cl (Ku) = epi f∗ +MW .

(c) If ht ∈ Υ (X) , ∀t ∈ T, then ALh
= epi f∗ +MLh

.

(d) If ku ∈ Υ (X) , ∀ u ∈ U, then ALk
= epi f∗ +MLk

.

Proof (a) By Moreau-Rockafellar formula (as
∑
t∈T λtgt(·, ut) are continuous),

AO =
⋃

(u,λ)∈U×R(T )
+

(
epi f∗ + epi

(∑
t∈T

λtgt(·, ut)

)∗)

= epi f∗ +
⋃

(u,λ)∈U×R(T )
+

epi

(∑
t∈T

λtgt(·, ut)

)∗

= epi f∗ +
⋃
u∈U

Ku = epi f∗ +MO.
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AC :=
⋃

λ∈R(U)
+

epi f∗ + epi

 ∑
(t,ut)∈U

λ(t,ut)gt(·, ut)

∗
= epi f∗ +

⋃
λ∈R(U)

+

epi

 ∑
(t,ut)∈U

λ(t,ut)gt(·, ut)

∗ = epi f∗ +MC .

In order to have an explicit expression of AW , let us observe that for all

u = (ut)t∈T ∈ U, iFu
= sup

λ∈R(T )
+

∑
t∈T λtgt(·, ut). Since Fu 6= ∅,

epi i∗Fu
= cl conv

 ⋃
λ∈R(T )

+

epi
∑
t∈T

λtgt(., ut)
∗

 = cl conv(Ku) = cl(Ku)

(as Ku is convex), and then

AW =
⋃
u∈U

cl
(
epi f∗ + epi i∗Fu

)
=
⋃
u∈U

cl (epi f∗ + cl(Ku))=
⋃
u∈U

cl (epi f∗ +Ku) .

(b) Since f ∈ F , we have

epi(f + iFu)∗ = epi f∗ + epi i∗Fu
= epi f∗ + cl(Ku), ∀u ∈ U.

We now observe that

cl(Ku) = cl conv cone

(⋃
t∈T

epi(gt(., ut))
∗

)
, ∀u ∈ U. (11)

By the very definition of Ku, the inclusion ⊃ in (11) is obvious. Conversely,

let us first check that (0X∗ , 1) ∈ cl cone (epi(gt(., ut))
∗) for any t ∈ T . Pick

(x∗, r) ∈ epi(gt(., ut))
∗. For each n ≥ 1 we have 1

n (x∗, r+n) ∈ cone epi(gt(., ut))
∗,

and (0X∗ , 1) = lim
n→∞

1
n (x∗, r + n) ∈ cl cone (epi(gt(., ut))

∗). Now it is clearly

that (0X∗ , 1) belongs to the right-hand side of (11). By definition of Ku it
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follows that Ku is contained in the right-hand side of (11), which is closed.

Finally, we get that (11) holds. We thus have

AW =
⋃
u∈U

(epi f∗ + clKu) = epi f∗ +
⋃
u∈U

clKu

= epi f∗ +
⋃
u∈U

{
cl conv cone

(⋃
t∈T

epi(gt(., ut))
∗

)}
= epi f∗ +MW .

(c) For each λ ∈ R(T )
+ one has

∑
t∈T

λtht ∈ Υ (X) and, by this,

epi

(
f +

∑
t∈T

λtht

)∗
= epi f∗ + epi

(∑
t∈T

λtht

)∗
.

We thus have,

ALh
= epi f∗ +

⋃
λ∈R(T )

+

epi

(∑
t∈T

λtht

)∗
.

Since ht ∈ Υ (X) for all t ∈ T , one has, for each λ ∈ R(T )
+ :

epi

(∑
t∈T

λtht

)∗
=


∑
t∈T

λt epih∗t , if λ = (λt)t∈T 6= 0T ,

{0X∗} × R+, else.

Therefore,

⋃
λ∈R(T )

+

epi

(∑
t∈T

λtht

)∗

= R+{(0X∗ , 1)} ∪

 ⋃
λ∈R(T )

+

∑
t∈T

λt epih∗t


= conv cone

{
{(0X∗ , 1)} ∪

(⋃
t∈T

epih∗t

)}

= conv cone

{
{(0X∗ , 1)} ∪

(⋃
t∈T

cl conv
⋃

ut∈Ut

epi(gt(., ut))
∗

)}
,

and the proof of (c) is complete.

(d) The proof is similar to that of (c). ut



A Unifying Approach to Robust Convex Infinite Optimization Duality 25

Example 4.1 Consider the simple uncertain linear SIP problem

(RP ) infx∈R2 〈c∗, x〉

s.t. 〈x∗t (ut), x〉 ≤ rt(ut), ∀t ∈ [0, 1],∀ut ∈ Ut,

where c∗ ∈ R2� {(0, 0)} is fixed, U0 := ([0, 2π] ∩Q) × N ⊂ Z0 = R2 and

Ut = {t}⊂ Zt = R, for all t ∈ ]0, 1] , (x∗0(u0), r0(u0)) =
(

cosα0, sinα0,
r0+1
r0

)
for all u0 = (α0, r0) ∈ U0, and (x∗t (ut), rt(ut)) = (0, 0, t) for all t ∈ ]0, 1] . Here

U =
{

(ut)t∈[0,1] : u0 ∈ U0 and ut = t, ∀t ∈ ]0, 1]
}
, and

U = ({0} × U0) ∪ {(t, t) : t ∈ ]0, 1]} .

Moreover, since

gt(x, ut) = 〈x∗t (ut), x〉 − rt(ut), epi (gt(·, ut))∗ = {x∗t (ut)} × [rt(ut),+∞[

and, given u ∈ U such that u0 = (α0, r0) ,

Ku = conv cone

{
(0, 0, 1) ,

(
cosα0, sinα0,

r0 + 1

r0

)}
.

Hence, denoting D := {(cosα, sinα) : α ∈ [0, 2π] ∩Q} (a dense subset in the

unit circle S1), and observing that Ku is closed for all u ∈ U, one has

MO = MW = {(0, 0, 0)} ∪
{
x ∈ R3 : (x1, x2) ∈ R+D, x3 > ‖(x1, x2)‖

}
,

MC = MLk
= {(0, 0, 0)} ∪

{
x ∈ R3 : x3 > ‖(x1, x2)‖

}
, and

MLh
=
{
x ∈ R3 : x3 ≥ ‖(x1, x2)‖

}
.

So, MLh
is a closed and convex cone (actually, the robust reference cone),

MC = MLk
is convex and non-closed and, finally, MO = MW is neither closed

nor convex.
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The functions ht are continuous for all t ∈ [0, 1] as, given x ∈ R2, ht (x) = −t

if t > 0, while

h0 (x) = sup
{

(cosα0)x1 + (sinα0)x2 − r0+1
r0

: α0 ∈ [0, 2π] ∩Q, r0 ∈ N
}

= sup {(cosα0)x1 + (sinα0)x2 − 1 : α0 ∈ [0, 2π]} = ‖x‖ − 1.

Similarly, the functions ku are continuous for all u = (ut)t∈[0,1] ∈ U as, given

x ∈ R2,

ku (x) = supt∈T (〈x∗t (ut), x〉 − rt(ut))

= max
{

(cosα0)x1 + (sinα0)x2 − r0+1
r0

, 0
}

is the maximum of two affine functions. It is obvious that

F = {x ∈ R2 : ‖x‖ ≤ 1}, inf(RP ) = −‖c∗‖, and epi (〈c∗, x〉)∗ = {c∗} × R+.

We conclude that Ai = Mi + (c∗1, c
∗
2, 0) , i ∈ {O,C,W,Lh, Lk} , which have

the same topological and convexity properties as the corresponding moment

cones.

Now we proceed by introducing the function p := f + iF . It holds that

inf
x∈X
{p− 〈x∗, ·〉} = inf(RPx∗) and p ∈ Γ (X) (entailing p = p∗∗).

The two propositions below are mere consequences of Proposition 3.2, as

p∗(x∗) = − inf(RPx∗),

ϕi(x
∗) = − sup(RDi

x∗), ∀i ∈ {O,C,W,Lh, Lk} .

Proposition 4.2 For every x∗ ∈ X∗ and i ∈ {Lh, Lk} one has

p∗(x∗) ≤
ϕW (x∗)

ϕi(x
∗) ≤ ϕC(x∗)

≤ ϕO(x∗).
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Proposition 4.3 (a) Optimistic robust strong duality at x∗ ∈ X∗ is equivalent

to

p∗(x∗) = min
(u,λ)∈U×R(T )

+

(
f +

∑
t∈T

λtgt(·, ut)

)∗
(x∗).

(b) Classical robust strong duality at x∗ ∈ X∗ is equivalent to

p∗(x∗) = min
λ∈R(U)

+

f +
∑

(t,ut)∈U

λ(t,ut)gt(·, ut)

∗ (x∗).

(c) Worst-value robust strong duality at x∗ ∈ X∗ is equivalent to

p∗(x∗) = min
u∈U

(f + iFu
)
∗

(x∗).

(d) Lagrangian robust strong duality of h−type at x∗ ∈ X∗ is equivalent to

p∗(x∗) = min
λ∈R(T )

+

(
f +

∑
t∈T

λtht

)∗
(x∗),

where ht := suput∈Ut
gt(., ut), t ∈ T.

(e) Lagrangian robust strong duality of k−type at x∗ ∈ X∗ is equivalent to

p∗(x∗) = min
λ∈R(U)

+

(
f +

∑
u∈U

λuku

)∗
(x∗),

where ku := supt∈T gt(., ut), u ∈ U.

It turns out that the extended real-valued functions ϕi, i ∈ {O,C,W,Lh, Lk}

have the same conjugate, namely the function p.

Proposition 4.4 It holds that p = ϕ∗i , i ∈ {O,C,W,Lh, Lk}.
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Proof By Proposition 4.2 it suffices to check that p = ϕ∗O. Now

ϕ∗O =

(
inf

(u,λ)∈U×R(T )
+

(
f +
∑
t∈T

λtgt(., ut)

)∗)∗
= sup

(u,λ)∈U×R(T )
+

(
f +

∑
t∈T

λtgt(., ut)

)∗∗

= sup
(u,λ)∈U×R(T )

+

(
f +

∑
t∈T

λtgt(., ut)

)
= f + sup

(u,λ)∈U×R(T )
+

(∑
t∈T

λtgt(., ut)

)

= f + sup
u∈U

sup
λ∈R(T )

+

(∑
t∈T

λtgt(., ut)

)
= f + sup

u∈U
iFu

= f + iF = p. ut

Proposition 4.5 One has

epi p∗ = cl conv(epi f∗ +MO) = cl (epi f∗ +MC)

= cl conv

(⋃
u∈U

cl (epi f∗ +Ku)

)
= cl conv

(
epi f∗ +

⋃
u∈U

Ku

)
,

or, equivalently,

epi p∗ = cl conv(AO) = cl(AC) = cl conv(AW ).

If ht ∈ Υ (X) for all t ∈ T (resp. ku ∈ Υ (X) for all u ∈ U), then we have

additionally

epi p∗ = cl(ALh
) (respectively, epi p∗ = cl(ALk

)).

Proof By (10) we have cl conv(Ai) = cl conv(epiϕi), i ∈ {O,W} , and

cl(Ai) = cl (epi ϕi), i ∈ {C,Lh, Lk} . Since dom p 6= ∅, Proposition 4.4 and

Proposition 4.1 give

epi p∗ = epiϕ∗∗i = cl conv(epiϕi) = cl conv(Ai), i ∈ {O,W} .

epi p∗ = epiϕ∗∗C = cl (epi ϕC) = cl(AC).
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The rest of equations in the first statement follow from Proposition 4.1.

If ht ∈ Υ (X) for all t ∈ T, then

epi p∗ = epiϕ∗∗Lh
= cl (epi ϕLh

) = cl(ALh
).

The last statement, involving ALk
, holds similarly. ut

We are now in a position to establish the duality principles corresponding

to the dual problems (RDi
x∗), i ∈ {O,C,W,Lh, Lk}. In the special cases, these

duality principles lead to characterizations of robust and robust stable strong

duality between (RP ) and (RDi
x∗), i ∈ {O,C,W,Lh, Lk}. The theorems below

extend, complete and unify some results in the literature; in particular, some

results concerning optimistic robust duality in [4, 6–10, 13–15, 19, 20, 26], etc.,

classical robust duality in [10], Lagrangian robust duality of type Lh in [7],

etc.

Theorem 4.1 (Robust strong duality at a point) Let i ∈ {O,C,W,Lh, Lk}

be such that ht ∈ Υ (X) for all t ∈ T when i = Lh, and that ku ∈ Υ (X) for

all u ∈ U when i = Lk. Then, given x∗ ∈ X∗,
(
RDi

)
−robust strong duality

holds at x∗ if and only if Ai is w∗-closed and convex regarding {x∗} × R for

i ∈ {O,W}, and w∗-closed regarding {x∗} × R for i ∈ {C,Lh, Lk}.

Proof We discuss the five possible cases.

• Case i = O: By Proposition 4.5 we have

({x∗}×R)∩ cl conv(AO) = ({x∗}×R)∩ epi p∗ = {x∗}×{r ∈ R : p∗(x∗) ≤ r}.

(12)
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Let us begin with the case that p∗(x∗) = +∞. By (12) we have

({x∗}×R)∩cl conv(AO) = ∅ and, hence, AO is w∗-closed and convex regarding

{x∗} × R. By Proposition 4.2 we have ϕO(x∗) = +∞, and

inf
x∈F
{f(x)− 〈x∗, x〉} = −p∗(x∗) = −∞ = −ϕO(x∗) =

= max
(u,λ)∈U×R(T )

+

inf
x∈X

{
f(x)− 〈x∗, x〉+

∑
t∈T

λtgt(x, ut)

}
,

the maximum being attained at each (u, λ) ∈ U × R(T )
+ . So, if p∗(x∗) = +∞,

then both statements in Theorem 4.1 are true.

Consider now that p∗(x∗) 6= +∞. Since dom p 6= ∅, we get p∗(x∗) ∈ R. By

Proposition 4.5 we have (x∗, p∗(x∗)) ∈ cl conv(AO).

Assume first thatAO is w∗-closed and convex regarding {x∗}×R. We then have

(x∗, p∗(x∗)) ∈ AO, and by the definition of AO, there exists (ū, λ̄) ∈ U ×R(T )
+

such that

(x∗, p∗(x∗)) ∈ epi

(
f +

∑
t∈T

λtgt(., ut)

)∗
. (13)

Now, combining the definition of ϕO with (13) and Proposition 4.2, one gets

ϕO(x∗) ≤

(
f +

∑
t∈T

λtgt(., ut)

)∗
(x∗) ≤ p∗(x∗) ≤ ϕO(x∗).

It follows that

p∗(x∗) =

(
f +

∑
t∈T

λtgt(., ut)

)∗
(x∗) = min

(u,λ)∈U×R(T )
+

(
f +

∑
t∈T

λtgt(., ut)

)∗
(x∗),

and, taking Proposition 4.3(a) into account, optimistic robust strong duality

holds at x∗.

Conversely, assume that optimistic robust strong duality holds at x∗, and let

(x∗, r) ∈ cl conv(AO) = epi p∗. One has to check that (x∗, r) ∈ AO. As the
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optimistic robust strong duality holds at x∗, there exists (u, λ) ∈ U × R(T )
+

such that
(
f +

∑
t∈T λtgt(., ut)

)∗
(x∗) = p∗(x∗) ≤ r (see Proposition 4.3(a)),

showing that (x∗, r) ∈ epi
(
f +

∑
t∈T λtgt(., ut)

)∗ ⊂ AO.

• Case i = C: As in Case i = O, we first observe that both statements are true

when p∗(x∗) = +∞. Assume now that p∗(x∗) ∈ R, and note that

(x∗, p∗(x∗)) ∈ epi p∗ = cl(AC) by Proposition 4.5. If AC is w∗-closed regarding

{x∗} × R, then we get (x∗, p∗(x∗)) ∈ AC , and there exists λ ∈ R(U)
+ such that

(x∗, p∗(x∗)) ∈ epi

f +
∑

(t,ut)∈U

λ(t,ut)gt(., ut)

∗ , or

f +
∑

(t,ut)∈U

λ(t,ut)gt(., ut)

∗ (x∗) ≤ p∗(x∗).

The last inequality, together with Proposition 4.2 and the definition of ϕC ,

gives rise to

p∗(x∗) ≤ ϕC(x∗) ≤

f +
∑

(t,ut)∈U

λ(t,ut)gt(., ut)

∗ (x∗) ≤ p∗(x∗),

or, equivalently, there exists λ ∈ R(U)
+ such that

p∗(x∗) =

f+
∑

(t,ut)∈U

λ(t,ut)gt(., ut)

∗(x∗) = min
λ∈R(U)

+

f+
∑

(t,ut)∈U

λ(t,ut)gt(., ut)

∗(x∗),
which (taking Proposition 4.3(b) into account) means that classic robust strong

duality holds at x∗.

Conversely, assume that classic robust strong duality holds at x∗ and let

(x∗, r) ∈ cl(AC) = epi p∗ (see Proposition 4.5). One has to prove that

(x∗, r) ∈ AC . Note that, by Proposition 4.3(b), classical robust strong duality
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at x∗ means that

p∗(x∗) = min
λ∈R(U)

+

f +
∑

(t,ut)∈U

λ(t,ut)gt(., ut)

∗ (x∗).

So, there exists λ̄ = (λ̄(t,ut)) ∈ R
(U)
+ such that

(
f+

∑
(t,ut)∈U

λ̄(t,ut)gt(., ut)

)∗
(x∗) =

p∗(x∗) ≤ r, entailing

(x∗, r) ∈ epi

f +
∑

(t,ut)∈U

λ̄(t,ut)gt(., ut)

∗ ⊂ AC .

• Case i = W : We firstly recall that, by Proposition 4.3(c),

inf
x∈F
{f(x)− 〈x∗, x〉} = max

u∈U
inf
x∈Fu

{f(x)− 〈x∗, x〉} (14)

is equivalent to

p∗(x∗) = min
u∈U

(f + iFu
)
∗

(x∗). (15)

Similar to the proofs of Cases i = O and i = C, both statements hold if

p∗(x∗) = +∞. Assume now p∗(x∗) ∈ R. Then, (x∗, p∗(x∗)) ∈ epi p∗ = co AW

by Proposition 4.5. If AW is w∗-closed and convex regarding {x∗} × R, then

(x∗, p∗(x∗)) ∈ AW , and there is ū ∈ U such that (x∗, p∗(x∗)) ∈ epi(f + iFū
)∗,

and so (f + iFū)∗(x∗) ≤ p∗(x∗). Applying Proposition 4.2, we get

p∗(x∗) ≤ ϕW (x∗) ≤ (f + iFū)∗(x∗) ≤ p∗(x∗),

which means that (15) holds, and so, (14) does, too.

Conversely, assume that (14) holds and let (x∗, r) ∈ cl conv(AW ) = epi p∗. We

now show that (x∗, r) ∈ AW . As (14) holds, (15) does, too, and there exists

ū ∈ U such that (f + iFū
)∗(x∗) = p∗(x∗) ≤ r, which yields
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(x∗, r) ∈ epi(f + iFū)∗ ⊂ AW .

• The proofs for cases i = Lh, assuming ht ∈ Υ (X) for all t ∈ T , and i = Lk,

assuming ku ∈ Υ (X) for all u ∈ U , are completely similar to the proof for

the case i = C (they also can be derived from [27, Theorem 1] with f being

replaced by f − x∗). ut

Next very important results are consequences of Theorem 4.1.

Theorem 4.2 (Robust strong duality) Let i ∈ {O,C,W,Lh, Lk} be such

that ht ∈ Υ (X) for all t ∈ T when i = Lh, and that ku ∈ Υ (X) for all u ∈ U

when i = Lk. Then,
(
RDi

)
− robust strong duality holds for the robust coun-

terpart (RP ), i.e., inf (RP ) = max (RDi), if and only if Ai is w∗-closed and

convex regarding {0x∗}×R for i ∈ {O,W}, and w∗-closed regarding {0x∗}×R

for i ∈ {C,Lh, Lk}.

Theorem 4.3 (Stable strong duality) Let i ∈ {O,C,W,Lh, Lk} be such

that ht ∈ Υ (X) for all t ∈ T when i = Lh, and that ku ∈ Υ (X) for all u ∈ U

when i = Lk. Then,
(
RDi

)
− robust strong duality holds stably if and only if

Ai is w∗-closed and convex for i ∈ {O,W}, and w∗-closed for i ∈ {C,Lh, Lk}.

In Example 4.1, Ai is closed and convex regarding {(0, 0)}×R if and only

if Mi is closed and convex regarding {−c∗} × R, which is true for i = Lh and

false for i ∈ {C,W,Lk}, as well as for i = O when Ai ∩ ({(0, 0)} × R) 6= ∅.

Thus, only (RDLh) is solvable, independently of the objective function. Since

ALh
is w∗-closed and convex, (RDLh) enjoys stable robust strong duality.

Concerning optimistic robust strong duality (see Theorem 4.1, Case

i = O and the corresponding corollaries) the following question is of particular
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interest: when is MO (hence, AO = epi f∗+MO) convex? Next result provides

an answer for that, including the ”convexity condition” introduced in [10]

for robust linear semi-infinite problems, and extending [7, Proposition 2.3] to

robust infinite convex programs.

Proposition 4.6 Assume that, for each t ∈ T , Ut is a convex subset of Zt

and that, for each x ∈ X, the function ut ∈ Ut 7→ gt(x, ut) is concave. Then,

the robust moment cone MO is convex.

Proof Let (x∗1, r1), (x∗2, r2) ∈ MO. Since MO is a cone, it suffices to check

that (x∗1 + x∗2, r1 + r2) ∈ MO. Taking into account (5) and (6), there exist

(u1, λ1), (u2, λ2) ∈ U × R(T )
+ such that

〈x∗1, x〉 −
∑
t∈T

λ1t gt(x, u
1
t ) ≤ r1, ∀x ∈ X,

〈x∗2, x〉 −
∑
t∈T

λ2t gt(x, u
2
t ) ≤ r2, ∀x ∈ X.

Define λ0 := λ1 + λ2 ∈ R(T )
+ , and u0 ∈

∏
t∈T Zt such that

u0t :=


u1t , if λ0t = 0 (i.e., λ1t = λ2t = 0),

λ1
t

λ0
t
u1t +

λ2
t

λ0
t
u2t , else (i.e., if λ0t > 0).

Since, for each t ∈ T , Ut is convex, we have u0 ∈
∏
t∈T Ut = U . Let us check

that (x∗1 + x∗2, r1 + r2) ∈ epi
(∑

t∈T λ
0
t gt(., u

0
t )
)∗

, and this will conclude the

proof. For each x ∈ X we have, since gt(x, .) is concave,

∑
t∈T

λ0t gt(x, u
0
t ) ≥

∑
t∈T

(
λ1t gt(x, u

1
t ) + λ2t gt(x, u

2
t )
)
,
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and for any x ∈ X,

〈x∗1 + x∗2, x〉−
∑
t∈T

λ0t gt(x, u
0
t )≤ 〈x∗1, x〉−

∑
t∈T

λ1t gt(x, u
1
t )+〈x∗2, x〉−

∑
t∈T

λ2t gt(x, u
2
t )

≤ r1 + r2. ut

The last result in this section provides a sufficient condition for MW to be

convex. Recall that, since epi i∗Fu
= cl(Ku), for all u ∈ U, MW =

⋃
u∈U

epi i∗Fu
,

where Fu = {x ∈ X : gt(x, ut) ≤ 0, t ∈ T} . Recall also that U is the disjoint

union of the sets Ut, t ∈ T , and that U =
∏
t∈T Ut.

Definition 4.1 The family of functions (gt(·, ut))(t,ut)∈U is filtering iff for any

two elements u, v ∈ U there exists a third one w ∈ U such that

max {gt(·, ut), gt(·, vt)} ≤ gt(·, wt), ∀t ∈ T. (16)

Proposition 4.7 If (gt(·, ut))(t,ut)∈U is filtering, then MW is convex.

Proof Since MW is a cone, we have to check that it is stable for the sum. Let

(x∗, r) , (y∗, s) ∈ MW . Then, there exist u, v ∈ U such that i∗Fu
(x∗) ≤ r and

i∗Fv
(y∗) ≤ s. From the filtering assumption, we can take w ∈ U such that (16)

holds and we get Fw ⊂ Fu ∩ Fv. We then have

i∗Fw
(x∗ + y∗) ≤ i∗Fw

(x∗) + i∗Fw
(y∗) ≤ i∗Fu

(x∗) + i∗Fv
(y∗)

≤ r + s,

and so (x∗, r) + (y∗, s) ∈ epi i∗Fw
⊂MW . ut
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5 Uniformly Robust Strong Duality and Complements

5.1 Uniformly Robust Strong Duality

Recall that, according to Definition 3.1, if F is the feasible set of (RPx∗), then

the
(
RDi

)
−robust strong duality holds uniformly if

(
RDi

)
−robust strong

duality holds at x∗ = 0X∗ for any function f in the family

F = {f ∈ Γ (X) : f is continuous at a point of F} .

Applying Theorem 4.3 we can easily prove the following results, which ex-

tend [7, Theorems 3.1, 3.2] and [10, Theorems 1, 2] for i = O, [10, Proposition

4] for i = C, and [7, Theorem 5.3] for i = Lh.

Theorem 5.1 (Uniform robust strong duality) Let i ∈ {O,C,W,Lh, Lk}

be such that ht ∈ Υ (X) for all t ∈ T when i = Lh, and that ku ∈ Υ (X) for

all u ∈ U when i = Lk. Then, the following statements are equivalent:

(i) The robust moment cone Mi is w∗-closed and convex for i ∈ {O,W}, and

w∗-closed for i ∈ {C,Lh, Lk},

(ii)



inf
x∈F
〈x∗, x〉= max

(u,λ)∈U×R(T )
+

inf
x∈X

{
〈x∗, x〉+

∑
t∈T λtgt(x, ut)

}
, ∀x∗∈ X∗, if i = O,

inf
x∈F
〈x∗, x〉 = max

λ∈R(U)
+

inf
x∈X

{
〈x∗, x〉+

∑
(t,ut)∈U

λ(t,ut)gt(x, ut)

}
, ∀x∗∈ X∗, if i = C,

inf
x∈F
〈x∗, x〉 = max

u∈U
inf
x∈X

{〈x∗, x〉 : gt(x, ut) ≤ 0, ∀t ∈ T} , ∀x∗∈ X∗, if i = W,

inf
x∈F
〈x∗, x〉 = max

λ∈R(T )
+

inf
x∈X

sup
u∈U

{
〈x∗, x〉+

∑
t∈T

λtgt(x, ut)

}
, ∀x∗∈ X∗, if i = Lh,

inf
x∈F
〈x∗, x〉 = max

λ∈R(U)
+

inf
x∈X

{
〈x∗, x〉+

∑
u∈U

λu sup
t∈T

gt(x, ut)

}
, ∀x∗∈ X∗, if i = Lk.

(iii)
(
RDi

)
− strong duality holds uniformly.
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Proof The proofs are very similar for i ∈ {O,C,W,Lh, Lk} , so we may assume

i = O. Applying Proposition 4.1 for f ≡ 0 we get that

AO = epi f∗ +MO = {0X∗} × R+ +MO = MO,

and the equivalence [(i)⇔ (ii)] holds.

[(ii)⇔ (iii)] Note that infx∈F f(x) = −(f+iF )∗(0X∗). By Moreau-Rockafellar

theorem, there exists x̄∗ ∈ X∗ such that − infx∈F f(x) = f∗(x̄∗) + i∗F (−x̄∗). If

(ii) holds, then there will exist (ū, λ̄) ∈ U × R(T )
+ , λ̄ = (λ̄t) ∈ R(T )

+ , such that

i∗F (−x̄∗) = − inf
x∈F
〈x̄∗, x〉 = − inf

x∈X

{
〈x̄∗, x〉+

∑
t∈T

λ̄tgt(x, ūt)

}

=

(∑
t∈T

λ̄tgt(., ūt)

)∗
(−x̄∗),

and we have

f∗(x̄∗) + i∗F (−x̄∗) = f∗(x̄∗) +

(∑
t∈T

λ̄tgt(., ūt)

)∗
(−x̄∗)

≥

(
f +

∑
t∈T

λ̄tgt(., ūt)

)∗
(0X∗).

Consequently, by weak-duality, we get

sup
(u,λ)∈U×R(T )

+

inf
x∈X

{
f(x) +

∑
t∈T

λtgt(x, ut)

}
≤ inf
x∈F

f(x) = −{f∗(x̄∗) + i∗F (−x̄∗)}

≤ −

(
f +

∑
t∈T

λ̄tgt(., ūt)

)∗
(0X∗) = inf

x∈X

{
f(x) +

∑
t∈T

λ̄tgt(x, ūt)

}

≤ sup
(u,λ)∈U×R(T )

+

inf
x∈X

{
f(x) +

∑
t∈T

λtgt(x, ut)

}
,

and (iii) holds.

Since [(iii)⇒ (ii)] is obvious, the proof is complete. ut

As a consequence of the above results,
(
RDLk

)
− strong duality uniformly

holds for the problem in Example 4.1.
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5.2 Robust Duality for Convex Problems with Linear Objective Function

The robust counterpart with linear objective f(x) = 〈c∗, x〉, c∗ ∈ X∗, has the

form

(ROLP ) inf
x∈X
〈c∗, x〉 s.t. gt (x, ut) ≤ 0, ∀(t, ut) ∈ U,

with corresponding robust dual problems

(ROLDO) sup
(u,λ)∈U×R(T )

+

inf
x∈X

{
〈c∗, x〉+

∑
t∈T

λtgt (x, ut)

}
,

(ROLDC) sup
λ∈R(U)

+

inf
x∈X

{
〈c∗, x〉+

∑
(t,ut)∈U

λ(t,ut)gt (x, ut)

}
,

(ROLDW ) sup
u∈U

inf
x∈X
{〈c∗, x〉 : gt (x, ut) ≤ 0, ∀t ∈ T} ,

(ROLDLh) sup
λ∈R(T )

+

inf
x∈X

sup
u∈U

{
〈c∗, x〉+

∑
t∈T

λtgt (x, ut)

}
,

(ROLDLk) sup
λ∈R(U)

+

inf
x∈X

sup
t∈T

{
〈c∗, x〉+

∑
u∈U

λuku (x)

}
.

We now give a geometric interpretation of the optimal values of the above

five dual problems in terms of the corresponding moment cones.

Proposition 5.1 (Robust duality and moment cones)

Let i ∈ {O,C,W,Lh, Lk} be such that ht ∈ Υ (X) for all t ∈ T when i = Lh,

and that ku ∈ Υ (X) for all u ∈ U when i = Lk. Then,

sup(ROLDi) = sup {r ∈ R : − (c∗, r) ∈Mi} . (17)

Proof Given i ∈ {O,C,W,Lh, Lk} , from the definitions of ϕi and Ai one gets

epis ϕi ⊂ Ai ⊂ epiϕi,
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where epis ϕi denotes the strict epigraph of ϕi. Consequently,

inf {r ∈ R : (x∗, r) ∈ Ai} = ϕi (x∗) = − sup(RDi
x∗),

or, in other words,

sup(RDi
x∗) = sup {r ∈ R : (x∗,−r) ∈ Ai} . (18)

Concerning the moment cones, from Proposition 4.1 we get the identity

Ai = {c∗} × R+ +Mi, (19)

for i ∈ {O,C,W} by statements (a) and (b), and for i ∈ {Lh, Lk} by state-

ments (c) and (d). Combining (18) and (19), and recalling that sup(ROLDi) =

sup(RDi
0X∗

), one gets

sup(ROLDi) = sup {r ∈ R : (0∗X∗ ,−r) ∈ {c∗} × R+ +Mi}

= sup {r ∈ R : ∃δ ≥ 0 such that − (c∗, r + δ) ∈Mi}

= sup {r ∈ R : − (c∗, r) ∈Mi} ,

i.e., (17) holds. ut

5.3 Robust Duality for Linear Programs

Let us consider the important particular case of robust linear programs, which

have been already studied in [10] when X = Rn. Putting f(x) = 〈c∗, x〉,

c∗ ∈ X∗, and for each (t, ut) ∈ U, gt(x, ut) = 〈x∗t (ut), x〉 − rt(ut),

(x∗t (ut), rt(ut)) ∈ X∗ ×R, the robust linear infinite problem can be expressed

as

(RLP ) inf
x∈X
〈c∗, x〉 s.t. 〈x∗t (ut), x〉 ≤ rt(ut), ∀(t, ut) ∈ U.
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It is easy to see that the corresponding moment cones are

MO :=
⋃

u=(ut)t∈T∈U
conv cone {(x∗t (ut), rt(ut)), t ∈ T ; (0X∗ , 1)} ,

MC := conv cone {(x∗t (ut), rt(ut)), (t, ut) ∈ U; (0X∗ , 1)} ,

MW :=
⋃

u=(ut)t∈T∈U
cl conv cone {(x∗t (ut), rt(ut)), t ∈ T} ,

MLh
:= conv cone

⋃
t∈T

cl conv

( ⋃
ut∈Ut

{(x∗t (ut), rt(ut)) + R+(0X∗ , 1)} ; (0X∗ , 1)

)
,

MLk
:= conv cone

⋃
u∈U

cl conv

(⋃
t∈T
{(x∗t (ut), rt(ut)) + R+(0X∗ , 1)} ; (0X∗ , 1)

)
.

From (3),

inf(RLP ) = sup {r ∈ R : 〈c∗, x〉 ≥ r, ∀x ∈ F}

= sup
{
r ∈ R : − (c∗, r) ∈MC

}
.

We also associate with problem (RLP ) the corresponding dual problems:

(RLDO) sup
(u,λ)∈U×R(T )

+

inf
x∈X

{
〈c∗, x〉+

∑
t∈T λt(〈x∗t (ut), x〉 − rt(ut))

}
,

(RLDC) sup
λ∈R(U)

+

inf
x∈X

{
〈c∗, x〉+

∑
(t,ut)∈U

λ(t,ut)(〈x∗t (ut), x〉 − rt(ut))

}
,

(RLDW ) sup
u∈U

inf
x∈X
{〈c∗, x〉 : 〈x∗t (ut), x〉 ≤ rt(ut), ∀t ∈ T} ,

(RLDLh) sup
λ∈R(T )

+

inf
x∈X

sup
u∈U

{
〈c∗, x〉+

∑
t∈T

λt(〈x∗t (ut), x〉 − rt(ut))
}
,

(RLDLk) sup
λ∈R(U)

+

inf
x∈X

{
〈c∗, x〉+

∑
u∈U

λu sup
t∈T

(〈x∗t (ut), x〉 − rt(ut))
}
.

Proposition 5.2 Let i ∈ {O,C,W,Lh, Lk} be such that ht ∈ Υ (X) for all

t ∈ T when i = Lh, and that ku ∈ Υ (X) for all u ∈ U when i = Lk. Then, the

following statements hold:
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(i) sup(RLDi) = sup {r ∈ R : − (c∗, r) ∈Mi} .

(ii)
(
RLDi

)
− strong duality holds uniformly for any c∗ ∈ X∗ if and only

if the robust moment cone Mi is w∗-closed and convex for i ∈ {O,W}, and

w∗-closed for i ∈ {C,Lh, Lk} .

Proof (i) It follows immediately from Proposition 5.1.

(ii) It is a consequence of the equivalence [(i)⇔ (ii)] in Theorem 5.1. ut

An alternative proof of Proposition 5.2(i) for i ∈ {C,Lh, Lk} can be ob-

tained from [26, Lemma 4.3], by taking into account that (RLDC), (RLDLh)

and (RLDLh) are nothing else than the Lagrange dual problems corresponding

to linear representations of the feasible set of (RLP ) with characteristic cones

MC , MLh
, and MLk

, respectively. Proposition 5.2(ii) generalizes [22, Theorem

8.4], where i = C and X = Rn.

Let us revisit Example 4.1. According to (17), sup(RLDi) = −‖c∗‖ ,

i ∈ {C,Lh, Lk} . We now check the fulfilment of (17) for i ∈ {O,W} . Given

(u, λ) ∈ U × R([0,1])
+ ,

inf
x∈R2

{
〈c∗, x〉+

∑
t∈[0,1]

λt(〈x∗t (ut), x〉 − rt(ut))

}
=

∑
t∈]0,1]

λt(−t)− λ0
(
r0+1
r0

)
+ inf
x∈R2

{〈c∗, x〉+ λ0 ((cosα0)x1 + (sinα0)x2)}

=
∑

t∈]0,1]
λt(−t)− λ0

(
r0+1
r0

)
+ inf
x∈R2
〈c∗ + λ0(cosα0, sinα0), x〉,

and so
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inf
x∈R2

〈c∗, x〉+
∑
t∈[0,1]

λt(〈x∗t (ut), x〉 − rt(ut))


=


∑

t∈]0,1]
λt(−t)− λ0

(
r0+1
r0

)
, if c∗ = −λ0(cosα0, sinα0)

−∞, otherwise.

Therefore,

sup(RLDO) =


sup

(u,λ)∈U×R(T )
+

{ ∑
t∈]0,1]

λt(−t)− λ0
(
r0+1
r0

)}
, if c∗ ∈ −λ0D,

−∞, otherwise,

=


sup

λ∈R(T )
+

{ ∑
t∈]0,1]

λt(−t)− ‖c∗‖

}
, if −c∗ ∈ R++D,

−∞, otherwise,

=


−‖c∗‖ , if − c∗ ∈ R++D,

−∞, else.

(observe that c∗ ∈ −λ0D with c∗ 6= (0, 0) entails that λ0 > 0, and so the

supremum of (RLDO) is not attained).

We now take u ∈ U. Eliminating redundant constraints, (Pu) can be ex-

pressed as

(Pu) inf
x∈R2
〈c∗, x〉 s.t. (cosα0)x1+(sinα0)x2 ≤

r0 + 1

r0
,

with

inf(Pu) =


−
(
r0+1
r0

)
‖c∗‖ , if (cosα0, sinα0) = − c∗

‖c∗‖ ,

−∞, else.

Thus, for i ∈ {O,W} , if −c∗ /∈ R++D, we have an infinite robust duality gap;

otherwise,

sup(RLDi) = min(RLP ),
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i.e., we have (RLDi)−robust zero-gap (but not strong) duality. In fact, Ai is

closed and convex regarding {0x∗} × R if and only if Mi is closed and convex

regarding {−c∗} × R, which is not the case. Observe also that

sup {r ∈ R : − (c∗, r) ∈Mi} =


−‖c∗‖ , if −c∗ ∈ R++D,

−∞, else,

so that (17) holds for i ∈ {O,W} .

Finally, we observe that only
(
RLDLh

)
enjoys uniform robust strong duality.

5.4 Reverse Robust Strong Duality

In addition to the main results on robust strong duality provided in the previ-

ous section, some results on reverse robust strong duality can be derived from

convex infinite duality, recently revisited in [27]. In fact, Theorem 5.3 below is

a slight adaptation of [27, Theorem 2] to robust case. Recall that a function

h ∈ Γ (X) is weakly-inf-locally compact when for each r ∈ R, the sublevel set

[h ≤ r] is weakly-locally compact (i.e., locally compact for the weak-topology

in X). We also denote by h∞ the recession function of h (whose epigraph is

the recession cone of epih).

Proposition 5.3 Assume that sup(RDC) 6= +∞, and additionally, the fol-

lowing conditions are fulfilled:

(a) ∃λ ∈ R(U)
+ : f +

∑
(t,ut)∈U

λ(t,ut)gt(., ut) is weakly-inf-locally compact,

(b) the recession cone of (RP ), namely

[f∞ ≤ 0]
⋂ ⋂

(t,ut)∈U

[(gt(., ut))∞ ≤ 0]

 ,
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is a linear space.

Then, min inf(RP ) = sup(RDC) and the optimal set of (RP ) is the sum of

a non-empty, weakly-compact and convex set and a finite dimensional linear

space.

In the same way, Theorem 5.4 below is a simple adaptation of [27, Theorem

3]. The topology on R(U) × R is the product topology.

Proposition 5.4 Assume sup(RDC) 6= −∞. Then, the following statements

are equivalent:

(i) min(RP ) = sup(RDC).

(ii)
⋃

x∈dom f

((
(gt(x, ut)

)
(t,ut)∈U

, f(x)

)
+
(
RU

+ × R+

)
is closed regarding {0RU}×R.

6 The General Uncertain Problem

We consider in this last section the general uncertain problem

(Q)

{
inf
x∈X
{f(x, v) s.t. gt(x, ut) ≤ 0, ∀t ∈ T}

}
(ut)t∈T∈U, v∈V

, (20)

where U =
∏
t∈T

Ut, V is another uncertainty set, which is a subset of some

lcHtvs, and f(., v) ∈ Γ (X), for all v ∈ V. This problem admits the following

pessimistic reformulation as an uncertain problem with deterministic objective

function (of the type studied in the previous sections):

(P )

{
inf

(x,r)∈X×R
{F (x, r) s.t. Gt(x, r, ut) ≤ 0, t ∈ T, H(x, r, v) ≤ 0}

}
(ut)t∈T∈U, v∈V

,

where

F (x, r) := r, Gt(x, r, ut) = gt(x, ut) and H(x, r, v) = f(x, v)− r.
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The totally explicit robust counterpart of (P ) is the problem

(RPC) inf
(x,r)∈X×R

F (x, r) s.t.
Gt(x, r, ut) ≤ 0, ∀(t, ut) ∈ U,

and H(x, r, v) ≤ 0, ∀v ∈ V,

 ,

where U := {(t, ut) : t ∈ T, ut ∈ Ut}.

The classical dual of the convex infinite problem (RPC) is

(RDC) sup
λ∈R(U)

+

µ∈R(V )
+

 inf
(x,r)∈X×R


F (x, r) +

∑
(t,ut)∈U

λ(t,ut)Gt(x, r, ut)

+
∑
v∈V

µvH(x, r, v)


 .

According to the definition of the functions F, Gt and H, we easily obtain

(RDC) sup
λ∈R(U)

+ ,

µ∈R(V )
+ ,∑

v∈V
µv=1

 inf
x∈X

 ∑
(t,ut)∈U

λ(t,ut)gt(x, ut) +
∑
v∈V

µvf(x, v)


 .

We have

(Gt(., ., ut))
∗(x∗, s) =


gt(., ut))

∗(x∗), if s = 0,

+∞, else,

epi(Gt(., ., ut))
∗ = {(x∗, 0, θ) ∈ X∗ × R× R : gt(., ut))

∗(x∗) ≤ θ} ,

(H(., ., v))∗(x∗, s) =


f(., v))∗(x∗), if s = −1,

+∞, else,

epi(H(., ., v))∗ = {(x∗,−1, θ) ∈ X∗ × R× R : f(., v))∗(x∗) ≤ θ} .

Thus, the moment cone associated with (RPC) is

M ′C = conv cone


{(0X∗ , 0, 1)} ∪

⋃
(t,ut)∈U {(x

∗, 0, θ) : gt(., ut))
∗(x∗) ≤ θ}

∪
⋃
v∈V {(x∗,−1, θ) : f(., v))∗(x∗) ≤ θ}

 .
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Since

F ∗(x∗, s) =


0, if x∗ = 0X∗ and s = 1,

+∞, else,

we get epiF ∗ = {(0X∗ , 1)} × R+. Assuming that inf(RPC) 6= +∞, and ap-

plying Theorem 4.1 and Proposition 4.1, we conclude that

inf(RPC) = max(RDC) if and only if

{(0X∗ , 1)} × R+ +M ′C is closed regarding (0X∗ , 0)} × R.

7 Conclusions

In most applications of convex optimization, the data defining the nominal

problem are uncertain, so that the decision maker must choose among differ-

ent uncertainty models. Parametric models (stability and sensitivity analyses)

are based on embedding the nominal problem into a suitable topological space

of admissible perturbed problems, the so-called space of parameters. Sensitiv-

ity analysis provides estimations of the impact of a given perturbation of the

nominal problem on the optimal value while stability analysis provides con-

ditions under which sufficiently small perturbations of the nominal problem

provoke only small changes in the optimal value, the optimal set and the feasi-

ble set, as well as approximate distances, in the space of parameters, from the

nominal problem to important families of problems. Stochastic optimization,

in turn, assumes that the uncertain data are random variables with a known

probability distribution and provides either the probability distribution of the

optimal value under strong assumptions or its empirical distribution via simu-
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lation. Both approaches to uncertain convex optimization, the parametric and

the stochastic ones, are considered unrealistic by many practitioners for which

it is preferable to describe the uncertainty via sets. Indeed, robust models as-

sume that all instances of the data belong to prescribed sets (the so-called

uncertainty sets), and select an ”optimal decision” among those which are fea-

sible under any conceivable data. Assuming that the optimal value function

f is deterministic, the robust decision makers agree in minimizing f on the

set of robust feasible solutions. In contrast with the existing unanimity of the

robust optimization community in solving this (pessimistic) primal problem,

there exists a variety of possible choices of its (optimistic) dual counterpart.

We have chosen in Sections 5 the so-called min-max robust counterpart, which

consists of minimizing the worst case for the objective function on the robust

feasible set.

This paper examines five different dual pairs in robust convex optimization

(two of them already known), each one based on a corresponding moment cone.

In particular, we characterize:

– Robust strong (or inf-max) duality in terms of the closedness regarding the

vertical axis of the corresponding moment cones.

– Uniform robust strong duality (i.e., the fulfilment of robust strong duality for

arbitrary convex objective functions) in terms of the closedness regarding the

whole space and the convexity of the moment cones.
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– Robust reverse strong (or min-sup) duality in terms of the linearity of the

recession cone of the robust primal problem and the closedness of certain set

regarding the vertical axis.

Moreover, we analyze robust duality for convex problems with linear objec-

tive function x 7→ 〈c∗, x〉 and the particular case of robust linear optimization,

for which we provide results which are new even in the deterministic setting

(when the uncertainty sets are singleton), e.g., the characterization of the op-

timal value of the five dual problems in terms of the intersection of a vertical

line through the point (−c∗, 0) with the corresponding moment cone.
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