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Abstra
t

In this paper, a general methodology to approximate sets of data points through

Non-Uniform Rational Basis Spline 
urves is provided. The proposed approa
h aims at

integrating and optimizing the full set of design variables (both integer and 
ontinuous)

de�ning the shape of the Non-Uniform Rational Basis Spline 
urve. To this purpose,

a new formulation of the 
urve �tting problem is required: it is stated in the form of a

Constrained Non-Linear Programming Problem by introdu
ing a suitable 
onstraint on

the 
urvature of the 
urve. In addition, the resulting optimization problem is de�ned

over a domain having variable dimension, wherein both the number and the value of

the design variables are optimized. To deal with this 
lass of Constrained Non-Linear

Programming Problems, a global optimization hybrid tool has been employed. The

optimization pro
edure is split in two steps: �rstly, an improved geneti
 algorithm

optimizes both the value and the number of design variables by means of a two-level

Darwinian strategy allowing the simultaneous evolution of individuals and spe
ies;

se
ondly, the optimum solution provided by the geneti
 algorithm 
onstitutes the

initial guess for the subsequent gradient-based optimization, whi
h aims at improving

the a

ura
y of the �tting 
urve. The e�e
tiveness of the proposed methodology is

proven through some mathemati
al ben
hmarks as well as a real-world engineering

problem.

Keywords:

NURBS 
urves; Curve Fitting; Geneti
 Algorithms; Reverse Engineering; Modular Systems; Opti-

mization

1 Introdu
tion

Curve �tting is a widely studied topi
 in informati
s, geometri
 modelling and reverse engineering.

The goal is to �nd all the parameters whi
h uniquely identify a parametri
 
urve approximating

a set of data points, i.e. the target points (TPs). The 
urve �tting problem 
an be stated as a


lassi
al least squares problem wherein the Eu
lidean distan
e between TPs and a set of suitable

points belonging to the 
urve is minimized. Standard gradient optimization methods have been

broadly employed in order to solve the 
urve �tting problem [1, 2, 3℄. In parti
ular, in [1℄ and

[3℄, the formulation of the obje
tive fun
tion was modi�ed by introdu
ing the tangent distan
e

minimization method and the square distan
e minimization method. The most relevant 
ontribution

of these te
hniques is on the improvement of the 
onvergen
e rate and the stability of the solution.

Ueng et al. [2℄ enhan
e the obje
tive fun
tion by inserting information about tangent and 
urvature

of the approximating 
urve as weighted quantities. However, weight parameters must be 
arefully

tuned a-priori by the designer in [2℄: a

ordingly, their de�nition is problem-dependent.

Several methodologies deal with the 
urve �tting problem in the framework of Non-Uniform

Rational Basis Spline (NURBS). A NURBS 
urve is de�ned by the degree of the blending fun
-

tions, the number and the 
oordinates of 
ontrol points, the knot ve
tor 
omponents and the weight

values [4℄. This large amount of parameters makes NURBS 
urves and surfa
es a very versatile

and interesting tool for many mathemati
al and engineering appli
ations, not only for the 
urve
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�tting problem. Performing a 
urve �tting by means of a NURBS 
urve is parti
ularly advan-

tageous be
ause this geometri
 entity is 
ompletely CAD-
ompatible, i.e. its parameters 
an be

transferred through standard format �les to CAD software: in fa
t, NURBS 
onstitute one of the

milestones of CAD design and they are widely utilized for reverse engineering problems. However,

the 
onsiderable quantity of parameters de�ning a NURBS 
urve also 
onstitutes the main draw-

ba
k: it is very hard to properly tune all parameters de�ning the shape of a NURBS 
urve. In the

last three de
ades, the massive development of metaheuristi
 pro
edures has brought engineers to

apply su
h strategies in the framework of the 
urve and/or surfa
e �tting problem. As well known,

the most signi�
ant advantages of metaheuristi
s are the abilities of dealing with large set of data

and of exploiting the related information to e�e
tively explore the sear
h spa
e, in order to �nd

the global minimum. The main drawba
k is the high 
omputational time. Conversely, in the 
ase

of gradient-based strategies, the major drawba
ks are related, on the one hand, to the need of an

initial guess for the set of parameters des
ribing the 
urve shape and, on the other hand, to the

possibility of falling on a lo
al minimum. To over
ome the latter drawba
k, Li et al. [5℄ present

a prepro
essing method, based on the dis
rete evaluation of the 
urvature, to provide a starting

Basis Spline (referred as Bspline in the following) knot ve
tor whi
h re�e
ts the shape of the 
urve

to be approximated. Con
erning the utilization of metaheuristi
s for solving the 
urve/surfa
e

�tting problem, Limaiem et al. [6℄ make use of a geneti
 algorithm (GA) to �nd the optimum value

of the parameters de�ning the approximating 
urve. In [7℄, a parti
le swarm optimization (PSO)

algorithm has been employed to approximate the TPs by means of NURBS surfa
es. Kang et

al. [8℄ use a sparse optimization to iteratively update the knot ve
tor length and 
omponents of the

approximating BSpline. Furthermore, even if 
on
eived for the problem of surfa
e �tting through

NURBS surfa
es, interesting suggestions are provided in [9℄, where some stability requirements

are imposed on the �nal position of 
ontrol points. Re
ently, Gar
ia-Capulin et al. [10℄ employed

a Hierar
hi
al GA to optimize both the number and the value of the knots of a Bspline 
urve.

However, the approa
h presented in [10℄ is based on the resolution of a bi-obje
tive un
onstrained

optimization problem that needs the de�nition of a ��
titious� obje
tive fun
tion to e
onomize the

number of knots, whi
h is not related to any geometri
al requirement. Moreover, the degree of the

basis fun
tions is kept 
onstant in [10℄ and the problem is not stated in the more general framework

of NURBS 
urves.

As it 
an be easily dedu
ed from this (non-exhaustive) state of the art on 
urve �tting in the

mathemati
al framework of NURBS representation, the main limitations and drawba
ks 
hara
-

terising the vast majority of the studies on this topi
 are essentially two:

• the la
k of a proper problem formulation (without 
onsidering arbitrary penalization 
oe�-


ients, whi
h must be de�ned by the user and that are problem-dependent);

• the la
k of a very general numeri
al strategy, able to simultaneously optimize the number as

well as the value of the 
onstitutive parameters (i.e. the design variables) de�ning the shape
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of the NURBS 
urve.

To over
ome the previous restri
tions, in this work, an innovative approa
h to the 
urve �tting

problem is proposed. A new formulation of the mathemati
al problem has been developed: the


urve �tting problem is stated as a Constrained Non-Linear Programming Problem (CNLPP) by

introdu
ing a 
onstraint on the maximum value of the 
urvature.

In this study, the 
urve �tting problem is solved in the framework of NURBS 
urves. The

main idea is to keep all the parameters de�ning the NURBS 
urve as design variables in order

to state the 
urve �tting problem in the most general sense. Nevertheless, this fa
t implies some


onsequen
es of paramount importan
e, 
onstituting just as many di�
ulties in solving the related

CNLPP.

• When the 
urve �tting problem is formulated by in
luding the number of 
ontrol points and

the degree of the basis fun
tions among the unknowns, the overall number of design variables

(i.e. the overall number of parameters de�ning the shape of the 
urve) for the problem at

hand is not �xed a-priori : hen
e, the resulting CNLPP is de�ned over a sear
h spa
e of

variable dimension.

• The optimization variables of the CNLPP are of di�erent nature (
ontinuous and dis
rete).

• The numeri
al strategy 
hosen to fa
e su
h a problem must be able to handle design variables

of di�erent nature and to optimize, at the same time, the dimension of the design domain

as well as the value of ea
h 
onstitutive parameter of the NURBS 
urve.

This kind of problems is referred as optimization of �modular systems" in bibliography, see [11℄.

Here, the numeri
al strategy 
onsidered for the solution sear
h of CNLPP of modular systems is

based on an improved GA [11, 12, 13℄, able of dealing with optimization problems with �variable

number of design variables".

The paper is organized as follows: the general theoreti
al framework of NURBS 
urves is

brie�y dis
ussed in se
tion 2. In se
tion 3, the new formulation for the 
urve �tting problem is

introdu
ed: the problem variables are highlighted and the obje
tive fun
tion is 
arefully explained,

together with the optimization 
onstraint. Se
tion 4 fo
uses on the main features of the 
onsidered

numeri
al strategy, whilst the numeri
al results are presented and dis
ussed in se
tion 5. Finally,

se
tion 6 ends the paper with some 
on
lusive remarks and perspe
tives.

2 Theoreti
al Framework

In this se
tion, the fundamentals of the NURBS 
urves theory are brie�y re
alled. A

ording to

the notation introdu
ed in [4℄, the parametri
 impli
it form of a NURBS 
urve is:

C(u) =

n∑

i=0

Ri,p(u)Pi, (1)
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where C(u) = {x(u), y(u), z(u)} are the Cartesian 
oordinates of the 
urve, whilst Ri,p(u) is

the generi
 rational basis fun
tion having the form

Ri,p(u) =
Ni,p(u)wi

∑n
j=0 Nj,p(u)wj

. (2)

In Eqs. (1) and (2), u is a dimensionless parameter de�ned in the range [0, 1], Ni,p(u) are the basis

fun
tions, re
ursively de�ned a

ording to Bernstein polynomials, p is the maximum degree, wi

are the weights and Pi = {xi, yi, zi} the Cartesian 
oordinates of the 
ontrol points. The set of

the (n + 1) 
ontrol points form the so-
alled 
ontrol polygon. The blending fun
tions Ni,p(u) are

de�ned as

Ni,0(u) =

{

1, if Ui ≤ u < Ui+1,

0, otherwise,
(3)

Ni,q(u) =
u− Ui

Ui+q − Ui
Ni,q−1(u) +

Ui+q+1 − u

Ui+q+1 − Ui+1
Ni+1,q−1(u), q = 1, ..., p, (4)

where Ui is the i-th 
omponent of the following non-periodi
 non-uniform knot ve
tor :

U = {0, . . . , 0
︸ ︷︷ ︸

p+1

, Up+1, . . . , Um−p−1, 1, . . . , 1
︸ ︷︷ ︸

p+1

}. (5)

It is noteworthy that the size of the knot ve
tor is m+ 1,

m = n+ p+ 1. (6)

The knot ve
tor is a non-de
reasing sequen
e of real numbers that 
an be interpreted as a dis
rete


olle
tion of values of the dimensionless parameter u splitting the 
urve in ar
s. The 
omponents

of U are 
alled knots and ea
h knot 
an have a multipli
ity λ. One basi
 property of a NURBS


urve is related to the 
ontinuity and di�erentiability of the basis fun
tion Ni,p(u) at a knot: it is

p−λ times 
ontinuously di�erentiable. Thus, in
reasing the degree in
reases the 
ontinuity, whilst

in
reasing the knot multipli
ity de
reases the 
ontinuity. It is evident that the knot ve
tor strongly

a�e
ts the basis fun
tions and, a

ordingly, the shape of a NURBS 
urve. For a deeper insight in

the matter, the reader is addressed to [4℄.

3 Mathemati
al Formulation of the Curve Fitting Problem

In this se
tion, the 
urve �tting problem is stated as a CNLPP and it is formulated in the most gen-

eral 
ase, i.e. by 
onsidering the full-set of design variables des
ribing the shape of the parametri



urve.

Let us 
onsider the 
lassi
al form of the 
urve �tting problem, namely

min
x

f(x), f =

µ
∑

k=0

‖C(uk)−Qk‖2. (7)
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In Eq. (7), (µ + 1) is the number of TPs, Qk the generi
 k-th point, Qk = {xk, yk, zk} are the

Cartesian 
oordinates of the TPs, while C(uk) = {Cx(uk),

Cy(uk), Cz(uk)} are their 
ounterpart belonging to the parametri
 
urve when the dimensionless

parameter u gets the value uk. In the same equation, ve
tor x 
olle
ts all the optimization variables,

i.e. the full set of parameters (of di�erent nature) de�ning the shape of the 
urve. In the most

general 
ase, when the parametri
 
urve of Eq. (7) is represented in the mathemati
al framework

of NURBS basis fun
tions, its shape depends upon the following parameters:

• integer parameters, i.e. the number of 
ontrol points n+ 1, the number of knots m+ 1 and

the degree of the blending fun
tions p;

• 
ontinuous parameters, namely the non-de
reasing sequen
e of 
omponents of the knot ve
tor

Uj , j ∈ [p+ 1,m− p− 1], the 
oordinates of the 
ontrol points Pi = {xi, yi, zi}, i ∈ [0, n],

the weights values wi, i ∈ [0, n] and the set of suitable values of the dimensionless parameter

of the 
urve uk, k ∈ [0, µ].

Firstly, let us 
onsider the integer parameters: Eq. (6) gives the relationship amongm, p and n.

In standard approa
hes [1, 2, 3, 5℄, the maximum 
ontrol point index n is �xed a-priori, while the

value of p is 
hosen as 
ompromise between a

ura
y and noise introdu
tion. Then, the maximum

index of the knot ve
tor 
omponents is dedu
ed a

ordingly. Unlike standard approa
hes, no

assumptions are made on the integer parameters of a NURBS 
urve in this work. In parti
ular, m

and p are in
luded into the ve
tor of design variables, whilst n will be 
al
ulated a

ording to Eq.

(6).

Se
ondly, let us 
onsider the set of 
ontinuous parameters. The uk values of the 
urve dimen-

sionless parameters are 
al
ulated through the 
hord length method [4℄, so they are no longer design

variables. In parti
ular, the 
hord length LTP of the 
urve 
an be de�ned in terms of Eu
lidean

distan
e among 
onse
utive TPs,

LTP =

µ−1
∑

k=0

‖Qk+1 −Qk‖. (8)

Assumed that u0 = 0 and uµ = 1, the general parameter uk 
an be 
omputed through

uk+1 = uk +
‖Qk+1 −Qk‖

LTP
, k = 0, ..., µ− 2. (9)

For more details on the 
hord length method, the interested reader is addressed to [4℄.

Moreover, the optimum value of the 
ontrol points 
oordinates 
an be obtained through the

analyti
al approa
h of Ueng et al. [2℄. Let XP ,YP ,ZP ∈ R
n+1

be 
olumn ve
tors 
olle
ting the

x, y and z 
oordinates of the 
ontrol points and XQ,YQ,ZQ ∈ R
µ+1

the 
ounterparts for TPs.

Furthermore, matrix [A] ∈ R
(µ+1)×(n+1)


an be de�ned as

Ak,i = Ri,p(uk), k = 0, ..., µ+ 1, i = 0, ..., n+ 1, (10)

and matrix [B] ∈ R
(n+1)×(n+1)

as

[B] =
(
[A]T [A]

)−1
. (11)
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Therefore, the following proposition applies.

Theorem 1 For a NURBS 
urve of assigned degree p, number of 
ontrol points (n + 1), knot

ve
tor U and weights wi (i = 0, ..., n), the 
ontrol point 
oordinates minimising the 
ost fun
tion

f of problem (7) are

XP = [B][A]TXQ, YP = [B][A]TYQ, ZP = [B][A]TZQ. (12)

Proof. The proof is provided here for the 
oordinate x and 
an be easily extended to other


oordinates. Sin
e the obje
tive fun
tion f is 
onvex (in terms of 
ontrol points 
oordinates), a

ne
essary and su�
ient 
ondition for getting the minimum is

∂f

∂xl
= 0, ∀l = 0, ..., n. (13)

After few simple passages, the previous relationship 
an be written as

∑µ
k=0

[

2 (Cx(uk)− xk)
∂Cx(uk)

∂xl

]

= 0,

∑µ
k=0 [(

∑n
i=0 Ri,p(uk)xi − xk)Rl,p(uk)] = 0,

∑µ
k=0

∑n
i=0 Rl,p(uk)Ri,p(uk)xi =

∑µ
k=0 Rl,p(uk)xk, ∀l = 0, ..., n

(14)

The last relation of Eq. (14) must be satis�ed for ea
h 
ontrol point and 
an be stated in a more


ompa
t form:

[A]T [A]XP = [A]TXQ. (15)

Finally, the inversion of matrix

(
[A]T [A]

)
allows for obtaining the ve
tor XP .

It is noteworthy that matrix

(
[A]T [A]

)

ould have some almost null eigenvalue, so its inversion


ould be ill-
onditioned. In this paper, the inversion has been performed by means of Moore-

Penroseâ��s pseudo-inverse matrix [2℄, in order to over
ome this issue.

A qui
k glan
e to Eqs. (10)-(12) su�
es to dedu
e that the Cartesian 
oordinates of the


ontrol points are a�e
ted by the other parameters of the NURBS 
urve, so they are no longer

design variables but they 
an be interpreted as derived quantities. More pre
isely, matrix [A]

depends upon the NURBS blending fun
tions, hen
e its terms depend on the value of both integer

and 
ontinuous variables, i.e. m, p, Uj and wi, as well as on the uk values. As a 
onsequen
e of

the previous 
onsiderations, design variables 
an be ranged in two ve
tors ξ1 and ξ2:

• ξ1 
olle
ts the integer variables, i.e. the knot ve
tor maximum index m and the 
urve degree

p;

• ξ2 
olle
ts 
ontinuous variables, i.e. the knot ve
tor non-trivial 
omponents Uj and the

weights wi.

Mathemati
ally speaking, ve
tors ξ1 and ξ2 are represented as

ξ1 = {m, p} ∈ N
2, (16)
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ξ2 = {Up+1, . . . , Um−p−1, w0, . . . , wm−p−1} ∈ R
Nv , (17)

where

Nv = 2m− 3p− 1. (18)

(Nv + 2) is the overall number of design variables.

As previously stated, in this work, the 
urve approximation problem is still framed as an opti-

mization problem, but a more general formulation is introdu
ed. On the one hand, the obje
tive

fun
tion has been modi�ed with respe
t to Eq. (7), namely:

min
ξ1,ξ2

Φ(ξ1, ξ2) = min
ξ1,ξ2

[∑µ
k=0 ‖C(uk)−Qk‖2

L2
TP

]1/m

. (19)

In Eq. (19), the parameter 1/m appears as power of the sum of squares of Eu
lidean distan
es

divided by the square of 
hord length of the 
urve LTP , refer to Eq. (8). On the other hand, an

optimization 
onstraint on the maximum radius of 
urvature of the NURBS 
urve is introdu
ed: in

real-world engineering problems, su
h a requirement is often imposed to improve the smoothness

of the approximating 
urve. This 
onstraint 
an be stated as:

g(ξ1, ξ2) =
χmax − χadm

χadm
, (20)

with

χmax = max
u

χ(u), (21)

χ(u) =
‖C′(u) ∧C′′(u)‖

‖C′(u)‖3 . (22)

In Eq. (20), χadm is the admissible value for the 
urvature whi
h must be established a

ording

to the problem at hand. It should be noti
ed that the purpose of the 
onstraint on the maximum


urvature of the NURBS 
urve is twofold: on the one hand, it 
onstitutes a pre
ise te
hnologi
al

requirement that a�e
ts the �nal shape of the 
urve; on the other hand, it allows for de�ning a

well-posed mathemati
al problem, be
ause it limits the growth of the degree p of the blending

fun
tions during optimization.

Remark In order to understand the latter assertion, let us 
onsider a very simple parametri



urve γ in the x− y plane, namely,

x(t) = t, y(t) = tp, (23)

For this 
ase, the 
urvature χγ(t) writes

χγ(t) =
|p(p− 1)tp−2|

(
1 + p2t2(p−1)

)3/2
. (24)
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Figure 1: Trend χγmax vs p for the 
urve γ

Of 
ourse, χγ(t) depends upon the lo
al abs
issa t as well as on the 
urve degree p. The maximum

value of χγ(t) 
an be 
al
ulated for di�erent values of p. The result of su
h a 
omputation is

syntheti
ally illustrated in Fig. 1. As it 
an be dedu
ed from Fig. 1, in
reasing the degree implies

a higher value of the maximum 
urvature value for a simple polynomial 
urve as γ. Being the

NURBS 
urves de�ned through spe
ial polynomial-based blending fun
tions, intuitively it 
an

be stated that imposing a 
onstraint on the maximum 
urvature value means also limiting the

maximum 
urve degree.

Finally, the 
urve �tting problem 
an be stated in the standard form of a CNLPP of modular

systems [11℄ as follows:

min
ξ1,ξ2

Φ (ξ1, ξ2) ,

subje
t to:







g(ξ1, ξ2) ≤ 0,
ξ1−lb ≤ ξ1 ≤ ξ1−ub, ξ1 ∈ N

2,
ξ2−lb ≤ ξ2 ≤ ξ2−ub, ξ2 ∈ R

Nv .

(25)

In Eq. (25), ξi−lb and ξi−ub (i = 1, 2) represent the lower and upper bounds, respe
tively, of

the ve
tor ξi.

Remark To the best of the authors' knowledge, no analyti
al solutions are available in literature

for problem (25). This is essentially due to the following di�
ulties.

• The problem aims at optimizing both dis
rete and 
ontinuous variables: pure gradient-based

methods are automati
ally dis
arded and hybrid strategy must be 
onsidered.

• Sin
e the dimension of the 
ontinuous design variables ve
tor ξ2 depends on the dis
rete

design variables 
olle
ted in ξ1, problem (25) is stated on a domain having variable dimension,

see Eqs. (16), (17) and (18). To the best of the authors' knowledge, pure gradient-based

methods are not able to provide the solution in su
h 
ases.

• When 
onsidering the full set of design variables, both the obje
tive and the 
urvature


onstraint fun
tions be
ome non-linear and non-
onvex.

9



Sin
e the solution 
annot be provided in a 
losed form, an approximate, i.e. pseudo-optimal, solu-

tion of problem (25) 
an be found by making use of a suitable meta-heuristi
 (a geneti
 algorithm)


ombined with a 
lassi
 gradient-based method. The problem formulation (25) together with the

spe
ial features of the proposed algorithm (see se
tion 4) allows for determining a pseudo-optimal

feasible solution.

Furthermore, the unusual form of obje
tive fun
tion (19) allows the algorithm to automati
ally

determine the best 
ompromise between the number of knot ve
tor 
omponents (and impli
itly

the number of design variables) and the pre
ision of the solution. Let 
onsider Eq. (19): assume

ϕ =

∑µ
k=0 ‖C(uk)−Qk‖2

L2
TP

. During the �rst iterations, it 
ould happen either ϕ > 1 or ϕ < 1 if

the least square distan
e is greater or smaller than LTP , respe
tively. If ϕ > 1, the number of

knot ve
tor 
omponents is en
ouraged to qui
kly grow in order to minimize the overall obje
tive

fun
tion. Consequently, in the next iterations, the algorithm will tend towards a solution with

ϕ < 1. So, after a 
ertain number of iterations, the 
ase ϕ < 1 will be
ome predominant and,

from that moment, in
reasing the number of knot ve
tor 
omponents will not ne
essarily imply

better performan
es: in fa
t, in
reasing the parameter m means getting a lower value of ϕ < 1

but, meanwhile, a de
reasing exponent 1/m. Therefore, the best value of m will be determined as

a result of the 
ompromise between these two 
ontrasting e�e
ts.

4 Numeri
al Strategy

Considering the mathemati
al features of problem (25), a hybrid optimization tool 
omposed of

the new version of the GA BIANCA [13℄, interfa
ed with the MATLAB fmin
on algorithm [14℄,

has been developed, see Fig. 2.

Figure 2: Overview of the global numeri
al strategy for the 
urve �tting problem
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The GA BIANCA was already su

essfully applied to solve di�erent kinds of real-world engi-

neering problems, e.g. [15, 16, 17, 18, 19, 20℄. As shown in Fig. 2, the optimization pro
edure for

problem (25) is split in two phases. During the �rst phase, solely the GA BIANCA is utilized to

perform the solution sear
h and the full set of design variables is taken into a

ount.

BIANCA is a spe
ial GA able to deal with CNLPPs 
hara
terized by a variable number of

design variables, i.e. optimization problems of modular systems. This goal 
an be a
hieved thanks

to the original features of su
h a GA. Indeed, unlike the vast majority of GAs reported in literature

(whi
h are often 
hara
terized by a mono-
hromosome algebrai
 stru
ture), in BIANCA the infor-

mation is organized in a genome (or genotype) 
omposed of 
hromosomes whi
h are in turn made

of genes (ea
h gene 
odes a spe
i�
 design variable). When the obje
t of the optimization problem

is a modular system, ea
h 
onstitutive module is represented by a 
hromosome, while ea
h gene


omposing a 
hromosome 
odes a design variable related to the module.

In agreement with the paradigms of natural s
ien
es, individuals 
hara
terized by a di�erent num-

ber of 
hromosomes (i.e. modular stru
tures 
omposed of a di�erent number of modules) belong

to di�erent spe
ies. BIANCA has been 
on
eived for 
rossing also di�erent spe
ies, thus mak-

ing possible (and without distin
tion) the simultaneous optimization of spe
ies and of individuals.

This task 
an be attained thanks to some spe
ial geneti
 operators that have been implemented

to perform the reprodu
tion phase between individuals belonging to di�erent spe
ies, see Fig. 3.

Moreover, in BIANCA the information restrained in the population is exploited in order to allow

for a deep mixing of the individual genotype: in fa
t, all the geneti
 operators a
t on every single

gene of the individual, so allowing for a true independent evolution of ea
h design variable. For

more details on the GA BIANCA the reader is addressed to [13℄.

In this study, the improved version of the GA BIANCA has been re
oded into the MATLAB

Figure 3: The geneti
 algorithm BIANCA: intera
tions of main operators

11



environment. Even though this 
hoi
e penalizes the 
omputational time, the utilization of the

MATLAB version of the GA is easier when 
ompared to the an
ient FORTRAN version. In ad-

dition, thanks to the MATLAB stru
tured variables, the ar
hite
ture of the individual's genotype

has been enri
hed and generalized as illustrated in Fig. 4. Without loss of generality, let Nm

Figure 4: The general individual's stru
ture for the MATLAB version of BIANCA

be the number of di�erent types of modules for the problem at hand. Ea
h individual (i.e. a

point in the design spa
e) is 
hara
terized by a genome 
omposed of Nm + 1 se
tions having a

pre
ise hierar
hy. The �rst se
tion (i.e. the standard se
tion) is linked to the non-modular part

of the problem and its genotype is split in two parts: the �rst one is 
omposed of a �xed number

(nc−stand) of 
hromosomes and ea
h 
hromosome is made of ng−stand genes. The se
ond part is


omposed of only one 
hromosome having Nm genes whi
h 
an be related (or not) to the values of

some genes of the �rst part. This �rst se
tion undergoes the a
tion of the standard GA operators,

see Fig. 3. As shown in Fig. 4, ea
h gene belonging to the mono-
hromosome stru
ture of the

standard se
tion is related to the number of modules nc−mod(k) of the generi
 k-th modular se
tion,

(k = 1, , Nm). A

ordingly, ea
h one of the remaining Nm modular se
tions is 
hara
terized by a

genotype 
omposed of nc−mod(k) 
hromosomes and ng−mod(k) genes. Of 
ourse, the reprodu
tion

between spe
ies by means of the new geneti
 operators [13℄ is allowed only on the modular se
tions.

The stru
ture of the individual's genotype for problem (25) is illustrated in Fig. 5. The �rst part

of the standard se
tion is 
hara
terized by one 
hromosome 
omposed of two genes 
oding the

design variables m and p, respe
tively. The se
ond part of the standard se
tion is 
onstituted of a

single 
hromosome with two genes 
oding the number of non-trivial 
omponents of the knot ve
tor

(the number of modules of the �rst type, i.e. nc−mod(1) = m− 2p− 1) and the number of weights

(the number of modules of the se
ond type, i.e. nc−mod(2) = m− p). A

ordingly, the individual's

genome possesses two modular se
tions: the �rst one is 
omposed of m− 2p− 1 
hromosomes with

12



Figure 5: The individual's stru
ture for the 
urve �tting problem

only one gene 
oding the value of the knot ve
tor 
omponent Uj , while the se
ond one is made of

m− p 
hromosomes with a single gene 
oding the value of the weight wk in ea
h 
ontrol point.

Due to the strong non-linearity of problem (25), the aim of the geneti
 
al
ulation is to provide

a potential sub-optimal point in the design spa
e, whi
h 
onstitutes the initial guess for the sub-

sequent phase, i.e. the lo
al optimization, where the MATLAB fmin
on gradient-based algorithm

is employed to �nalize the solution sear
h. During this se
ond phase only the 
omponents of the

knot ve
tor and the weights are 
onsidered as design variables, see Fig. 2.

5 Studied Cases and Results

In this se
tion, some meaningful numeri
al examples are 
onsidered in order to prove the e�e
-

tiveness of the proposed approa
h when dealing with the problem of the 
urve �tting. The set of

geneti
 parameters tuning the behavior of the GA (for ea
h 
ase) is listed in Table 1.

Parameter Value

Number of populations (Npop) 1

Number of individuals (Nind) 250

Number of generations (Ngen) 320

Cross-over probability (pcross) 0.85

Gene mutation probability (pmut) 1/Nind

Chromosome shift probability (pshift) 0.5

Chromosome number mutation probability (pmut−chrom) (nchub
− nchlb

)/Nind

Sele
tion Operator Roulette wheel

Elitism Operator A
tive

Table 1: Setting of geneti
 parameters

In addition, the handling of optimization 
onstraints is 
arried out through the automati
 dy-

nami
 penalization (ADP) te
hnique, see [21℄. It is noteworthy that the number of both individuals

and generations are 
hosen to get Nind ×Ngen = 80000 fun
tion evaluations (as it is usual in lit-
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erature [13℄) for ea
h 
onsidered problem. Furthermore, Table 2 summarizes the design variables

together with their bounds for problem (25).

Problem plb pub mlb mub Ujlb Ujub wilb wiub

The Des
artes' folium 1 6 9 38 0 1 1 3

The four-leaf 
lover 1 8 8 67 0 1 1 3

The �ame 1 8 100 130 0 1 1 3

The tennis ball stit
hing 1 8 8 67 0 1 1 3

The paddle 
urves 1 8 9 37 0 1 1 3

Table 2: Setting of variables boundaries.

As far as 
on
erns the fmin
on optimization tool employed for the lo
al solution sear
h at

the end of the �rst step, the numeri
al algorithm 
hosen to 
arry out the 
al
ulations is the

a
tive-set method with non-linear 
onstraints. For more details on the gradient-based approa
hes

implemented into MATLAB, the reader is addressed to [14℄. The numeri
al results, for ea
h 
ase,

are 
olle
ted in Table 3 and Table 4.

Curve p n m LTP Φ (ξ1, ξ2) g(ξ1, ξ2)

Des
artes'folium 4 15 20 3.01 0.4684 −7.00× 10−2

Four-leaf 
lover 5 33 39 7.75 0.7572 −6.00× 10−4

Flame 4 109 114 284.66 0.9232 −1.42× 10−1

Tennis ball stit
hing 6 39 46 33.78 0.6235 −1.76× 10−2

Paddle - 
1 2 10 13 44.68 0.4522 −8.20× 10−3

Paddle - 
2 3 7 11 58.85 0.3979 −1.00× 10−3

Paddle - 
3 2 6 9 83.92 0.2981 −7.00× 10−4

Paddle - 
4 4 9 14 99.63 0.4455 −8.91× 10−2

Paddle - 
5 2 10 13 119.26 0.4059 −2.28× 10−2

Paddle - 
6 5 8 14 130.33 0.4775 −4.70× 10−3

Paddle - 
7 3 10 14 141.28 0.4229 −4.70× 10−2

Paddle - 
8 3 10 14 129.94 0.4697 −5.95× 10−2

Paddle - 
9 3 10 14 105.72 0.4285 −9.23× 10−2

Paddle - 
10 2 11 14 40.37 0.6360 −4.68× 10−2

Paddle - t1 2 16 19 475.36 0.5552 −1.00× 10−4

Paddle - t2 2 14 17 548.43 0.5051 −1.00× 10−4

Table 3: Geneti
 Algorithm: Numeri
al Results.

Here, it is remarked that the obje
tive fun
tion of the gradient based algorithm is provided by

Φgrad (ξ2) = L2
TPΦ (ξ1, ξ2)

m , (26)

that is the 
lassi
 obje
tive fun
tion for the 
urve �tting problem. It should be highlighted that

the 
urrent obje
tive fun
tion does not depend any more upon the dis
rete NURBS parameters:

they have been optimized through the geneti
 step and they are kept 
onstant in the gradient step.
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Curve µ+ 1 Φgrad (ξ2) daverage
Des
artes'folium 50 1.60 × 10−6 2.53× 10−5

Four-leaf 
lover 211 6.67 × 10−4 1.23× 10−4

Flame 315 7.16 × 10−1 2.69× 10−3

Tennis ball stit
hing 201 3.98 × 10−7 3.14× 10−6

Paddle - 
1 86 5.94 × 10−2 2.83× 10−3

Paddle - 
2 97 1.19 × 10−1 3.56× 10−3

Paddle - 
3 93 1.26 × 10−1 3.82× 10−3

Paddle - 
4 89 1.10 × 10−1 3.72× 10−3

Paddle - 
5 86 1.12 × 10−1 3.89× 10−3

Paddle - 
6 93 5.21 × 10−1 7.76× 10−3

Paddle - 
7 90 1.13 × 10−1 3.73× 10−3

Paddle - 
8 89 3.94 × 10−1 7.05× 10−3

Paddle - 
9 83 7.43 × 10−2 3.28× 10−3

Paddle - 
10 78 4.21× 100 2.63× 10−2

Paddle - t1 89 5.40× 100 2.61× 10−2

Paddle - t2 88 5.00× 100 2.54× 10−2

Table 4: Gradient Algorithm: Numeri
al Results.

Finally, in Table 4, the quantity daverage is de�ned as:

daverage =
Φ(ξ2)

1/2
grad

µ+ 1
, (27)

whi
h is an average distan
e between the TPs and the �tting 
urve, so daverage gives an idea of

the fairness of the method.

5.1 The Des
artes' Folium

The Des
artes' Folium is an open plane 
urve, whose parametri
 representation is

x(t) = at(t− 1), y(t) = at(t− 1)(2t− 1). (28)

The set of µ+ 1 = 50 TPs is extra
ted from Eq. (28) by setting a = 2 and it is shown in Fig.

6a. As it 
an be seen from the graphi
 results (Fig. 6b), the presen
e of the loop does not a�e
t

the �nal quality of the approximating 
urve. From Table 3, it 
an be noti
ed that, due to the new

form of the obje
tive fun
tion and to the presen
e of the 
onstraint on the maximum 
urvature,

the optimum values of p and m are automati
ally determined by the GA be
ause Eqs. (19) and

(20) 
onstitute impli
it restri
tions on both the degree of the basis fun
tions and on the number

of 
omponents of the knot ve
tor.

5.2 The Four-Leaf Clover

The Four-Leaf Clover is a plane 
losed 
urve des
ribed by the parametri
 equation

x(θ) = cos(θ)sin(2θ), y(θ) = sin(θ)sin(2θ). (29)
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Figure 6: The Des
artes' Folium

In this 
ase, µ+1 = 211 TPs have been extra
ted from the previous equation. The optimum �tting


urve is illustrated in Fig. 7b, while the related numeri
al results are listed in Table 3 and Table

4. Regarding the optimum value of p and m, the same 
onsiderations as those of example 5.1 
an

be repeated here.
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(b) Approximating 
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Figure 7: The four-leaf 
lover

5.3 The Flame

The third test 
ase is a non-parametrized plane 
losed 
urve. 315 TPs have been sampled by the

image of a �ame, see Fig. 8a. This is a very 
hallenging test 
ase be
ause of the 
ompli
ated shape

and the derivatives dis
ontinuity. Indeed, the boundaries of the two �rst design variables have been

broadened, in order to allow the 
urve to 
orre
tly evolve (see Table 2).

It must be pointed out that the 
onstraint on the 
urvature is weaker than the previous 
ases,

see Table 3: this is due, of 
ourse, to the presen
e of the 
uspids. Only for this example, the

resulting knot ve
tor and weights are provided in Appendix to highlight the e�
ien
y of the

adopted strategy: some 
omponents are marked in bold font be
ause they are very 
lose, even

the same. This fa
t re�e
ts a well known NURBS property: if a knot has a multipli
ity equal to

λ, then the 
urve is p − λ times 
ontinuously di�erentiable at the knot. As listed in Appendix,
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Figure 8: The �ame

the NURBS �tting 
urve is 
hara
terized by weights of di�erent value: in parti
ular, su
h weights

get higher values for the 
ontrol points lo
ated in the neighborhood of the 
usps of the �ame, see

Fig. 9. However, all the weights values are 
lose to the unity, whi
h means that the 
usps 
an be

43 43.5 44 44.5 45 45.5 46 46.5

30.5

31

31.5

32

32.5

33

33.5

 

 

NURBS
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TP
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Figure 9: Detail on the NURBS approximating the �ame

properly des
ribed through a smart 
hoi
e of the knot ve
tor 
omponents.

5.4 The Tennis Ball Stit
hing

The tennis ball stit
hing is a three-dimensional parametri
 
urve. It has been 
hosen in order to

provide a 3D test 
ase for the 
urve �tting problem. The parametri
 form is:

x(t) = acos(t) + bcos(3t), y(t) = asin(t)− bsin(3t), z(t) = csin(2t). (30)
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The µ+ 1 = 201 TPs are extra
ted from Eq. (30) by setting a = 2, b = 1 and c = 2
√
2. The TPs

as well as the optimum �tting 
urve are illustrated respe
tively in Fig. 10a and Fig. 10b.
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Figure 10: The tennis ball stit
hing

5.5 The Paddle

In this subse
tion, a real-world engineering problem is fa
ed. A paddle has been s
anned and all

points representing its external surfa
e are shown in Fig. 11. Hen
e, twelve subsets of TPs have

been extra
ted (see Fig. 12a): ea
h set is supposed to 
onstitute a primitive three-dimensional


urve that will be employed during the CAD re
onstru
tion of the paddle. For ea
h 
urve, a

Figure 11: Starting data set for the paddle problem

te
hnologi
al 
onstraint on the 
urvature has been 
onsidered, as shown in Table 5.

Here, the e�e
tiveness of the presented method is remarked through this real-world engineering

appli
ation, sin
e a 
ompli
ated set of s
anned points 
an be easily treated and the resulting

NURBS 
urves restrain all the ne
essary information in order to rebuild the paddle, by adding a

te
hnologi
al 
onstraint. Fig. 12b gives a global overview of the shape of the paddle primitive


urves provided by the proposed optimization pro
edure.
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Curve χadm

Des
artes'folium 7.0000

Four-leaf 
lover 6.0000

Flame 70.0000

Tennis ball stit
hing 0.5500

Paddle - 
1 0.2000

Paddle - 
2 0.2000

Paddle - 
3 0.1700

Paddle - 
4 0.9000

Paddle - 
5 0.9000

Paddle - 
6 1.0000

Paddle - 
7 0.2500

Paddle - 
8 0.9000

Paddle - 
9 0.8000

Paddle - 
10 0.5500

Paddle - t1 0.0150

Paddle - t2 0.0120

Table 5: Maximum allowed 
urvature values

5.6 Dis
ussion on the Presented Methodology

In this se
tion, some remarks inherent to the parameters tuning the behavior of the GA (to be

set by the user) are dis
ussed. A parti
ular attention is dedi
ated to the de�nition of the bounds

for the design variables, whi
h have been established a

ording to the following 
onsiderations.

Continuous parameters bounds are simple to set.

• The knot ve
tor 
omponents are de�ned between 0 and 1, so Ujlb = 0 and Ujub = 1.

• The weights of the NURBS 
urve 
an get, a priori, any real value in the range ]0,∞[. After

a preliminary 
he
k on the �rst three proposed ben
hmarks (the Des
artesâ��s folium, the

Four-Leaf Clover and the Flame problems), it was observed that the 
urve shape is a�e
ted

by the ratio wub/wlb rather than by the single value of the weight related to ea
h 
ontrol

point. Moreover, as 
learly shown in the Appendix of the paper, the weights are responsible

of minor adjustments, whi
h be
ome signi�
ant only in presen
e of singularities (as in the


ase of the Flame problem). Taking into a

ount these 
onsiderations, it has been set wlb = 1

and wub = 3.

Unlike weights, the dis
rete parameters have a major in�uen
e on the shape of the NURBS 
urve

and their bounds must be 
arefully set.

• The minimum degree is, of 
ourse, plb = 1. The maximum degree has been �xed in order

to avoid the introdu
tion of noise that 
an be
ome important when the upper bound is not

properly set. A

ordingly, the maximum degree has been set to pub = 8 for all the examples

with the ex
eption of the �rst test 
ase (the simplest one), where pub = 6.
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Figure 12: The paddle

• In order to establish lower and upper bounds for the number of the knot ve
tor 
omponents

(m + 1), the user should think about an ideal number of 
ontrol points tuning the shape

of the approximating NURBS 
urve. Indeed, this problem applies also in 
ase of standard


urve �tting methods (whi
h are not 
apable of automati
ally optimize dis
rete parameters),

where the user does not dispose of any 
riterion to 
hoose a suitable number of 
ontrol points.
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In the framework of the proposed method, the spe
ial GA utilized to perform the solution

sear
h for the 
urve �tting problem (refer to Eq. (25)) is able to automati
ally determine the

optimum number of both knot ve
tor 
omponents and degree of the basis fun
tions, thus the

related optimum number of 
ontrol points, i.e. nopt = mopt−1−popt. Of 
ourse, the bounds

on the variable m 
an be inferred a

ording to empiri
al rules (taken from pra
ti
e), utilized

to de�ne a 
riterion for setting the minimum and maximum number of 
ontrol points. In

parti
ular, the bounds on n 
an be set a

ording to the following rules:

1) usually, the number of target points (µ+1) should be, at least, three times the number

of 
ontrol points (in order to ensure redundan
y). Therefore, the average number of


ontrol points 
an be assumed equal to (µ+ 1)/3;

2) a suitable interval 
an be de�ned around this average value. In parti
ular, the maximum

number of 
ontrol points must be lower than the number of target points, whilst the

minimum one should be always greater or equal to 2. Anyway, regardless the de�nition

of the interval for the variable m, an internal 
he
k (in the GA environment) is always

performed to satisfy the 
ondition n ≥ 1, thus meaningless situations, e.g. m = 8 and

p = 7, are always dis
arded.

Sin
e the proposed hybrid algorithm is very e�
ient, it 
an be asserted that it is not important

to 
hoose the �right" narrow interval. When the shape of the 
urve is parti
ularly 
omplex and

does not let the user guess the size of the interval, a wider range 
an be set, being the GA able to

determine automati
ally the optimum value of the dis
rete parameters. Finally, it 
an be stated

that the external user has a lower impa
t in the 
ontext of the proposed approa
h when 
ompared

to 
lassi
al ones.

The previous dis
ussion on the 
hoi
e of the bounds for the number of knot ve
tor 
omponents

suggests to investigate the sensitivity of the solution to the quantity of TPs. This is an interesting

task that allows for disputing about the robustness and the e�
ien
y of the methodology. Sin
e

the amount of parameters to be optimized is high, it is natural to wonder what happens when the

number of data points (TPs) is redu
ed, i.e. when the algorithm bene�ts from less information.

However, some remarks need a spe
ial attention.

De
reasing the number of TPs has a signi�
ant impa
t on the mathemati
al nature of the 
urve

�tting problem in the form of the CNLPP (25). If the number of TPs (i.e. data points) is less than

the number of design variables, the related system of equations be
omes underdetermined and the

solution is not unique. Conversely, solving the 
urve �tting problem 
an be interpreted as �nd-

ing an approximate solution for an overdetermined system of equations. Therefore, talking about


urve �tting when the number of TPs is lower than the number of design variables is meaningless.

Indeed, in this 
ase, there is not enough information to get a unique solution for the 
urve �tting

problem.
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Usually, in reverse engineering appli
ations, the number of data points (retrieved, for instan
e,

by means of a 3D s
anner) is very high. In pra
ti
e, the size of points 
louds 
an be properly

redu
ed (in order to save memory in data ex
hange) but a 
ertain redundan
y must be guaranteed

in order to approximate the data points with a single (or multiple) CAD entity like a NURBS


urve, tuned by a suitable number of parameters.

Taking into a

ounts these aspe
ts, a sensitivity analysis to the number of TPs is provided in

the following for the Four-Leaf Clover example (Fig. 13). Solutions depi
ted in Figs. 13b-13d have

been obtained with a de
reased number of TPs with respe
t to the referen
e solution of Fig. 13a

(see se
tion 5.2) and by using the same value of maximum allowable 
urvature (χadm = 6.0000).

Two 
ases have been 
onsidered:

a) the bounds of design variables have been 
hosen a

ording to the aforementioned empiri



riteria (refer to Fig. 13b and Fig. 13
);

b) the bounds of design variables do not 
hange with respe
t to the referen
e 
ase (Fig. 13d).
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(a) (µ+ 1) = 211, mub = 67.
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(b) (µ+ 1) = 107, mub = 42.
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(
) (µ+ 1) = 54, mub = 34.
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(d) (µ+ 1) = 54, mub = 67.

Figure 13: Sensitivity to the number of TPs: approximating 
urves

As it 
an be inferred from both Fig. 13 and numeri
al results of Table 6, if the upper bound
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of m is set a

ording the proposed 
riterion, the lower is (µ + 1), the lower is the quality of the

solution: the quantity daverage in
reases and the approximating NURBS 
urve is not satisfa
tory,

in parti
ular when the number of TPs is redu
ed to 54 (Fig. 13d).

Four-Leaf Clover µ+ 1 mub m Φ (ξ1, ξ2) LTP Φgrad (ξ2) daverage
1 211 67 39 0.7572 7.7516 6.67 × 10−4 1.23× 10−4

2 107 42 28 0.7064 7.7408 1.74 × 10−3 3.91× 10−4

3 54 34 16 0.6875 7.7105 1.07 × 10−1 6.07× 10−3

4 54 67 63 0.3286 7.7105 2.45 × 10−31 9.18 × 10−18

Table 6: Sensitivity to the number of TPs - Numeri
al results

This fa
t o

urs be
ause the 
riterion for 
hoosing the bounds aims at balan
ing the number

of design variables with the number of TPs, whi
h makes sense in the 
ontext of the 
urve �tting

problem. Nevertheless, when (µ+ 1) = 54, the system be
omes undetermined. A
tually, sin
e the

solution is not unique, when the upper bound of m is in
reased (Fig. 13d) without 
onsidering

the proposed empiri
al rule, the algorithm provides an ex
ellent solution, whi
h 
an be seen as the

solution of the related interpolation problem.

Finally, handling data points is an operation that should be 
arefully assessed: some 
ru
ial infor-

mation 
ould be removed and this operation 
ould have a high impa
t on the problem de�nition

(e.g. removing the peaks of singularity in the Flame example 
an lead to misleading results).

6 Con
lusions

In this paper, a general mathemati
al formalization of the 
urve �tting problem together with an

original optimization pro
edure to perform the solution sear
h in the framework of NURBS 
urves

has been presented.

The proposed approa
h relies on the following features.

1. A new expression of the obje
tive fun
tion, together with a suitable 
onstraint on the max-

imum value of the 
urvature, has been introdu
ed. These modi�
ations imply a restri
tion

on the integer design variables de�ning the shape of the NURBS 
urve. Moreover, the prob-

lem is stated as a CNLPP in whi
h the number of unknowns is in
luded among the design

variables. Therefore, the problem of 
urve �tting is formulated in the most general 
ase

by 
onsidering as design variables both integer (the number of knots and the degree of the

blending fun
tions) and 
ontinuous (the 
omponents of the knot ve
tor and the weights)

parameters tuning the NURBS 
urve. These aspe
ts are of paramount importan
e, sin
e, in

this ba
kground, the related CNLPP is de�ned over a domain of variable dimension, thus

requiring a spe
ial optimization pro
edure to �nd a feasible solution.
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2. The non-
onvexity of the problem, together with a de�nition domain of variable dimension,

justi�es the use of non-analyti
al methods. To this purpose, the solution sear
h for the


urve �tting problem is performed by means of a hybrid optimization tool (a GA 
oupled to

a gradient-based method), of whi
h the kernel is represented by a spe
ial GA able to deal

with CNLPPs 
hara
terized by a �variable number of design variables".

3. The 
onstraint on the 
urvature is e�e
tively handled by the GA through the ADP method

iteratively and automati
ally, i.e. by exploiting the geneti
 information restrained within

the population (both feasible and infeasible individuals) at the 
urrent generation, without

the need of de�ning arbitrary penalty 
oe�
ients at the beginning of the 
al
ulation.

The e�e
tiveness of the proposed approa
h is proven through some numeri
al examples fo
using on

2D and 3D parametri
 as well as real-world engineering problems. The presented method 
an adapt

the approximating 
urve to imposed level of smoothness, set through the 
urvature 
onstraint: in

fa
t, the algorithm is 
apable of su

essfully approximate both smooth 
urves and 
urves with a

drasti
ally dis
ontinuous derivatives. The robustness of the method has been dis
ussed with respe
t

to the sensitivity to both the boundaries of the design variables and the number of initial target

points. The number of knot ve
tor 
omponents, i.e. the parameter that mainly a�e
ts the �nal

quality of the approximating 
urve, needs suitable bounds whi
h 
an properly set by 
onsidering

some pra
ti
al guidelines provided in this study.
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Appendix : Details of the NURBS Curve of the Flame Prob-

lem

The optimized Knot Ve
tor for �ame problem:

U = [0, 0, 0, 0, 0, 0.0225, 0.0259, 0.0601, 0.0644, 0.0657, 0.0727,0.0727, 0.0881,
0.0894,0.0894,0.1145, 0.1145, 0.1220, 0.1410, 0.1527,0.1527,0.1527, 0.1638,
0.1753, 0.1778, 0.1833, 0.1904, 0.1934, 0.1934,0.1934, 0.2013, 0.2137, 0.2287,
0.2354, 0.2422, 0.2627, 0.2642, 0.2850, 0.2855,0.2939,0.2944, 0.3054, 0.3327,
0.3457, 0.3535, 0.3633, 0.3692, 0.3743, 0.3750,0.3750, 0.3777, 0.3880, 0.3888,
0.3927,0.3927,0.4161, 0.4161, 0.4327, 0.4405, 0.4547, 0.4595, 0.4736, 0.5001,
0.5075, 0.5148, 0.5362,0.5364,0.5364, 0.5452, 0.5470, 0.5613, 0.5665, 0.5712,
0.5948, 0.5995, 0.6029,0.6032, 0.6054, 0.6153, 0.6191, 0.6206, 0.6310, 0.6451,
0.6505, 0.6516, 0.6829, 0.6872, 0.7094, 0.7106, 0.7309, 0.7503, 0.7614, 0.7722,
0.7859,0.7859, 0.7964, 0.8005, 0.8087, 0.8237, 0.8414, 0.8482, 0.8482, 0.8655,
0.8687, 0.8821, 0.8837, 0.9231,0.9231, 0.9446, 0.9563, 1, 1, 1, 1, 1, ].

The optimized weights ve
tor for the �ame problem:

w = [1.0029, 0.9997, 0.9992, 0.9857, 1.0179, 0.9971, 1.0009, 0.9978, 1.0109,
0.9895, 1.0040, 1.0111, 0.9769, 0.9893, 1.0297, 1.0127, 0.9786, 0.9974, 0.9847,
1.0164, 1.0162, 0.9817, 1.0005, 1.0005, 0.9965, 1.0023, 1.0000, 1.0071, 0.9898,
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1.0014, 0.9967, 0.9961, 1.0357, 0.9640, 1.0114, 1.0065, 0.9907, 0.9893, 1.0323,
0.9857, 0.9919, 0.9969, 1.0058, 0.9998, 0.9996, 0.9982, 1.0008, 1.0020, 1.0000,
1.0003, 0.9961, 0.9912, 1.0246, 0.9788, 0.9959, 1.0669, 0.9176, 1.0248, 1.0124,
0.9721, 1.0761, 0.8686, 1.0859, 0.9872, 0.9891, 1.0072, 1.0080, 1.0115, 0.9620,
1.0305, 0.9737, 1.0232, 0.9907, 1.0006, 1.0001, 1.0017, 1.0014, 0.9866, 1.0179,
0.9985, 0.9819, 1.0079, 1.0018, 1.0276, 0.9920, 0.8576, 1.1315, 1.1224, 0.8604,
0.9518, 1.0663, 1.0000, 0.9807, 1.0491, 0.9341, 0.9720, 1.0871, 0.9647, 1.0268,
0.9844, 0.9642, 1.0530, 0.9769, 0.9789, 1.0117, 1.0152, 0.9919, 0.9820, 1.0146,
1.0015, ].
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