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Abstract In the present paper, we analyze a class of convex semi-infinite program-1

ming problems with arbitrary index sets defined by a finite number of nonlinear2

inequalities. The analysis is carried out by employing the constructive approach, which,3

in turn, relies on the notions of immobile indices and their immobility orders. Our pre-4

vious work showcasing this approach includes a number of papers dealing with simpler5

cases of semi-infinite problems than the ones under consideration here. Key findings 26

of the paper include the formulation and the proof of implicit and explicit optimality7

conditions under assumptions, which are less restrictive than the constraint qualifica-8

tions traditionally used. In this perspective, the optimality conditions in question are9

also compared to those provided in the relevant literature. Finally, the way to formulate10

the obtained optimality conditions is demonstrated by applying the results of the paper11

to some special cases of the convex semi-infinite problems. 312
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1 Introduction17

In semi-infinite programming (SIP), one has to minimize functions of finite-18

dimensional variables, which are subject to infinitely many constraints. SIP problems19

often arise in mathematics as well as in diverse engineering and economical applica-20

tions of the latter (see [1–5], and the references therein). A large class of distributionally21

robust optimization problems can be described and solved with the help of convex22

SIP [6]. A number of SIP control-related challenges, to be met with in practical23

applications, can be found in [7–9], among others. In recent years, machine learning24

methods are gaining popularity because of their reliability and efficiency in dealing25

with “real-life” problems. In [10], an innovative method is proposed for generating26

infinitely many kernel combinations with the help of infinite and semi-infinite opti-27

mization.28

In the study of optimization problems, in general, and the SIP ones, in particular,29

many important issues are associated with an eventual valid choice of efficient opti-30

mality conditions. The relevant literature on SIP and generalized SIP features a number31

of approaches to optimality conditions (cf. [1,2,11–17]). Very often optimality con-32

ditions are based on the topological study of inequality systems (e.g., [18–20] et al.)33

and use different constraint qualifications (CQ) [12–14,18]. Various CQs and assorted34

questions on regularity and stability of the feasible sets in semi-infinite optimization35

are studied in [21–24] and the references therein.36

The methodology, which will be described below, is often followed in order to37

verify the optimality of a given feasible solution. Using the information about a given38

problem and its feasible solution x0, we formulate an auxiliary nonlinear programming39

(NLP) problem with a finite number of constraints. This problem is constructed in such40

a way that, under special additional conditions, the optimality property of x0 in the41

original SIP problem should be connected with the optimality of x0 in the auxiliary42

NLP problem. This allows for the use of a rich arsenal of tools, provided by the theory43

of NLP, and permits to derive explicit necessary and sufficient optimality conditions44

for SIP. This methodology affords two main approaches to optimality. The first one,45

the discretization approach, as its name suggests, uses a simple idea of approximation46

of the infinite index set by a finite grid to formulate a rather simple auxiliary NLP47

problem, a discretized one (NLPD). The main drawback of this approach is that, for48

the optimality conditions of the original SIP problem to be formulated in terms of49

the optimality conditions for the auxiliary problem (NLPD), rather strong additional50

conditions (CQs) should prevail, which is not often the case. The second approach,51

under the term reduction, takes into account the specific properties and the structure52

of the original SIP problem more accurately. This is made possible by the use of more53

sophisticated auxiliary (finite) problems, which are denoted here as reduced problems54

(NLPR). The reduction approach has the advantage of permitting the formulation of55

the optimality conditions for SIP in terms of optimality conditions for the reduced56

problems under weaker CQs. For the discretization and reduction approaches, as well57

as another less frequently used ones, see [1,2], and others.58
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It occurs that even more efficient auxiliary problems can be formulated for some59

classes of SIP problems. Thus, in the authors’ papers [17,25,26], among others, the60

notion of immobile (or carrier as in [19]) indices is employed to construct auxiliary61

NLP problems of a new type for certain number of classes of convex SIP problems62

with polyhedral index sets. These auxiliary problems represent more accurate approx-63

imations of the original SIP problems, thus allowing for the proof of new (explicit and64

implicit) optimality conditions under weaker additional conditions. This certainly will65

expand the scope of applications of the theory and methods of convex SIP.66

The paper can be seen as a significant step forward in the study launched in our67

previous works, its natural, but not trivial expansion to one of the most general classes68

of convex SIP problems, the class of problems with compact index sets defined by69

finite numbers of functional inequalities. Our studies has been started in [27], where70

we introduced an auxiliary finite problem [let us qualify it here by (NLP∗)], performed71

an in-depth study of its properties, and validated a number of technical statements,72

which are necessary for further development of the new approach. The main aim of73

this paper is to apply the results from [27] to the study of the optimality in the convex74

SIP problems with finitely representable index sets. We will formulate and prove new75

optimality conditions in the form of implicit optimality criteria, explicit necessary and76

sufficient optimality conditions. These conditions do not necessitate any CQ and can77

be met under rather weak assumptions. We will compare the optimality conditions,78

thus obtained, with those known from the literature and prove the accrued efficiency79

of the former over the latter from the following point of view: (a) the new optimality80

conditions do not use any constraint qualification (are CQ-free); (b) a more restrained81

subset of the feasible solutions satisfies the necessary optimality conditions, obtained82

in the paper; and (c) the new sufficient conditions describe a wider subset of optimal83

solutions.84

It should be emphasized here that a simple translation of the optimality results85

from [17,25] to the more general class of convex SIP problems, considered in this86

paper, is impossible since the more complex geometry of index sets requires a non-87

trivial review of concepts and methods lying in the basis of our approach. It is worth88

mentioning that the class of compact sets, which are finitely representable in the form89

of systems of functional inequalities, is much wider than that of the convex polyhedra.90

Therefore, it is very important from both, the theoretical and practical points of view,91

to develop new tools, which allow to obtain efficient optimality conditions for the92

convex SIP problems considered in the paper.93

The paper is organized as follows. Section 1 hosts the introduction. In Sect. 2,94

we state the convex SIP problem with finitely representable index set, formulate the95

auxiliary problem (NLP∗), and recall some of the results obtained in [27]. In Sect. 3,96

we introduce a parametric problem (P(ε)) and study its properties, which are used in97

Sect. 4 to prove implicit optimality criteria and explicit optimality conditions for the98

original SIP problem. Several special cases are considered in Sect. 5: a case of SIP99

problems satisfying the Slater CQ; another one, where the lower level problem satisfies100

certain additional conditions; yet another case, where the index set is a polyhedron and,101

finally, the case of linear constraints. For each of these cases, we explicitly formulate102

optimality conditions. An example in Sect. 6 illustrates the applicability of the theo-103

retical results obtained in the paper, the efficiency of the theorems proved here, and the104
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usefulness of information about the immobile indices for numerical implementations.105

We use this example also to compare the optimality conditions obtained in the paper106

with other results known from the literature. In Sect. 7, we discuss perspectives for107

future research and some open problems. The final Sect. 8 contains the conclusions108

and final remarks.109

2 Convex SIP Problem with Finitely Representable Index Set110

In this section, we formulate the problem, give the basic notations, and present some111

results from [27], which will be used in what follows.112

Consider the following SIP problem:113

(SIP): min
x∈Rn

c(x), s.t. f (x, t) ≤ 0 ∀t ∈ T, (1)114

where T ⊂ R
p is a compact index set defined by a finite system of inequalities:115

T :=
{

t ∈ R
p: gs(t) ≤ 0, s ∈ S

}

, |S| < ∞. (2)116

Suppose that the cost function c(x) and the constraint function f (x, t), for all t ∈ T ,117

are convex w.r.t. x ∈ R
n . Hence, the problem (SIP) is convex. Suppose also that118

functions c(x), f (x, t) and gs(t) are sufficiently smooth w.r.t. x ∈ R
n and t ∈ R

p,119

which means here that the (partial) derivatives of these functions of all orders, that will120

be needed in sequel, exist and are continuous for all respective variables. The main121

aim of this study is to apply our approach developed in the previous papers, to the122

convex SIP problem (1) with the index set in the form (2), and obtain new optimality123

conditions for this problem.124

Let us, first, reformulate some definitions introduced in [27].125

Denote by X the set of feasible solutions (the feasible set) in the problem (SIP),126

X := {x ∈ R
n : f (x, t) ≤ 0 ∀t ∈ T }. Suppose that the problem is consistent, i.e.,127

X �= ∅.128

Definition 2.1 Problem (SIP) is said to satisfy the Slater condition (the Slater CQ) iff129

the interior of its feasible set is not empty:130

(SCQ): ∃ x̄ ∈ R
n : f (x̄, t) < 0 ∀t ∈ T .131

Definition 2.2 An index t ∈ T is said to be immobile in the problem (SIP) iff132

f (x, t) = 0 for all x ∈ X.133

From Definition 2.2, it follows that any immobile index is an optimal solution of134

the lower level problem135

(LLP(x)): max
t∈Rp

f (x, t), s.t. t ∈ T := {t ∈ R
p, gs(t) ≤ 0, s ∈ S},136

for all x ∈ X.137
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Consider an index t ∈ T . Denote by Sa(t) the set of active indices in problem138

(LLP(x)): Sa(t) := {s ∈ S: gs(t) = 0}, and by L(t) the linearized tangent cone to the139

set T at t : L(t) := {l ∈ R
p: ∂gT

s (t)

∂t
l ≤ 0, s ∈ Sa(t)}.140

In [27], the necessary optimality conditions for the lower level problem were for-141

mulated under the Mangasarian–Fromovitz CQ, which is the most well known and142

widely used regularity condition.143

Definition 2.3 Given the lower level problem (LLP(x)), the Mangasarian–Fromovitz144

CQ is said to hold at t̄ ∈ T iff145

(MFCQ): ∃ l ∈ R
p:

∂gT
s (t̄)

∂t
l < 0, s ∈ Sa(t̄).146

Note that (MFCQ) is supposed to fulfill at t̄ ∈ T if Sa(t̄) = ∅.147

Denote by T ∗ ⊂ T the set of all immobile indices in (SIP). For t̄ ∈ T ∗, x ∈ R
n ,148

and l ∈ L(t̄), consider a parametric linear programming (LP) problem149

(LP(x, t̄, l)): max
w∈Rp

∂ f T (x, t̄)

∂t
w, s.t.

∂gT
s (t̄)

∂t
w ≤ −lT ∂2gs(t̄)

∂t2
l, s ∈ Sa(t̄).150

Suppose that x ∈ X and (MFCQ) holds at t̄ ∈ T ∗. Then, problem (LP(x, t̄, l)) has an151

optimal solution for all l ∈ L(t̄).152

Denote by val(P) the optimal value of the cost function of an optimization problem153

(P) and consider the functions defined for x ∈ R
n, t ∈ T ∗, and l ∈ L(t),154

F1(x, t, l) :=
∂ f T (x, t)

∂t
l, F2(x, t, l) := lT ∂2 f (x, t)

∂t2
l + val(LP(x, t, l)). (3)155

Then, given x ∈ X , the first and the second order necessary optimality conditions for156

t̄ ∈ T ∗ in the problem (LLP(x)) can be formulated in terms of functions (3), as follows157

(see [27]), respectively:158

F1(x, t̄, l) ≤ 0 ∀l ∈ L(t̄), F2(x, t̄, l) ≤ 0 ∀l ∈ C(x, t̄), (4)159

where C(x, t̄) := {l ∈ L(t̄):
∂ f T (x, t̄)

∂t
l = 0} is the cone of critical directions at the160

point t̄ in the lower level problem (LLP(x)).161

Given immobile index t̄ ∈ T ∗, taking into account conditions (4), which should be162

fulfilled by all x ∈ X , let us give the next definition.163

Definition 2.4 Let t̄ ∈ T ∗ satisfy (MFCQ) and l̄ ∈ L(t̄), l̄ �= 0. Define the immobility164

order q(t̄, l̄) of the immobile index t̄ along the direction l̄ as follows:165

– q(t̄, l̄) = 0, if ∃ x̄ = x(t̄, l̄) ∈ X such that F1(x̄, t̄, l̄) < 0;166

– q(t̄, l̄) = 1, if F1(x, t̄, l̄) = 0,∀x ∈ X , and ∃ x̄ = x(t̄, l̄) ∈ X such that167

F2(x̄, t̄, l̄) < 0;168

– q(t̄, l̄) > 1, if F1(x, t̄, l̄) = 0 and F2(x, t̄, l̄) = 0, ∀x ∈ X .169
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It is seen from the definition, that in the case F1(x, t̄, l̄) = 0, F2(x, t̄, l̄) = 0, for170

all x ∈ X , the immobility order of the index t̄ is greater than one. It is easy to specify171

the value of q(t̄, l̄) for this case, but we will not do it here, since our study is based on172

the following assumptions.173

Assumption 1 Given a feasible solution x ∈ X of the convex SIP problem (1), the174

lower level problem (LLP(x)) meets the regularity condition (MFCQ) at any immobile175

index t̄ ∈ T ∗ ⊂ T .176

Assumption 2 Given problem (SIP), for all t̄ ∈ T ∗, it holds q(t̄, l) ≤ 1 for all177

l ∈ L(t̄), l �= 0.178

Assumptions 1 and 2 are supposed to be trivially satisfied if T ∗ = ∅.179

In [27], it was proved that, under Assumptions 1 and 2, the set T ∗ of immobile180

indices in the convex problem (SIP) is finite and, therefore, admits a presentation181

T ∗ := {t∗j , j ∈ J∗}, where 0 ≤ |J∗| < ∞.182

Consider j ∈ J∗ and the corresponding immobile index t∗j ∈ T ∗. The set183

L( j) := L(t∗j ) (the linearized tangent cone to the index set T in the point t∗j ) admits184

an alternative representation in terms of extremal rays (see [25]):185

L( j) :=

⎧

⎨

⎩

l ∈ R
p: ∃ βi , i ∈ P( j), αi ≥ 0, i ∈ I ( j)

such that l =
∑

i∈P( j)

βi bi ( j) +
∑

i∈I ( j)

αi ai ( j)

⎫

⎬

⎭

,

(5)186

where bi ( j), i ∈ P( j), are bidirectional extremal rays, and ai ( j), i ∈ I ( j), are187

unidirectional extremal rays of the cone L( j). The extremal rays can be constructed188

using the procedure described in [28]. Note here that the extremal rays satisfy the189

following properties:190

∑

i∈P( j)

|βi | +
∑

i∈I ( j)

αi > 0 ⇒ l =
∑

i∈P( j)

βi bi ( j) +
∑

i∈I ( j)

αi ai ( j) �= 0, (6)191

bT
i ( j)am( j) = 0, i ∈ P( j), m ∈ I ( j). (7)192

Given j ∈ J∗ and the corresponding cone L( j), denote by I0( j) and I∗( j) the193

indices of the unidirectional extremal rays ai ( j), i ∈ I ( j), such that q(t∗j , ai ( j)) ≥ 1194

and q(t∗j , ai ( j)) = 0, respectively:195

I0( j) :=
{

i ∈ I ( j):
∂ f T (x, t∗j )

∂t
ai ( j) = 0, ∀x ∈ X

}

, I∗( j) := I ( j)\I0( j).196

(8)197

Let C0( j) := {l ∈ R
p: l =

∑

i∈P( j) βi bi ( j) +
∑

i∈I0( j) αi ai ( j), αi ≥ 0, i ∈ I0( j)}.198

It is shown in [27] that, given t∗j ∈ T ∗, the set C0( j)\{0} consists of all directions199

l ∈ L( j), whose immobility orders are greater that one. Therefore,200
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F1(x, t∗j , l) :=
∂ f T (x, t∗j )

∂t
l = 0, ∀l ∈ C0( j), ∀x ∈ X. (9)201

By construction, C0( j) ⊂ C(x, t∗j ) ⊂ L( j), ∀x ∈ X. In what follows, for simplicity,202

we will use notation F1 j (x, l) := F1(x, t∗j , l), F2 j (x, l) := F2(x, t∗j , l), j ∈ J∗ for203

the functions defined in (3). In [27], the following result was proved.204

Theorem 2.1 (Theorem 2 in [27], under additional Assumption 2) Given problem205

(SIP), let Assumptions 1 and 2 be fulfilled. If for x0 ∈ X, there exist subsets of indices206

and vectors207

{t j , j ∈ Ja} ⊂ Ta(x0)\T ∗,208

{lk( j), k = 1, . . . , m( j)} ⊂ {l ∈ C0( j) : F2 j (x0, l) = 0}, j ∈ J∗,209

with |Ja | +
∑

j∈J∗

m( j) < ∞, (10)210

such that the point x0 is optimal in the following NLP problem:211

min c(x),212

(NLP∗): s.t. f (x, t∗j ) = 0, F1 j (x, bi ( j)) = 0, i ∈ P( j),213

F1 j (x, ai ( j)) = 0, i ∈ I0( j), F1 j (x, ai ( j)) ≤ 0, i ∈ I∗( j),214

F2 j (x, lk( j)) ≤ 0, k = 1, . . . , m( j), j ∈ J∗; f (x, t j ) ≤ 0, j ∈ Ja,215

(11)216

then x0 is an optimal solution in the problem (SIP).217

Here and in what follows, Ta(x) is the active index set at a feasible solution x ∈218

X : Ta(x) := {t ∈ T : f (x, t) = 0}.219

Denote by Q = Q(T ∗) ⊂ R
n , the set defined by the equality constraints220

of the problem (NLP∗): Q = {x ∈ R
n : f (x, t∗j ) = 0, F1 j (x, bi ( j)) = 0, i ∈221

P( j), F1 j (x, ai ( j)) = 0, i ∈ I0( j), j ∈ J∗}.222

Then, problem (NLP∗) can be written in the form223

min c(x),224

(NLP∗): s.t. x ∈ Q̄ :=
{

x ∈ Q: F1 j (x, ai ( j)) ≤ 0, i ∈ I∗( j), j ∈ J∗
}

,225

F2 j (x, lk( j)) ≤ 0, k = 1, . . . , m( j), j ∈ J∗; f (x, t j ) ≤ 0, j ∈ Ja .226

(12)227

It follows from Lemmas 3 and 5, and Corollary 4 in [27], that, under Assumptions228

1 and 2, the problem (NLP∗) possesses the following properties.229

Property 2.1 The set Q = Q(T ∗) is convex.230
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Property 2.2 There exists a point x̃ ∈ X such that231

F1 j (x̃, l) < 0, ∀l ∈ L( j)\C0( j), ‖l‖ = 1; (13)232

F2 j (x̃, l) < 0, ∀l ∈ C0( j), ‖l‖ = 1, j ∈ J∗; (14)233

f (x̃, t) < 0, t ∈ T \T ∗. (15)234

Property 2.3 For all j ∈ J∗, the auxiliary functions F1 j (x, l) with l ∈ L( j) are235

convex w.r.t. x in Q and the functions F2 j (x, l) with l ∈ C0( j), are convex w.r.t. x in236

the convex set Q̄ defined in (12).237

Here and in what follows, we use the Euclidean norm || · ||.238

Basing on Theorem 2.1 and the properties above, we can conclude that, under239

Assumptions 1 and 2, the sufficient optimality conditions for a feasible solution x0
240

in the problem (SIP) can be substituted by the optimality conditions for x0 in the241

auxiliary problem (NLP∗), which is convex and satisfies the Slater type CQ (Property242

2.2).243

3 Parametric Problem (P(ε)) and Its Properties244

In this section, using the constraints of the problem (NLP∗), we introduce a special245

parametric problem and study its properties, which are crucial for the proof of the246

necessary optimality conditions for the problem (SIP).247

Suppose that the problem (SIP) has an optimal solution x0. Given ε > 0, define the248

set T (ε) := T \
⋃

j∈J∗ int Tε( j), where Tε( j) := {t ∈ T : ‖t − t∗j ‖ ≤ ε}, j ∈ J∗, and249

consider a problem250

(P(ε)): min c(x), s.t. x ∈ Y ∩ B, f (x, t) ≤ 0, ∀t ∈ T (ε),251

where Y = Y (T ∗) := {x ∈ Q̄: F2 j (x, l) ≤ 0,∀l ∈ C0( j), j ∈ J∗}, B =252

B(ε0, x0) := {x ∈ R
n : ‖x − x0‖ ≤ ε0}, ε0 being an arbitrary fixed number satisfying253

the inequality ||x̃ − x0|| > ε0, and x̃ ∈ X a point satisfying relations (13)–(15).254

It is easy to see that the set Y is defined by the constraints of the problem (NLP∗)255

corresponding to the immobile indices of the original problem (SIP). In the case256

T ∗ = ∅, we have Y = R
n and T (ε) := T . It follows from Properties 2.1 and 2.3, that257

the set Y is convex, hence the set Y ∩ B is convex as well. Since the feasible set of the258

problem (P(ε)) is bounded, closed and not empty (vector x0 is feasible), this problem259

has an optimal solution.260

The main properties of the parametric problem (P(ε)) can be derived from the261

following proposition.262

Proposition 3.1 Suppose that Assumptions 1 and 2 are satisfied. Consider a vector263

x̃ ∈ X satisfying inequalities (13)–(15), and let z ∈ Y . Then, for any sufficiently small264

ε > 0, there exists a number λ(ε) ∈ [0, 1] such that265
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f (x(λ(ε), z), t) ≤ 0, t ∈ Tε( j), j ∈ J∗, and λ(ε) → 0 as ε ↓ 0, (16)266

where x(λ, z) := (1 − λ)z + λx̃ = z + λ(x̃ − z), λ ∈ [0, 1].267

Proof Given z ∈ Y , set x(λ) := x(λ, z). Let ε > 0 be a sufficiently small positive268

number. Denote269

λ j (t) :=

⎧

⎨

⎩

f (z, t)

f (z, t) − f (x̃, t)
, if f (z, t) > 0,

0, if f (z, t) ≤ 0,

t ∈ Tε( j), j ∈ J∗. (17)270

Since the function f (x, t) is convex w.r.t. x , then f (x(λ), t) ≤ 0 for λ ∈271

[λ j (t), 1], t ∈ Tε( j), j ∈ J∗. Note that if f (z, t) ≤ 0 for all t ∈ Tε̄( j), j ∈ J∗,272

and some ε̄ > 0, then λ j (t) = 0 for all t ∈ Tε( j), j ∈ J∗, and all 0 < ε ≤ ε̄.273

Consequently, relations (16) take place with λ(ε) ≡ 0, 0 < ε ≤ ε̄, and the proposition274

is proved for this case.275

Let j ∈ J∗ be an arbitrary index such that Tε( j) ∩ T +(z) �= ∅, where T +(z): =276

{t ∈ T : f (z, t) > 0}. By construction, f (z, t) > 0, t ∈ Tε( j) ∩ T +(z). Hence277

0 ≤ λ j (t) ≤ −
f (z, t)

f (x̃, t)
=: µ j (t), t ∈ Tε( j) ∩ T +(z). (18)278

To show that279

µ j (t) ≤ O j (ε) for t ∈ Tε( j) ∩ T +(z), (19)280

where O j (ε) → 0 as ε ↓ 0, suppose that (19) is not satisfied. Hence, there exist281

sequences εi > 0, ti ∈ Tεi
( j) ∩ T +(z), i = 1, 2, . . . , such that282

||ti − t∗j || = εi , lim
i→∞

εi = 0, lim
i→∞

µ j (ti ) = µ̄ j > 0. (20)283

For any i = 1, 2, . . ., the index ti ∈ Tεi
( j) ∩ T +(z) ⊂ T can be represented in the284

form ti = t∗j + �ti , where ‖�ti‖ = εi . Therefore,285

gs(ti ) =
∂gT

s (t∗j )

∂t
�ti + o(‖εi‖) ≤ 0, s ∈ Sa(t

∗
j ). (21)286

Evidently, the sequence �ti
||�ti || , i = 1, 2, . . ., possesses a convergent subsequence287

�tki

||�tki
|| , i = 1, 2, . . . . Denote l̄ := limi→∞

�tki

||�tki
|| . From (21), it follows that l̄ ∈288

L( j), ‖l̄‖ = 1. To simplify the exposition, without loss of generality, we assume here289

that ki = i for i = 1, 2, . . .. From the considerations above, it follows that �ti admits290

representation:291

�ti = εi · (l̄ + wi (�ti )), (22)292

where wi (�t) is a function satisfying the property wi (�t) → 0 as ‖�t‖ → 0. Recall293

that any l̄ ∈ L( j), can be presented in the form294

l̄ = γ∗l(∗) + γ0l(0), γ∗ ≥ 0, γ0 ≥ 0, (23)295
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where296

l(∗) := A∗ᾱ∗, l(0) := (A0, B)

(

ᾱ0

β̄

)

;297

ᾱ0 ≥ 0, ᾱ∗ ≥ 0; ‖l(∗)‖ = |l(0)‖ = 1,298

A0 = A0( j) := (ai ( j), i ∈ I0( j)); A∗ = A∗( j) := (ai ( j), i ∈ I∗( j));299

B = B( j) := (bi ( j), i ∈ P( j)); ᾱ0 = (ᾱi ( j), i ∈ I0( j));300

ᾱ∗ = (ᾱi ( j), i ∈ I∗( j)); β̄ = (β̄i ( j), i ∈ P( j)); (24)301

and the coefficients ᾱi and β̄i are associated with the representation of l̄ ∈ L( j) in302

terms of the extremal rays [see (5)]. Here we took into account (7).303

From (6), it follows that the sets {α∗: α∗ ≥ 0, αT
∗ AT

∗ A∗α∗ = 1} and {(β, α0): α0 ≥304

0, βT BT Bβ + αT
0 AT

0 A0α0 = 1} are closed and bounded. Here α0 ∈ R
|I0( j)|, α∗ ∈305

R
|I∗( j)|, β ∈ R

|P( j)|.306

One of two following cases can occur in (23): A. γ∗ > 0, B. γ∗ = 0.307

Let us, first, assume that the case A holds. Since ti = t∗j + l̄εi + o(εi )308

and
∂ f T (x̃,t∗j )

∂t
l(0) = 0, then f (x̃, ti ) = f (x̃, t∗j ) + εi

∂ f T (x̃,t∗j )

∂t
l̄ + o(εi ) =309

εi

∂ f T (x̃,t∗j )

∂t
(γ∗l(∗) + γ0l(0)) + o(εi ) = εi

∂ f T (x̃,t∗j )

∂t
l(∗)γ∗ + o(εi ) ≤ εiγ∗C1 + o(εi ),310

where l(∗) = A∗ᾱ∗ [see (24)] and C1 is the optimal value of the cost function in the311

problem maxα∗
∂ f T (x̃,t∗j )

∂t
A∗α∗, s.t. αT

∗ AT
∗ A∗α∗ = 1, α∗ ≥ 0.312

As A∗α∗ /∈ C0( j) for any α∗ ≥ 0, α∗ �= 0, inequalities (13) hold. Hence, C1 < 0313

and for a sufficiently small εi > 0 we have314

− f (x̃, ti ) ≥ −C1εiγ∗ + o(εi ) > 0. (25)315

Taking into account that, by construction, f (z, t∗j ) = 0,
∂ f T (z,t∗j )

∂t
l(0) = 0,

∂ f T (z,t∗j )

∂t
l(∗)

316

≤ 0, it holds f (z, ti ) = εi

∂ f T (z,t∗j )

∂t
l(∗)γ∗ + o1(εi ) > 0, wherefrom, with respect to317

the inequality εi

∂ f T (z,t∗j )

∂t
l(∗)γ∗ ≤ 0, we get318

0 < f (z, ti ) ≤ o1(εi ). (26)319

From (25) and (26), it follows µ j (ti ) = − f (z,ti )
f (x̃,ti )

≤ − o1(εi )
C1εi γ∗+o(εi )

= O j (εi ), that320

contradicts assumption (20).321

Now, let us consider case B: γ∗ = 0 in (23). By assumption, z ∈ Y , and taking into322

account l(0) ∈ C0( j), one gets323

F2 j (z, l(0)) = (l(0))T
∂2 f (z, t∗j )

∂t2
l(0) + val

(

LP
(

z, t∗j , l(0)
))

≤ 0. (27)324

The constraints of the problem (LP(z, t∗j , l(0))) are consistent and it follows from (27)325

that val(LP(z, t∗j , l(0))) < +∞. Hence, this problem has a dual solution, i.e., there326

exist numbers ys = ys(z), s ∈ Sa(t
∗
j ), such that327
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∑

s∈Sa(t
∗
j )

ys

∂gs(t
∗
j )

∂t
=

∂ f (z, t∗j )

∂t
; ys ≥ 0, s ∈ Sa(t

∗
j ), (28)328

val(LP(z, t∗j , l(0))) = −
∑

s∈Sa(t
∗
j )

ys(l
(0))T

∂2gs(t
∗
j )

∂t2
l(0). (29)329

Since ti = t∗j + �ti with �ti defined in (22), then the inequalities330

gs(ti ) = gs(t
∗
j ) +

∂gT
s (t∗j )

∂t
�ti +

1

2
�tT

i

∂2gs(t
∗
j )

∂t2
�ti + o(ε2

i ) ≤ 0, s ∈ Sa(t
∗
j ),331

can be rewritten in the form332

εi

∂gT
s (t∗j )

∂t
(l̄ + wi (�ti )) +

1

2
ε2

i l̄T
∂2gs(t

∗
j )

∂t2
l̄ + o(ε2

i ) ≤ 0, s ∈ Sa(t
∗
j ). (30)333

Similarly, we have334

f (z, ti ) = εi

∂ f T (z, t∗j )

∂t
(l̄ + wi (�ti )) +

1

2
ε2

i l̄T
∂2 f (z, t∗j )

∂t2
l̄ + o(ε2

i ). (31)335

From (MFCQ), one can conclude that the set of vectors ys, s ∈ Sa(t
∗
j ) satisfying336

(28), is bounded. Multiply each inequality in (30) by the corresponding value ys ≥337

0, s ∈ Sa(t
∗
j ), and sum the resulting inequalities:338

εi

∑

s∈Sa(t∗j )

ys

∂gT
s (t∗j )

∂t
(l̄ + wi (�ti )) ≤ −

1

2
ε2

i

∑

s∈Sa(t∗j )

l̄T
∂2gs(t

∗
j )

∂t2
l̄ + o(ε2

i ). (32)339

From (28) and (31), it follows340

f (z, ti ) = εi

∑

s∈Sa(t∗j )

ys

∂gT
s (t∗j )

∂t
(l̄ + wi (�ti )) +

1

2
ε2

i l̄T
∂2 f (z, t∗j )

∂t2
l̄ + o(ε2

i ).341

This relation, together with (32), implies342

f (z, ti ) ≤
1

2
ε2

i l̄T

⎛

⎜

⎝
−

∑

s∈Sa(t∗j )

ys

∂2gs(t
∗
j )

∂t2
+

∂2 f (z, t∗j )

∂t2

⎞

⎟

⎠
l̄ + o(ε2

i ),343

wherefrom, w.r.t. the equality (29), the inequality 0 < f (z, ti ), and the fact that l̄ = l(0)
344

in the case B, we get 0 < f (z, ti ) ≤ 1
2ε2

i F2 j (z, l(0)) + o(ε2
i ). Taking into account345

(27), from the last inequalities we get346
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0 < f (z, ti ) ≤ o(ε2
i ). (33)347

Similarly, we have f (x̃, ti ) ≤ 1
2ε2

i F2 j (x̃, l(0)) + õ(ε2
i ) ≤ 1

2ε2
i C2 + õ(ε2

i ), where348

f (x̃, ti ) < 0 and C2 denotes the optimal value of the cost function in the problem349

max
β,α0

F2 j (x̃, Bβ + A0α0), s.t. βT BT Bβ + αT
0 AT

0 A0α0 = 1, α0 ≥ 0.350

Since Bβ + A0α0 ∈ C0( j) for any (β, α0) �= 0, α0 ≥ 0, the inequalities (14) take351

place. Hence, for C2, defined above, and εi > 0 sufficiently small, it holds C2 < 0 and352

− f (x̃, ti ) ≥ − 1
2ε2

i C2 + õ(ε2
i ) > 0. From the last inequality together with (25) and353

(33), we get µ j (ti ) = f (z,ti )
− f (x̃,ti )

≤ o(ε2
i )

1
2 ε2

i C2+õ(ε2
i )

= Õ j (εi ). But this again contradicts354

our assumption (20). The contradictions obtained in the cases A and B, prove that355

relations (19) take place.356

Set λ(ε) := max{λ j (ε), j ∈ J∗}, where357

λ j (ε) :=
{

0, if Tε( j) ∩ T +(z) = ∅,

max
t∈Tε( j)∩T +(z)

µ j (t), if Tε( j) ∩ T +(z) �= ∅.358

It follows from (18) and (19) that λ(ε) → 0 as ε ↓ 0 and, by construction, λ(ε) ≥ λ j (t)359

for t ∈ Tε( j) ∩ T +(z). Hence, relations (16) are fulfilled. ⊓⊔360

It is worth mentioning that the proof of Proposition 3.1 (for SIP problems with361

finitely representable index sets) at the root is different from that of Proposition 5 in362

[17] (for SIP problems with the box constrained index sets). This is due to the fact363

that, in spite of the external similarity, the parametric problem (P(ε)) fundamentally364

differs from the parametric problem, which was introduced in [17]. This difference is365

explained by the more complex geometry of the finitely representable index set, and366

makes it impossible to simply transfer the evidence of [17] on the more complex case.367

The following two corollaries, that can be proved in a similar way as Corollary 3368

and Proposition 6 in [17], are obtained on the basis of Proposition 3.1.369

Corollary 3.1 Suppose that Assumptions 1 and 2 are satisfied for the convex problem370

(SIP). Then, limε↓0 c(z0(ε)) = c(x0), where x0 is an optimal solution of problem371

(SIP) and z0(ε) is an optimal solution of the problem (P(ε)).372

Corollary 3.2 Suppose that Assumptions 1 and 2 are satisfied for the convex problem373

(SIP). Consider a vector function x(λ, z) = (1 − λ)z + λx̃, λ ∈ [0, 1], where vector374

x̃ satisfies (13)–(15), and z ∈ Y . Then for all λ ∈]0, 1], there exists � = �(λ, z) > 0375

such that f (x(λ, z), t) ≤ 0, t ∈ T�( j), j ∈ J∗.376

4 Optimality Conditions for the Convex SIP Problems with Finitely377

Representable Index Sets378

In this section, we will use the properties of the parametric problem (P(ε)) proved in379

the previous section, to obtain new optimality conditions for the problem (SIP), that380

is the main goal of the paper.381
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4.1 Implicit Optimality Criteria382

Using Corollaries 3.1 and 3.2, and following the main steps the proof of Theorem 1383

from [17], we can prove the following theorem.384

Theorem 4.1 Suppose that Assumptions 1 and 2 are satisfied for the convex problem385

(SIP). Then, a feasible solution x0 ∈ X is optimal in this problem if and only if there386

exists a set {t j , j ∈ Ja} ⊂ Ta(x0)\T ∗, |Ja | ≤ n, such that x0 is an optimal solution387

of the auxiliary problem388

(AP): min c(x), s.t. x ∈ Y, f (x, t j ) ≤ 0, j ∈ Ja .389

Now, let us rewrite the problem (AP) in the form390

min
x∈Q̄⊂Rn

c(x),

s.t. F2 j (x, l) ≤ 0, ∀l ∈ C0( j), ‖l‖ = 1, j ∈ J∗; f (x, t j ) ≤ 0, j ∈ Ja,
391

where the set Q̄ ⊂ R
n is defined in (12). Under Assumptions 1 and 2, problem (AP)392

possesses the Properties 2.1–2.3 and, therefore, satisfies the conditions of Theorem 1393

from [29]. Applying this result together with Theorem 4.1, one can prove the following394

theorem.395

Theorem 4.2 (Implicit optimality criterion) Suppose that Assumptions 1 and 2 are396

satisfied for the convex problem (SIP). Then, the feasible solution x0 ∈ X is optimal iff397

there exist a set of indices {t j , j ∈ Ja} ⊂ Ta(x0)\T ∗ and a set of vectors lk( j), k =398

1, . . . , m( j), j ∈ J∗, defined in (10), such that399

|Ja | +
∑

j∈J∗

m( j) ≤ n, (34)400

and the vector x0 is an optimal solution of the convex NLP problem (11).401

Note that the optimality conditions given by this theorem, are both necessary and402

sufficient, and the Assumptions 1 and 2 are not too restrictive.403

According to Theorem 4.2, given feasible x0, instead of testing its optimality in404

the infinite dimension SIP problem (SIP), one can test the optimality of x0 in a finite405

dimension NLP problem (NLP∗). The transition to a simpler and more studied problem406

allows us to obtain new explicit optimality conditions for convex SIP. In fact, having407

applied Theorem 4.2 and any optimality conditions for the convex problem (NLP∗)408

(either some conditions already known from the theory of NLP, or new ones, that are409

specially formulated for the case), one gets new optimality conditions for SIP. Some410

of such conditions are presented in the next section.411

4.2 Explicit Optimality Conditions412

In the previous section, we have proven the implicit optimality criteria for the problem413

(SIP). Now we will formulate and prove new explicit sufficient and necessary opti-414
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mality conditions for this problem. These conditions differ from the known ones and415

are formulated under assumptions that are less restrictive than the usually used CQs.416

Denote S0
a (t∗j ) := {s ∈ Sa(t

∗
j ): ∃i0 ∈ I0( j) such that

∂gT
s (t∗j )

∂t
ai0( j) �= 0}, S∗

a (t∗j ) :=417

Sa(t
∗
j )\S0

a (t∗j ). For j ∈ J∗, consider LP problem418

(LPj(x)): max
w

∂ f T (x, t∗j )

∂t
w, s.t.

∂gT
s (t∗j )

∂t
w ≤ 0 s ∈ S∗

a (t∗j ).419

The following lemma states some important properties of this problem.420

Lemma 4.1 Given x ∈ Q̄ and j ∈ J∗, any feasible solution of the problem (LPj(x))421

admits a representation422

µ =
∑

i∈P( j)

bi ( j)βi +
∑

i∈I0( j)∪I∗( j)

ai ( j)αi , αi ≥ 0, i ∈ I∗( j). (35)423

Moreover, this problem has an optimal solution and val(LP j (x)) = 0.424

Proof For x ∈ Q̄ and j ∈ J∗, consider the problem (LPj(x)). Let µ be its feasible425

solution. It follows from the definition of the sets S∗
a (t∗j ) and S0

a (t∗j ), that there exist426

numbers α̃i ≥ 0, i ∈ I0( j), such that the vector427

µ̄ := µ +
∑

i∈I0( j)

ai ( j)α̃i (36)428

satisfies the relations
∂gT

s (t∗j )

∂t
µ̄ ≤ 0, s ∈ Sa(t

∗
j ),

∂ f T (x,t∗j )

∂t
µ̄ =

∂ f T (x,t∗j )

∂t
µ.429

Then, µ̄ ∈ L( j) and the following representation is possible:430

µ̄ =
∑

i∈P( j)

bi ( j)β̄i +
∑

i∈I0( j)∪I∗( j)

ai ( j)ᾱi , ᾱi ≥ 0, i ∈ I0( j) ∪ I∗( j). (37)431

From the inclusion x ∈ Q̄, it follows
∂ f T (x,t∗j )

∂t
µ̄ ≤ 0 and, hence,

∂ f T (x,t∗j )

∂t
µ ≤ 0 for432

each feasible solution µ of the problem (LPj(x)). Then, evidently, vector µ = 0 is an433

optimal solution and val(LP j (x)) = 0.434

Moreover, from equalities (36) and (37), it follows: µ = µ̄ −
∑

i∈I0( j) ai ( j)α̃i =435

∑

i∈P( j) bi ( j)β̄i +
∑

i∈I0( j) ai ( j)(ᾱi − α̃i ) +
∑

i∈I∗( j) ai ( j)ᾱi , ᾱi ≥ 0, i ∈ I∗( j).436

This proves that every feasible solution µ of the problem (LP j (x)) admits represen-437

tation (35). ⊓⊔438

Let sol(P) denote the set of the optimal solutions of a given optimization problem439

(P), and suppose that
∑m

k=1 · · · = 0 if m = 0.440

Theorem 4.3 (Explicit sufficient optimality conditions) Let Assumptions 1 and 2 hold441

true and x0 ∈ X be a feasible solution of the convex problem (SIP). Suppose that there442
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exist active indices t j , j ∈ Ja , vectors lk( j), k = 1, . . . , m( j), j ∈ J∗, defined in443

(10), (34) as well as vectors444

µk( j) ∈ sol(LP(x0, t∗j , lk( j))), k = 1, . . . , m( j); µ j ∈ sol(LP j (x0)), j ∈ J∗,445

(38)446

and numbers λ j , j ∈ J∗, ν j ≥ 0, j ∈ Ja , such that447

∂c(x0)

∂x
+

∑

j∈Ja

ν j

∂ f (x0, t j )

∂x
+

∑

j∈J∗

[

λ j

∂ f (x0, t∗j )

∂x
+

∂2 f (x0, t∗j )

∂x∂t
µ j448

+
m( j)
∑

k=1

(

∂2 f (x0, t∗j )

∂x∂t
µk( j) +

∂

∂x

[

(lk( j))T
∂2 f (x0, t∗j )

∂t2
lk( j)

])

⎤

⎦ = 0. (39)449

Then, x0 is an optimal solution of the problem (SIP).450

Note that here and in what follows, it may happen that m( j0) = 0 for some j0 ∈ J∗.451

This means that the set {lk( j0), k = 1, . . . , m( j0)} is empty.452

Proof For x0 ∈ Q̄ and j ∈ J∗, let us consider the problem (LPj(x0)). It fol-453

lows from Lemma 4.1, that 0 =
∂ f T (x0,t∗j )

∂t
µ =

∂ f T (x0,t∗j )

∂t

∑

i∈I∗( j) ai ( j)αi for454

µ = µ j ∈ sol(LP j (x0)). Taking into account the last equality and the inequalities455

∂ f T (x0,t∗j )

∂t
ai ( j) ≤ 0, αi ≥ 0, i ∈ I∗( j), we obtain456

αi ≥ 0, if
∂ f T (x0, t∗j )

∂t
ai ( j) = 0;457

αi = 0, if
∂ f T (x0, t∗j )

∂t
ai ( j) < 0, i ∈ I∗( j). (40)458

Let x̄ be a feasible solution in (11). Since problem (11) is convex, then for all λ ∈ [0, 1],459

the vector x(λ) := x0(1 − λ) + x̄λ = x0 + λ�x with �x := x̄ − x0 is its feasible460

solution as well. Hence, for �x it holds:461

�xT
∂ f (x0, t∗j )

∂x
= 0, j ∈ J∗; �xT ∂ f (x0, t j )

∂x
≤ 0, j ∈ Ja; (41)462

�xT
∂2 f (x0, t∗j )

∂x∂t
bi ( j) = 0, i ∈ P( j), j ∈ J∗; (42)463

�xT
∂2 f (x0, t∗j )

∂x∂t
ai ( j)

{

= 0, if i ∈ I0( j),

≤ 0, if i ∈ I∗( j) and
∂ f T (x0,t∗j )

∂t
ai ( j) = 0,

j ∈ J∗, (43)464

�xT ∂

∂x

(

lT
k ( j)

∂2 f (x0, t∗j )

∂t2
lk( j)

)

+ max
µ∈sol(LP(x0,t∗j ,lk ( j)))

�xT
∂2 f (x0, t∗j )

∂x∂t
µ ≤ 0,465

k = 1, . . . , m( j), j ∈ J∗. (44)466
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Since µk( j) ∈ sol(LP(x0, t∗j , lk( j))), the inequalities (44) imply467

�xT ∂

∂x

(

lT
k ( j)

∂2 f (x0, t∗j )

∂t2
lk( j)

)

+�xT
∂2 f (x0, t∗j )

∂x∂t
µk( j) ≤ 0,468

k = 1, . . . , m( j), j ∈ J∗. (45)469

Let �x be a vector satisfying conditions (42), (43) and µ j ∈ sol(LP j (x0)). Taking470

into account (35), (40), and (43), we obtain471

�xT
∂2 f (x0, t∗j )

∂x∂t
µ j =

∑

i∈I∗( j)

�xT
∂2 f (x0, t∗j )

∂x∂t
ai ( j)αi ≤ 0. (46)472

By assumption, equality (39) holds true. Let us multiply both sides of this equality by473

�xT and take into account (41)–(46). As a result, we get474

�xT ∂c(x0)

∂x
= −

∑

j∈Ja

ν j�xT ∂ f (x0, t j )

∂x
−

∑

j∈J∗

λ j�xT
∂ f (x0, t∗j )

∂x
475

−
∑

j∈J∗

[

�xT
∂2 f (x0, t∗j )

∂x∂t
µ j476

+
m( j)
∑

k=1

�xT

(

∂2 f (x0, t∗j )

∂x∂t
µk( j)477

+
∂

∂x

[

lT
k ( j)

∂2 f (x0, t∗j )

∂t2
lk( j)

])]

≥ 0.478

Thus, we have shown that for every feasible solution x̄ of problem (11) the inequality479

∂cT (x0)
∂x

(x̄ − x0) ≥ 0 holds true. Note that since the function c(x) is convex, then480

∂cT (x0)
∂x

(x̄ −x0) ≤ c(x̄)−c(x0). The last two inequalities imply the inequality c(x0) ≤481

c(x̄), which has to be satisfied by all feasible solutions x̄ of problem (11). This means482

that the vector x0 ∈ X is an optimal solution of this problem. Taking into account483

that the set of feasible solutions X of the original SIP problem is a subset of the set of484

feasible solutions of problem (11), we conclude that the vector x0 solves the original485

SIP problem as well. The theorem is proved. ⊓⊔486

Following [30], let us introduce the following definition.487

Definition 4.1 The Constant Rank Constraint Qualification (CRCQ) is said to be held488

at x̄ ∈ X in the NLP problem (11) iff there exists a neighborhood Ω(x̄) ⊂ R
n of x̄489

such that the system of vectors490

{

∂ f (x, t∗j )

∂x
,
∂2 f (x, t∗j )

∂x∂t
bi ( j), i ∈ P( j),

∂2 f (x, t∗j )

∂x∂t
ai ( j), i ∈ I0( j), j ∈ J∗

}

,

(47)491
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J Optim Theory Appl

has a constant rank for every x ∈ Ω(x̄).492

Theorem 4.4 (Explicit optimality criterion) Let Assumptions 1 and 2 hold true for493

the convex problem (SIP). Suppose that (CRCQ) is satisfied at x0 ∈ X. Then, the494

vector x0 is an optimal solution of problem (SIP) iff there exist indices t j , j ∈ Ja ,495

and vectors lk( j), k= 1, . . . , m( j), j ∈ J∗, defined in (10) and (34), as well as496

vectors µk( j), k = 1, . . . , m( j), and µ j , j ∈ J∗, defined in (38), and numbers497

λ j , j ∈ J∗, ν j ≥ 0, j ∈ Ja , such that equality (39) takes place.498

Proof ⇒ It follows from Theorem 4.2, that there exist indices t j , j ∈ Ja , and vectors499

l̄k( j), k = 1, . . . , m( j), j ∈ J∗, defined in (10) such that the vector x0 is optimal in500

problem (11). Rewrite the last problem in the form501

min c(x),

s.t. f (x, t∗j ) = 0,
∂ f T (x, t∗j )

∂t
bi ( j) = 0, i ∈ P( j),

∂ f T (x,t∗j )

∂t
ai ( j) = 0, i ∈ I0( j),

∂ f T (x, t∗j )

∂t
ai ( j) ≤ 0, i ∈ I∗( j),

(l̄k( j))T
∂2 f (x, t∗j )

∂t2
l̄k( j) + val

(

LP(x, t∗j , l̄k( j))
)

≤ 0, k = 1, . . . , m( j), j ∈ J∗,

f (x, t j ) ≤ 0, j ∈ Ja .

(48)502

It follows from the assumptions of the theorem, that problem (48) possesses the503

Properties 2.1–2.3 (see Sect. 2) and the following one: there exists a neighborhood504

Ω(x0) ⊂ R
n of x0 such that the system of vectors (47) has a constant rank for every505

x ∈ Ω(x0). According to [31], under fulfillment of these properties, a feasible vector506

x0 is an optimal solution in problem (48) if and only if there exist numbers and vectors507

ν j ≥ 0, j ∈ Ja; λ j , ωi ( j), i ∈ P( j), γi ( j), i ∈ I0( j), γi ( j) ≥ 0, i ∈ I∗( j);508

λk j ≥ 0, µ̄k j ∈ sol(LP(x0, t∗j , l̄k( j))), k = 1, . . . , m( j), j ∈ J∗,509

such that γi ( j)
∂ f T (x0,t∗j )

∂t
ai ( j) = 0, i ∈ I∗( j), j ∈ J∗, and the equality510

∂c(x0)

∂x
+

∑

j∈Ja

ν j

∂ f (x0, t∗j )

∂x
+

∑

j∈J∗

[

λ j

∂ f (x0, t∗j )

∂x
+

∂2 f (x0, t∗j )

∂x∂t
µ j511

+
m( j)
∑

k=1

λk j

(

∂2 f (x0, t∗j )

∂x∂t
µ̄k j +

∂

∂x

[

(l̄k( j))T
∂2 f (x0, t∗j )

∂t2
l̄k( j)

])

⎤

⎦ = 0 (49)512

holds true with513

µ j :=

⎛

⎝

∑

i∈P( j)

bi ( j)ωi ( j) +
∑

i∈I0( j)∪I∗( j)

ai ( j)γi ( j)

⎞

⎠ , j ∈ J∗. (50)514
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It follows from Lemma 4.1, that for j ∈ J∗, the vector µ j is feasible in problem515

(LP j (x0)) and
∂ f T (x0,t∗j )

∂t
µ j = 0. Hence, µ j ∈ sol(LP j (x0)).516

Basing on Theorem 4.2 and equality (49), without loss of generality, we can sup-517

pose that λk j > 0, k = 1, . . . , m( j), j ∈ J∗, since in the case when λk j = 0, we518

may exclude from consideration the vector l̄k( j) and the corresponding constraint of519

problem (48). Denote520

lk( j) :=
√

λk j l̄k( j), µk( j) := λk j µ̄k( j), k = 1, . . . , m( j), j ∈ J∗. (51)521

Evidently, lk( j) ∈ {l ∈ C0(t): F2 j (x0, l) = 0}, µk( j) ∈ sol(LP(x0, t∗j , lk( j))), k =522

1, . . . , m( j), j ∈ J∗. Hence, equality (49) implies equality (39) with vectors µ j ∈523

sol(LP j (x0)) defined in (50) and lk( j), µk( j), k = 1, . . . , m( j), defined in (51) for524

j ∈ J∗. The necessary part of the theorem is proved.525

⇐ The sufficient part of the proof follows from Theorem 4.3. ⊓⊔526

It is worth mentioning that the optimality conditions proved above are of the first527

order w.r.t. x . For the convex SIP problems, Theorems 4.3 and 4.4, provide more528

efficient optimality conditions when compared with the ones, which can be found in529

the literature. Indeed, the necessary optimality conditions from [11] (Theorems 5.113,530

5.118) and [1] (Theorem 5.1) are trivially fulfilled for any x ∈ X , if the constraints531

of the problem (SIP) do not satisfy the Slater CQ. Hence, these conditions are useless532

in such situation. But this does not happen under the conditions of Theorem 4.4. In533

fact, suppose that for the problem (SIP), the Slater CQ fails. Then, the set of the534

immobile indices T ∗ = {t∗j , j ∈ J∗} is nonempty. Let x∗ be any feasible solution of535

the problem (SIP) and Ta(x∗) be the corresponding active index set. By construction,536

T ∗ ⊂ Ta(x∗). Note that, since the indices t∗j , j ∈ J∗ are immobile, it is easy to537

show that for any x∗ ∈ X , there exist numbers λ∗
j = λ∗

j (x∗) ≥ 0, j ∈ J∗, such538

that
∑

j∈J∗ λ∗
j

∂ f (x∗,t∗j )

∂x
= 0,

∑

j∈J∗ λ∗
j > 0. Consider the multiplies λ0 = 0, λ j =539

λ∗
j , j ∈ J∗; λ(t) = 0 for t ∈ Ta(x∗)\T ∗. For definiteness, let us consider the540

necessary optimality conditions from Theorems 5.113 and 5.118 in [11]. It is easy541

to verify that the chosen above multiplies satisfy condition (5.284) in [11]. Note542

that for the convex SIP problems, condition (5.316) in [11] is always satisfied since543

hT ∂2 f (x∗,t)
∂x2 h ≥ 0 and ϑ(t, h) ≥ 0 for h ∈ C(x∗), t ∈ Ta(x∗) (see (5.302) in [11]).544

Hence, we have shown that the necessary optimality conditions from Theorems 5.113545

and 5.118 in [11] are fulfilled for any feasible x∗ ∈ X of the problem (SIP).546

If consider Theorem 4.4 proven above, it should be noted that it provides the opti-547

mality criterion under the assumption that (CRCQ) is satisfied. Therefore, in this case548

only the optimal solutions of the problem (SIP) satisfy the conditions of the theorem.549

In Sects. 5 and 6, we will present some situations, where the necessary conditions of550

Theorem 4.4 are not trivially satisfied even when the Slater CQ fails. The example551

from [27] along with one another, which will be discussed in Sect. 6, shows that, given552

a convex SIP problem, the set of the feasible solutions satisfying the sufficient condi-553

tions proved in Theorem 4.3 can be wider, when compared to the set of the feasible554

solutions satisfying the sufficient conditions from [11,12]. Therefore, we can conclude555
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J Optim Theory Appl

that the first order optimality conditions presented in this paper, are stronger than the556

known first order optimality conditions.557

5 Special Cases558

We will consider here some special cases of SIP problems, for which the optimality559

conditions from the previous sections can be reformulated in a simpler form.560

Case 1 Problem (SIP) satisfies the Slater condition.561

Suppose that the problem (SIP) satisfies the Slater condition. Then, T ∗ = ∅ and,562

hence, the (CRCQ) is trivially fulfilled. Then, Theorem 4.4 takes the form of one563

well-known result from [1].564

Theorem 5.1 Let the convex problem (SIP) satisfy (SCQ). A feasible point x0 ∈ X is565

an optimal solution of (SIP) iff there exist a set of indices {t j , j ∈ Ja} ⊂ Ta(x0), |Ja | ≤566

n, and numbers ν0 = 1, ν j ≥ 0, j ∈ Ja , such that567

ν0
∂c(x0)

∂x
+

∑

j∈Ja

ν j

∂ f (x0, t j )

∂x
= 0. (52)568

The following observations should be made here:569

– The statement of Theorem 5.1 continues to be true in its sufficient part even when570

the problem (SIP) does not satisfy (SCQ). But such a sufficient optimality condition571

for convex SIP is too restrictive.572

– Without (SCQ), the first order necessary optimality conditions from [1,11] are573

as follows: Let x0 ∈ X be an optimal solution of (SIP). Then, there exist active574

indices {t j , j ∈ Ja} ⊂ Ta(x0), |Ja | ≤ n, and numbers ν0 ≥ 0, ν j ≥ 0, j ∈ Ja ,575

such that equality (52) takes place. It is easy to show that if T ∗ �= ∅, then these576

conditions are fulfilled for all x ∈ X .577

From the observations above, we can conclude that the optimality conditions formu-578

lated in the Theorems 4.3 and 4.4 coincide with the classical first order optimality579

conditions for the problems (SIP) satisfying (SCQ), and they are more efficient than580

the classical conditions, if (SCQ) is not satisfied.581

Case 2 The lower level problem satisfies some additional conditions.582

It was shown above that, given an optimal solution x0 of the convex problem (SIP),583

its immobile indices solve the corresponding lower level problem (LLP(x0)), i.e.,584

t∗j ∈ sol(LLP(x0)), j ∈ J∗. Consider the following condition:585

F2 j (x0, l) < 0 ∀l ∈ C0( j)\{0}, j ∈ J∗. (53)586

Note that condition (53) is weaker then the classical second order sufficient optimality587

conditions (SOSOC) for t∗j , j ∈ J∗, in the problem (LLP(x0)):588

(SOSOC): F2 j (x0, l) < 0 ∀l ∈ C(x0, t∗j )\{0}, j ∈ J∗.589
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Condition (53) implies that m( j) = 0 ∀ j ∈ J∗ in (10), and Theorem 4.3 takes the590

form591

Theorem 5.2 Let Assumptions 1 and 2 hold true, x0 ∈ X, and condition (53) be592

satisfied. Suppose that there exist a subset of the set of active indices {t j , j ∈ Ja} ⊂593

Ta(x0)\T ∗, |Ja | ≤ n, vectors µ j ∈ sol(LP j (x0, 0)) and numbers λ j , j ∈ J∗, ν j ≥594

0, j ∈ Ja , such that595

∂c(x0)

∂x
+

∑

j∈Ja

ν j

∂ f (x0, t j )

∂x
+

∑

j∈J∗

[

λ j

∂ f (x0, t∗j )

∂x
+

∂2 f (x0, t∗j )

∂x∂t
µ j

]

= 0.596

Then, x0 is an optimal solution of problem (SIP).597

Case 3 The index set T ⊂ R p is a polyhedron.598

Suppose that the functions gs(t), s ∈ S, in (2) are linear: gs(t) = hT
s t +�hs, s ∈ S. In599

this case, the inclusions sol(LP(x0, t∗j , l
(k)
j )) ⊂ sol(LP j (x0)), k = 1, . . . , m( j), j ∈600

J∗, take place and Assumption 1 is not mandatory. Hence, Theorem 4.3 takes the form601

602

Theorem 5.3 Let Assumption 2 hold true for the convex problem (SIP) with polyhedral603

index set T , and x0 ∈ X. Suppose that there exist a subset of the set of active indices604

{t j , j ∈ Ja} ⊂ Ta(x0)\T ∗, a set of vectors lk( j), k = 1, . . . , m( j), j ∈ J∗, defined605

in (10) and (34), vectors µ j ∈ sol(LP j (x0)), j ∈ J∗, and numbers λ j , j ∈ J∗, ν j ≥606

0, j ∈ Ja , such that607

∂c(x0)

∂x
+

∑

j∈Ja

ν j

∂ f (x0, t j )

∂x
608

+
∑

j∈J∗

[

λ j

∂ f (x0, t∗j )

∂x
+

∂2 f (x0, t∗j )

∂x∂t
µ j609

+
m( j)
∑

k=1

∂

∂x

[

lT
k ( j)

∂2 f (x0, t∗j )

∂t2
lk( j)

]

⎤

⎦ = 0.610

Then, x0 is an optimal solution of problem (SIP).611

More detailed considerations can be found in [25], where SIP problems with poly-612

hedral index set T and linear w.r.t. x constraint function f (x, t) are considered.613

Case 4 The constraint function f (x, t) is linear w.r.t. x ∈ R
n .614

Suppose that in the problem (SIP), the constraint function f (x, t) is linear w.r.t.615

x ∈ R
n . Then, (CRCQ) is fulfilled and Theorem 4.4 gives us a new optimality criterion616

for a feasible x0 ∈ X in problem (SIP).617
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6 Example618

In [27], the efficiency of the implicit optimality conditions formulated in Theorem 2.1619

was illustrated with the help of an example in which the lower level problem satisfies620

the additional conditions (SOSOC) (see Sect. 5.2). Now we will slightly modify this 4621

example to illustrate the efficiency of the explicit optimality conditions proposed in622

Theorem 4.3 also in the case, when the conditions (SOSOC) are not satisfied.623

Let x = (x1, x2, x3, x4)
T ∈ R

4, t = (τ1, τ2)
T ∈ R

2, and624

f1(x, t) = −τ 2
1 x1 + τ1τ2x1 + τ1x2 + sin(τ1)x3 + τ1x4 − τ 2

2 ,625

f2(x, t) = τ2x1 + (τ2 + 1)2x2 + (1 − τ2)x3 + x4 − (τ1 − 3)2 + (τ1 − 3)τ2;626

T1 =
{

t ∈ R
2: − (τ1 + 1)2 − (τ2 − 1)2 ≤ −2, −0.5 ≤ τ1 ≤ 1, −0.5 ≤ τ2 ≤ 0.5

}

,627

T2 =
{

t ∈ R
2: (τ1 − 2.5)2 + (τ2 − 0.5)2 ≤ 0.5

}

.628

Note here that the set T2 is convex but not polyhedral, and the set T1 is not convex.629

Consider the following convex SIP problem:630

min x2
1 , s.t. f1(x, t) ≤ 0 ∀t ∈ T1, f2(x, t) ≤ 0 ∀t ∈ T2. (54)631

Problem (54) admits a feasible solution x0 = (x0
1 , x0

2 , x0
3 , x0

4 )T such that x0
1 =632

−2a − 2
√

a2 − b ≈ 0.0695, x0
2 = −0.25, x0

3 = x0
1 + 2x0

2 ≈ −0.4305, x0
4 = −x0

1 −633

3x0
2 ≈ 0.6805, where a = −2 + sin(1), b = −0.5(sin(1) − 1).634

Let us, first, test the optimality of x0 in problem (54) using the approach suggested635

in the paper. Denote t1 := (0, 0)T ∈ T1, t2 := (3, 0)T ∈ T2, and t3 := (1, x0
1/2)T ∈636

T1. It can be checked that the indices t1, t2, and t3 form the active index set in x0:637

f1(x0, t1) = f2(x0, t2) = f1(x0, t3) = 0, and two of these indices, t∗1 = t1 and638

t∗2 = t2, are immobile (hence J∗ = {1, 2}). By construction, the immobile index t∗1 is639

situated in the locally nonconvex part of the index set T1. Note here that (MFCQ) is640

fulfilled at both immobile indices, t∗1 and t∗2 , and there exists a feasible x̃ ∈ R
4 :641

x̃1 = 2 sin(1), x̃3 =
−(x̃1)

2/4 + x̃1

sin(1) − 1
,642

x̃2 = 0.5(x̃3 − x̃1), x̃4 = −x̃2 − x̃3, (55)643

such that the following inequalities hold: lT ∂2 f1(x̃,t∗1 )

∂t2 l < 0, lT ∂2 f2(x̃,t∗2 )

∂t2 l < 0,∀l ∈644

R
2\{0}. Hence Assumptions 1 and 2 are satisfied for problem (54).645

For the index t∗1 , we have Sa(t
∗
1 ) = {1}. The cone L(t∗1 ) = {l ∈ R

2: − l1 + l2 ≤ 0}646

can be represented by one bidirectional ray b1(1) = (1, 1)T and one unidirectional647

ray a1(1) = (1,−1)T with q(t∗1 , b1(1)) = 1 and q(t∗1 , a1(1)) = 1. Then the sets in648

(8) are as follows: I∗(1) = ∅, I0(1) = {1}.649

For the index t∗2 = (3, 0)T ∈ T ∗, we have Sa(t
∗
2 ) = {1}, and the cone L(t∗2 ) =650

{l ∈ R
2: l1 − l2 ≤ 0} is represented by b1(2) = (1, 1)T and a1(2) = (−1, 1)T

651

with q(t∗2 , b1(2)) = 1; q(t∗2 , a1(2)) = 1. Hence, the sets in (8) are given by I∗(2) =652

∅, I0(2) = {1}.653
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One can show that654

lT ∂2 f1(x0, t∗1 )

∂t2
l < 0, lT ∂2 f2(x0, t∗2 )

∂t2
l ≤ 0 ∀l ∈ R

2\{0}, (56)655

and there exists unique (up to a positive multiplier) vector l̄ = (0.5, 1)T , l̄ ∈ L1(t
∗
2 )656

such that ‖l̄‖ �= 0 and l̄T ∂2 f2(x0, t∗2 )

∂t2
l̄ = 0. Hence, according to the optimality657

criterion formulated in Theorem 4.2, vector x0 is optimal in problem (54) iff it is658

optimal in the following Quadratic Programming (QP) problem:659

min x2
1 ,660

s.t. fi (x, t∗i ) = 0,
∂ f T

i (x, t∗i )

∂t
b1(i) = 0,

∂ f T
i (x, t∗i )

∂t
a1(i) = 0, i = 1, 2;661

l̄T ∂2 f2(x, t∗2 )

∂t2
l̄ + val

(

LP(x, t∗2 , l̄)
)

≤ 0, f1(x, t3) ≤ 0,662

where663

(LP(x, t, l)): max
(ω1,ω2)

(x1 + 2x2 − x3)ω2, s.t.
∂g2(t)

∂τ1
ω1 +

∂g2(t)

∂τ2
ω2664

≤ −lT ∂2g2(t)

∂τ 2
l.665

Taking into account that
∂ f T

2 (x,t∗2 )

∂t
b1(2) = ∂ f T

2 (x,t∗2 )

∂t
a1(2) = x1 + 2x2 − x3, the QP666

problem can be rewritten in the form667

min x2
1 ,668

s.t. x2 + x3 + x4 = 0, x1 + 2x2 − x3 = 0, 2x2 + 0.5 ≤ 0,669

x1(0.5x0
1 − 1) + x2 + sin(1)x3 + x4 − 0.25(x0

1 )2 ≤ 0. (57)670

Applying the known optimality criterion for convex QP, it is easy to check that671

vector x0 is optimal in problem (57) and, therefore, (see Theorem 4.2) it is optimal in672

the SIP problem (54). One can show that the statements of Theorems 4.3 and 4.4 are673

fulfilled as well.674

It was shown above that the necessary optimality conditions from [11] (Theorems675

5.113, 5.118) and [1] (Theorem 5.1) are trivially fulfilled for any x ∈ X if the con-676

straints of the convex SIP problem (SIP) do not satisfy the Slater CQ. In our example,677

the constraints of the SIP problem (54) do not satisfy the Slater condition. Therefore,678

the necessary conditions from [1,11] are not informative for problem (54). A similar679

situation can not happen in the case of the necessary optimality conditions formulated680

in Theorem 4.4, since these conditions are satisfied not for all feasible, but only for the681

optimal solutions. For example, one can check that the vector x̃ [defined in (55) and682

feasible in problem (54)] does not satisfy the necessary optimality conditions from683

Theorem 4.4.684
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Now, let us show that the second order sufficient optimality conditions from [11,12]685

are not fulfilled for x0. For definiteness, we will consider the conditions from [12].686

For our example, relations (5.6) from [12] are as follows:687

λ̄0
∂c(x0)

∂x
+ λ̄1

∂ f1(x0, t1)

∂x
+ λ̄2

∂ f2(x0, t2)

∂x
+ λ̄3

∂ f1(x0, t3)

∂x
= 0,688

λ̄i ≥ 0, i = 0, . . . , 3.689

Since the system above admits a solution λ̄0 = 0, λ̄1 ≥ 0, λ̄2 = 0, λ̄3 = 0,690

relations (5.7) from [12] take the form691

− λ̄1

[

(η(ξ))T ∂2 f1(x0, t1)

∂t2
η(ξ) + 2ξ T ∂2 f1(x0, t1)

∂x∂t
η(ξ)

]

< 0 ∀ξ ∈ K, ξ �= 0,692

(58)693

where (see [12]) η(ξ) is a solution to the following auxiliary problem:694

(Qt1(ξ)): max
1

2
ηT ∂2 f1(x0, t1)

∂t2
η + ξ T ∂2 f1(x0, t1)

∂x∂t
η, s.t. (−1, 1)η ≤ 0,695

and K = {ξ ∈ R
4: ξ T ∂c(x0)

∂x
≤ 0, ξ T ∂ f1(x0,t1)

∂x
≤ 0, ξ T ∂ f2(x0,t2)

∂x
≤ 0, ξ T ∂ f1(x0, t3)

∂x
≤696

0}. It is easy to check that ξ̄ = (
1−sin(1)

0.5x0
1−1

,− 1
2 , 1,− 1

2 )T ∈ K, and ξ̄ T ∂2 f1(x0, t1)

∂x∂t
=697

(0, 0). Then, taking into account relations (56), we conclude that the problem (Qt1(ξ))698

admits an optimal solution η(ξ̄ ) = 0. Consequently, conditions (58) (as well as con-699

ditions (5.7) from [12]) are not fulfilled for the feasible x0 in problem (54). In other700

words, the optimality conditions from [12] are not able to recognize the optimality of701

x0 in the convex problem (54). Remind once again that the given vector x0 satisfies702

the explicit sufficient optimality conditions formulated in Theorem 4.3.703

It was shown above, how the additional information about the properties of the704

immobile indices permits to obtain the optimality conditions, which are more efficient705

than the known ones. This additional information can be useful for numerical methods706

as well. Let us illustrate this with an example.707

One of the methods for solving SIP problems (discretization approach) consists708

in overlaying a rather dense grid on the index set and constructing a corresponding709

discretized problem (NLPD). A solution of the discretised problem is considered as710

an approximate solution of the original SIP problem.711

We will apply this method to problem (54). Let µs > 0, νs > 0, be the discretization712

steps in the corresponding directions for the index sets Ts, s = 1, 2. Denote: as =713

mint∈Ts τ1, ās = maxt∈Ts τ1, bs = mint∈Ts τ2, b̄s = maxt∈Ts τ2,714

Ns =
[

ās − as

µs

]

+ 2, Ms =
[

b̄s − bs

νs

]

+ 2,715

αs(1) = as, βs(1) = bs,716

αs(i + 1) = αs(i) + µs, i = 1, . . . , Ns − 1;717
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βs( j + 1) = βs( j) + νs, j = 1, . . . , Ms − 1;718

Us = {(i, j) : (αs(i), βs( j)) ∈ Ts,719

i = 1, . . . , Ns, j = 1, . . . , Ms}, s = 1, 2.720

Choose the following grids in the index sets T1 and T2:721

τs(i, j) = (αs(i), βs( j)), (i, j) ∈ Us; s = 1, 2,722

and solve the following discretized problem (NLP problem):723

min x2
1 , s.t. fs(x, τs(i, j)) ≤ 0, (i, j) ∈ Us, s = 1, 2. (59)724

For the step values725

µ1 = 0.0367, ν1 = 0.0069, µ2 = 0.0067, ν2 = 0.0069, (60)726

problem (59) admits a solution x1
D = (0,−0.0061,−0.0210, 0.0237). For another727

step values, µ1 = 0.0061, ν1 = 0.0013, µ2 = 0.0011, ν2 = 0.0013, a solution of728

the discretized problem (59) is x2
D = (0,−0.0109,−0.0036, 0.0139). Both vectors729

x1
D and x2

D considerably differ from the optimal solution x0. This example shows that730

even for a very dense greed, the optimal solution of the discretized problem can be731

very far from that of the original SIP problem.732

Now, let us add to the discretized problem (59) the additional constraints733

∂ f T
1 (x,t∗1 )

∂t
b1(1) = 0,

∂ f T
2 (x,t∗2 )

∂t
b1(2) = 0, obtained as the result of the analysis of734

the immobile indices. These constraints, as it was shown above, should be satisfied735

for any solution of (54). Having solved the obtained problem on the grid with step736

values (60), we get x1
newD =(0.0694,−0.2500,−0.4305, 0.6805). It is easy to see that737

this solution is almost identical to the optimal solution of the original SIP problem738

(54). Therefore, we can conclude that the discretization methods may be improved by739

introducing the new additional constraints, which are obtain on the base of the notion740

of the immobile indices.741

7 Perspectives742

We would like to complete the article by a short discussion about the prospects open to743

researchers of SIP and connected problems, when using a new approach to optimality744

conditions, described here.745

As a rule, a noncompliance of the KKT type necessary optimality conditions in SIP746

is related with the fact that SIP problems may possess hidden additional constraints.747

Those are the consequence of the full continuum system of the constraints, but are not748

a consequence of any of its finite subsystems. The analysis of the properties of the749

immobile indices of constraints has allowed us to formulate these additional constraints750

in an explicit form. This made it possible to derive new optimality conditions.751

The obtained results permit to conclude that the further research, which is aimed at752

identification and accounting the immobile indices and the corresponding additional753
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constraints, is promising and may lead to new findings. It inspires us to continue754

investigation in this area, and below we discuss some possible topics of new studies.755

At the outset, recall that in the present paper756

(a) the convex SIP problems were considered;757

(b) it was assumed that the (infinite) index set T is compact;758

(c) the set of immobile indices T ∗ was assumed to consist of a finite number of759

elements;760

(d) for all t ∈ T ∗, the immobility orders were supposed to be less or equal to one.761

Now, let us outline a few directions for the future research.762

Our efforts will be aimed at weakening the assumptions (b)–(d). Namely, it is763

planned to investigate the problems, in which:764

(b*) the index set T is not compact,765

(c*) an infinite number of immobile indices is possible;766

(d*) the immobility orders may be greater than one.767

When the convex SIP problems are being studied, it is usually assumed in the768

literature, that the mentioned above situations do not take place. However, in many769

important applications of SIP the situations (b*)–(d*) are typical. Let us list some of770

them.771

Firstly, there are important for different applications problems of copositive pro-772

gramming (CP) (see e.g., [32]). For these problems, situations (c*) and (d*) may773

occur. In [33], we have already successfully applied our approach to the semi-definite774

programming (SDP) problems, which can be considered as a particular case of CP775

problems. It should be emphasized that, in a general, CP problems are much more776

complex than those of SDP.777

Secondly, there are problems of semi-infinite polynomial programming (SIPP) and,778

in particular, the linear SIPP problems, which have recently emerged in the spotlight in779

the literature (see e.g., [34]). For these problems, the situations (b*)–(d*) are typical.780

In study of SIPP problems with noncompact index set T , a special technique called781

homogenization, is used [34]. This technique allows, under some generic assumptions,782

to reduce the original SIPP problem (with noncompact set T ) to the equivalent SIPP783

problem with a compact one. However, the use of homogenization technique does not784

guarantee that the Slater condition is fulfilled for the new equivalent SIPP problem,785

even when the original problem satisfies this condition. In fact, consider the following786

simple linear SIPP problem:787

min
x∈Rn ,ρ∈R

cT x − ρ,

s.t. tT Dt + (dT + xT A)t ≥ ρ ∀t ∈ K = {t ∈ R
p : Bt ≥ 0} ,

(61)788

where c ∈ R
n, d ∈ R

p, A ∈ R
n×p, B ∈ R

m×p are given. Having applied the homog-789

enization technique, one gets the equivalent problem790

min
x∈Rn ,ρ∈R

cT x − ρ,

s.t. tT Dt + t0(d
T + xT A)t ≥ ρt2

0 ,

∀t̄ ∈ {t̄ = (t, t0) ∈ R
p+1: Bt ≥ 0, t0 ≥ 0, ||t̄ || = 1}.

(62)791
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Evidently, if the feasible set of problem (61) is nonempty, then the constraints of this792

problem satisfy the Slater condition. At the same time, this condition is violated for793

problem (62), when the set �K = {τ ∈ K\{0}: τ T Dτ = 0} is nonempty. Note that all794

indices t̄ = (τ, 0), with τ ∈ �K , are immobile and for them, as a rule, the situations795

(c*) and (d*) occur. In [35,36], for SIP problems with noncompact index set, the KKT796

necessary optimality conditions are formulated under the Farkas–Minkowski CQ. In797

problem (61), this CQ does not hold true and, therefore, the KKT conditions may be798

not fulfilled. Thus, further study of SIPP problems, on the basis of the proposed in the799

paper approach, is relevant and promising.800

It may also be interesting and auspicious to use our approach to reveal the “hidden”801

constraints both in general and specific nonconvex SIP problems. For example, we802

can apply it to SIP problems with disjunctive index sets in the form803

min
x∈Rn

c(x),

s.t. f1(t
(1), x) ≤ 0 ∀t (1) ∈ T1 ∨ f2(t

(2), x) ≤ 0 ∀t (2) ∈ T2

∨ . . . ∨ fm(t (m), x) ≤ 0 ∀t (m) ∈ Tm,

804

to fractional SIP problems in the form805

min
x∈Rn

inf
τ∈T

g1(τ, x)

g2(τ, x)
s.t. f (t, x) ≤ 0 ∀t ∈ T ; g2(τ, x) ≥ 0 ∀τ ∈ T ,806

and to various types of min max and multi-objective SIP problems [37].807

The identification and accounting of the “hidden” constraints in the generalized808

SIP problems are also of interest.809

The information about the “hidden” constraints can be used for development of the810

duality theory in SIP.811

The illustrative example, described in the paper, shows that the use of the “hid-812

den” constraints has a positive impact on the effectiveness of the numerical methods.813

Therefore, it is relevant to814

– create and justify efficient algorithms, which constructively describe the set of815

immobile indices, and formulate, with the help of these indices, new additional816

constraints satisfied by all feasible solutions of the original SIP problem;817

– develop the numerical methods for solving the arising auxiliary problems which818

contain these additional constraints.819

The results of this paper can serve as a good theoretical and constructive basis for820

work in the above-mentioned directions.821

8 Conclusions822

In the present paper, we have considered the convex SIP problems with finitely rep-823

resentable compact index sets under Assumptions 1 and 2, which are less restrictive824

than the known CQs. Using the notion of immobile indices, we obtained new efficient825

optimality conditions in implicit and explicit forms and showed that these condi-826

tions are more efficient than the known ones, when applied to the considered class827
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of problems. We discussed perspectives in the study of various classes of optimiza-828

tion problems, which a new approach opens, and indicated some directions for future829

research.830
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