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Abstract

In this paper, a general methodology to approximate sets of data points through
Non-Uniform Rational Basis Spline curves is provided. The proposed approach aims at
integrating and optimizing the full set of design variables (both integer and continuous)
defining the shape of the Non-Uniform Rational Basis Spline curve. To this purpose,
a new formulation of the curve fitting problem is required: it is stated in the form of a
Constrained Non-Linear Programming Problem by introducing a suitable constraint on
the curvature of the curve. In addition, the resulting optimization problem is defined
over a domain having variable dimension, wherein both the number and the value of
the design variables are optimized. To deal with this class of Constrained Non-Linear
Programming Problems, a global optimization hybrid tool has been employed. The
optimization procedure is split in two steps: firstly, an improved genetic algorithm
optimizes both the value and the number of design variables by means of a two-level
Darwinian strategy allowing the simultaneous evolution of individuals and species;
secondly, the optimum solution provided by the genetic algorithm constitutes the
initial guess for the subsequent gradient-based optimization, which aims at improving
the accuracy of the fitting curve. The effectiveness of the proposed methodology is
proven through some mathematical benchmarks as well as a real-world engineering
problem.

Keywords:
NURBS curves; Curve Fitting; Genetic Algorithms; Reverse Engineering; Modular Systems; Opti-

mization

1 Introduction

Curve fitting is a widely studied topic in informatics, geometric modelling and reverse engineering.
The goal is to find all the parameters which uniquely identify a parametric curve approximating
a set of data points, i.e. the target points (TPs). The curve fitting problem can be stated as a
classical least squares problem wherein the Euclidean distance between TPs and a set of suitable
points belonging to the curve is minimized. Standard gradient optimization methods have been
broadly employed in order to solve the curve fitting problem [1, 2, 3]. In particular, in [1] and
[3], the formulation of the objective function was modified by introducing the tangent distance
minimization method and the square distance minimization method. The most relevant contribution
of these techniques is on the improvement of the convergence rate and the stability of the solution.
Ueng et al. [2] enhance the objective function by inserting information about tangent and curvature
of the approximating curve as weighted quantities. However, weight parameters must be carefully
tuned a-priori by the designer in [2]: accordingly, their definition is problem-dependent.

Several methodologies deal with the curve fitting problem in the framework of Non-Uniform
Rational Basis Spline (NURBS). A NURBS curve is defined by the degree of the blending func-
tions, the number and the coordinates of control points, the knot vector components and the weight
values [4]. This large amount of parameters makes NURBS curves and surfaces a very versatile

and interesting tool for many mathematical and engineering applications, not only for the curve



fitting problem. Performing a curve fitting by means of a NURBS curve is particularly advan-
tageous because this geometric entity is completely CAD-compatible, i.e. its parameters can be
transferred through standard format files to CAD software: in fact, NURBS constitute one of the
milestones of CAD design and they are widely utilized for reverse engineering problems. However,
the considerable quantity of parameters defining a NURBS curve also constitutes the main draw-
back: it is very hard to properly tune all parameters defining the shape of a NURBS curve. In the
last three decades, the massive development of metaheuristic procedures has brought engineers to
apply such strategies in the framework of the curve and/or surface fitting problem. As well known,
the most significant advantages of metaheuristics are the abilities of dealing with large set of data
and of exploiting the related information to effectively explore the search space, in order to find
the global minimum. The main drawback is the high computational time. Conversely, in the case
of gradient-based strategies, the major drawbacks are related, on the one hand, to the need of an
initial guess for the set of parameters describing the curve shape and, on the other hand, to the
possibility of falling on a local minimum. To overcome the latter drawback, Li et al. [5] present
a preprocessing method, based on the discrete evaluation of the curvature, to provide a starting
Basis Spline (referred as Bspline in the following) knot vector which reflects the shape of the curve
to be approximated. Concerning the utilization of metaheuristics for solving the curve/surface
fitting problem, Limaiem et al. [6] make use of a genetic algorithm (GA) to find the optimum value
of the parameters defining the approximating curve. In [7], a particle swarm optimization (PSO)
algorithm has been employed to approximate the TPs by means of NURBS surfaces. Kang et
al. [8] use a sparse optimization to iteratively update the knot vector length and components of the
approximating BSpline. Furthermore, even if conceived for the problem of surface fitting through
NURBS surfaces, interesting suggestions are provided in [9], where some stability requirements
are imposed on the final position of control points. Recently, Garcia-Capulin et al. [10] employed
a Hierarchical GA to optimize both the number and the value of the knots of a Bspline curve.
However, the approach presented in [10] is based on the resolution of a bi-objective unconstrained
optimization problem that needs the definition of a “fictitious” objective function to economize the
number of knots, which is not related to any geometrical requirement. Moreover, the degree of the
basis functions is kept constant in [10] and the problem is not stated in the more general framework
of NURBS curves.

As it can be easily deduced from this (non-exhaustive) state of the art on curve fitting in the
mathematical framework of NURBS representation, the main limitations and drawbacks charac-

terising the vast majority of the studies on this topic are essentially two:

e the lack of a proper problem formulation (without considering arbitrary penalization coeffi-

cients, which must be defined by the user and that are problem-dependent);

e the lack of a very general numerical strategy, able to simultaneously optimize the number as

well as the value of the constitutive parameters (i.e. the design variables) defining the shape



of the NURBS curve.

To overcome the previous restrictions, in this work, an innovative approach to the curve fitting
problem is proposed. A new formulation of the mathematical problem has been developed: the
curve fitting problem is stated as a Constrained Non-Linear Programming Problem (CNLPP) by
introducing a constraint on the maximum value of the curvature.

In this study, the curve fitting problem is solved in the framework of NURBS curves. The
main idea is to keep all the parameters defining the NURBS curve as design variables in order
to state the curve fitting problem in the most general sense. Nevertheless, this fact implies some
consequences of paramount importance, constituting just as many difficulties in solving the related

CNLPP.

e When the curve fitting problem is formulated by including the number of control points and
the degree of the basis functions among the unknowns, the overall number of design variables
(i.e. the overall number of parameters defining the shape of the curve) for the problem at
hand is not fixed a-priori: hence, the resulting CNLPP is defined over a search space of

variable dimension.
e The optimization variables of the CNLPP are of different nature (continuous and discrete).

e The numerical strategy chosen to face such a problem must be able to handle design variables
of different nature and to optimize, at the same time, the dimension of the design domain

as well as the value of each constitutive parameter of the NURBS curve.

This kind of problems is referred as optimization of “modular systems" in bibliography, see [11].
Here, the numerical strategy considered for the solution search of CNLPP of modular systems is
based on an improved GA [11, 12, 13], able of dealing with optimization problems with “variable
number of design variables".

The paper is organized as follows: the general theoretical framework of NURBS curves is
briefly discussed in section 2. In section 3, the new formulation for the curve fitting problem is
introduced: the problem variables are highlighted and the objective function is carefully explained,
together with the optimization constraint. Section 4 focuses on the main features of the considered
numerical strategy, whilst the numerical results are presented and discussed in section 5. Finally,

section 6 ends the paper with some conclusive remarks and perspectives.

2 Theoretical Framework

In this section, the fundamentals of the NURBS curves theory are briefly recalled. According to

the notation introduced in [4], the parametric implicit form of a NURBS curve is:

Ofw) = 3 Rip(w)P, (1



where C(u) = {z(u),y(u), z(u)} are the Cartesian coordinates of the curve, whilst R; ,(u) is

the generic rational basis function having the form

_ Ni,p (U)U}l .
> im0 Nip(ww;

In Egs. (1) and (2), u is a dimensionless parameter defined in the range [0, 1], N; ,(u) are the basis

Rip(u) (2)

functions, recursively defined according to Bernstein polynomials, p is the maximum degree, w;
are the weights and P; = {x;,y;, 2;} the Cartesian coordinates of the control points. The set of
the (n 4 1) control points form the so-called control polygon. The blending functions N; ,(u) are

defined as

o N 0, otherwise,
u — U1 Ui+ +1 — U
Nig(u) = —— 2L N, el T (), g =1, 4
0(0) = G Nuga 1) 4 G I N (1), g = 1 (@

where U; is the i-th component of the following non-periodic non-uniform knot vector:

U=1{0,...,0,Ups1,. ... Unp_1,1,...,1}. (5)
N—— N——

p+1 ptl

It is noteworthy that the size of the knot vector is m + 1,
m=n+p+1. (6)

The knot vector is a non-decreasing sequence of real numbers that can be interpreted as a discrete
collection of values of the dimensionless parameter u splitting the curve in arcs. The components
of U are called knots and each knot can have a multiplicity A\. One basic property of a NURBS
curve is related to the continuity and differentiability of the basis function N; ,(u) at a knot: it is
p— A times continuously differentiable. Thus, increasing the degree increases the continuity, whilst
increasing the knot multiplicity decreases the continuity. It is evident that the knot vector strongly
affects the basis functions and, accordingly, the shape of a NURBS curve. For a deeper insight in

the matter, the reader is addressed to [4].

3 Mathematical Formulation of the Curve Fitting Problem

In this section, the curve fitting problem is stated as a CNLPP and it is formulated in the most gen-
eral case, i.e. by considering the full-set of design variables describing the shape of the parametric
curve.

Let us consider the classical form of the curve fitting problem, namely

min f(x), f=2[IC(ur) — Quf* (7)
k=0



In Eq. (7), (1 + 1) is the number of TPs, Q,, the generic k-th point, Q, = {Tk, 7y, Zr} are the
Cartesian coordinates of the TPs, while C(uy) = {Cy(ug),

Cy(ug), Cs(ug)} are their counterpart belonging to the parametric curve when the dimensionless
parameter u gets the value uy. In the same equation, vector x collects all the optimization variables,
i.e. the full set of parameters (of different nature) defining the shape of the curve. In the most
general case, when the parametric curve of Eq. (7) is represented in the mathematical framework

of NURBS basis functions, its shape depends upon the following parameters:

e integer parameters, i.e. the number of control points n + 1, the number of knots m + 1 and

the degree of the blending functions p;

e continuous parameters, namely the non-decreasing sequence of components of the knot vector
Uj, j € [p+1,m— p— 1], the coordinates of the control points P; = {x;, v, 2:}, ¢ € [0,n],
the weights values w;, @ € [0,n] and the set of suitable values of the dimensionless parameter

of the curve ug, k € [0, u].

Firstly, let us consider the integer parameters: Eq. (6) gives the relationship among m, p and n.
In standard approaches [1, 2, 3, 5], the maximum control point index n is fixed a-priori, while the
value of p is chosen as compromise between accuracy and noise introduction. Then, the maximum
index of the knot vector components is deduced accordingly. Unlike standard approaches, no
assumptions are made on the integer parameters of a NURBS curve in this work. In particular, m
and p are included into the vector of design variables, whilst n will be calculated according to Eq.
(6).

Secondly, let us consider the set of continuous parameters. The uj values of the curve dimen-
sionless parameters are calculated through the chord length method [4], so they are no longer design
variables. In particular, the chord length Lrp of the curve can be defined in terms of Euclidean

distance among consecutive TPs,

p—1
Lrp = Z 1Qrs1 — Qull- (8)
k=0
Assumed that up = 0 and u, = 1, the general parameter u; can be computed through
uk+lzuk+w,k=0,...,u—2. (9)
Lrp

For more details on the chord length method, the interested reader is addressed to [4].

Moreover, the optimum value of the control points coordinates can be obtained through the
analytical approach of Ueng et al. [2|. Let Xp,Yp,Zp € R*! be column vectors collecting the
x, y and z coordinates of the control points and XQ,?Q,ZQ € R#*! the counterparts for TPs.
Furthermore, matrix [A] € R#+HDX(+1) can be defined as

Api=Rip(ug), k=0,..,u0+1,i=0,...,n+1, (10)

and matrix [B] € R(HDx(n+1) a9

B] = ([A]"[A]) . (11)



Therefore, the following proposition applies.

Theorem 1 For a NURBS curve of assigned degree p, number of control points (n + 1), knot
vector U and weights w; (i = 0,...,n), the control point coordinates minimising the cost function

f of problem (7) are
Xp = [BJ[A]"Xq, Yr =[B][A]"Yq, Zp = [B][A]"Zq. (12)

Proof. The proof is provided here for the coordinate x and can be easily extended to other
coordinates. Since the objective function f is convex (in terms of control points coordinates), a

necessary and sufficient condition for getting the minimum is

of B

After few simple passages, the previous relationship can be written as

0C;
(o |2 (ot — ) 22

feo (i Rip(ug)zi — T) Rip(ug)] =0,
he 2oieo Bup(un) Ri p(un)zi = 3o Rip(un)Th, VI =0, ...;n

=0,
(14)

The last relation of Eq. (14) must be satisfied for each control point and can be stated in a more

compact form:
[A]T[A]X P = [A]"Xq. (15)

Finally, the inversion of matrix ([A]7[A]) allows for obtaining the vector Xp. [

It is noteworthy that matrix ([A]7[A]) could have some almost null eigenvalue, so its inversion
could be ill-conditioned. In this paper, the inversion has been performed by means of Moore-
PenroseaAZs pseudo-inverse matrix [2], in order to overcome this issue.

A quick glance to Egs. (10)-(12) suffices to deduce that the Cartesian coordinates of the
control points are affected by the other parameters of the NURBS curve, so they are no longer
design variables but they can be interpreted as derived quantities. More precisely, matrix [A]
depends upon the NURBS blending functions, hence its terms depend on the value of both integer
and continuous variables, i.e. m, p, U; and w;, as well as on the u; values. As a consequence of

the previous considerations, design variables can be ranged in two vectors &; and &a2:

e &7 collects the integer variables, i.e. the knot vector maximum index m and the curve degree
p;

o &> collects continuous variables, i.e. the knot vector non-trivial components U; and the

weights w;.

Mathematically speaking, vectors &1 and &2 are represented as

& = {m,p} € N?, (16)



€2 ={Upi1s, Unp1,00, -, W—p_1} € RN, (17)

where
N, =2m—3p— 1. (18)

(N, + 2) is the overall number of design variables.
As previously stated, in this work, the curve approximation problem is still framed as an opti-
mization problem, but a more general formulation is introduced. On the one hand, the objective

function has been modified with respect to Eq. (7), namely:

© C _ 291/m
min (51’ 52) — min k=0 || (;j’k) Qk”
£1.62 €162 LTP

. (19)

In Eq. (19), the parameter 1/m appears as power of the sum of squares of Euclidean distances
divided by the square of chord length of the curve Lyp, refer to Eq. (8). On the other hand, an
optimization constraint on the maximum radius of curvature of the NURBS curve is introduced: in
real-world engineering problems, such a requirement is often imposed to improve the smoothness

of the approximating curve. This constraint can be stated as:

9(&1, &g) = Ao — Xadm (20)
Xadm
with
Xmaz = mT?XX(u)a (21)
= I AC W) )

IC" (w)[|®

In Eq. (20), Xadm is the admissible value for the curvature which must be established according
to the problem at hand. It should be noticed that the purpose of the constraint on the maximum
curvature of the NURBS curve is twofold: on the one hand, it constitutes a precise technological
requirement that affects the final shape of the curve; on the other hand, it allows for defining a
well-posed mathematical problem, because it limits the growth of the degree p of the blending

functions during optimization.

Remark In order to understand the latter assertion, let us consider a very simple parametric

curve v in the = — y plane, namely,
x(t) =t, yt) =1, (23)

For this case, the curvature x-(t) writes

lp(p — 1)t72|
(1 +p2e2(-1)*/?

X~(t) = (24)
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Figure 1: Trend X~ymae vs p for the curve

Of course, x,(t) depends upon the local abscissa t as well as on the curve degree p. The maximum
value of x,(t) can be calculated for different values of p. The result of such a computation is
synthetically illustrated in Fig. 1. As it can be deduced from Fig. 1, increasing the degree implies
a higher value of the maximum curvature value for a simple polynomial curve as 7. Being the
NURBS curves defined through special polynomial-based blending functions, intuitively it can
be stated that imposing a constraint on the maximum curvature value means also limiting the

maximum curve degree.

Finally, the curve fitting problem can be stated in the standard form of a CNLPP of modular

systems [11] as follows:
in ¢
min (£1,82),
subject to:
9(&1,€2) <0,

1o <& < &—w, €1 €N
Eoip < €2 < & yp, &2 € RMv,

(25)

In Eq. (25), &—np and &;_up (¢ = 1,2) represent the lower and upper bounds, respectively, of

the vector &;.

Remark To the best of the authors’ knowledge, no analytical solutions are available in literature

for problem (25). This is essentially due to the following difficulties.

e The problem aims at optimizing both discrete and continuous variables: pure gradient-based

methods are automatically discarded and hybrid strategy must be considered.

e Since the dimension of the continuous design variables vector &5 depends on the discrete
design variables collected in &7, problem (25) is stated on a domain having variable dimension,
see Eqs. (16), (17) and (18). To the best of the authors’ knowledge, pure gradient-based

methods are not able to provide the solution in such cases.

e When considering the full set of design variables, both the objective and the curvature

constraint functions become non-linear and non-convex.



Since the solution cannot be provided in a closed form, an approximate, i.e. pseudo-optimal, solu-
tion of problem (25) can be found by making use of a suitable meta-heuristic (a genetic algorithm)
combined with a classic gradient-based method. The problem formulation (25) together with the
special features of the proposed algorithm (see section 4) allows for determining a pseudo-optimal
feasible solution.

Furthermore, the unusual form of objective function (19) allows the algorithm to automatically
determine the best compromise between the number of knot vector components (and implicitly

the number of design variables) and the precision of the solution. Let consider Eq. (19): assume

_ PheolIC(ur) — Q4
Y= 72

TP . .

the least square distance is greater or smaller than Lpp, respectively. If ¢ > 1, the number of

. During the first iterations, it could happen either ¢ > 1 or ¢ < 1 if

knot vector components is encouraged to quickly grow in order to minimize the overall objective
function. Consequently, in the next iterations, the algorithm will tend towards a solution with
@ < 1. So, after a certain number of iterations, the case ¢ < 1 will become predominant and,
from that moment, increasing the number of knot vector components will not necessarily imply
better performances: in fact, increasing the parameter m means getting a lower value of ¢ < 1
but, meanwhile, a decreasing exponent 1/m. Therefore, the best value of m will be determined as

a result of the compromise between these two contrasting effects.

4 Numerical Strategy

Considering the mathematical features of problem (25), a hybrid optimization tool composed of
the new version of the GA BIANCA [13], interfaced with the MATLAB fmincon algorithm [14],
has been developed, see Fig. 2.

GA starting
population

k=0,...m-p-1 Optimal solution
YES

Objective and constraint
functions evaluation

NURBS curve generation, C(u)

l

| Objective and constraint | |

functions evaluation

GA: genetic operations
NURBS curve generation, C(u)
i
YES Gradient-based optimisation
Uj, Wi

Figure 2: Overview of the global numerical strategy for the curve fitting problem
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The GA BIANCA was already successfully applied to solve different kinds of real-world engi-
neering problems, e.g. [15, 16, 17, 18, 19, 20]. As shown in Fig. 2, the optimization procedure for
problem (25) is split in two phases. During the first phase, solely the GA BIANCA is utilized to
perform the solution search and the full set of design variables is taken into account.

BIANCA is a special GA able to deal with CNLPPs characterized by a variable number of
design variables, i.e. optimization problems of modular systems. This goal can be achieved thanks
to the original features of such a GA. Indeed, unlike the vast majority of GAs reported in literature
(which are often characterized by a mono-chromosome algebraic structure), in BIANCA the infor-
mation is organized in a genome (or genotype) composed of chromosomes which are in turn made
of genes (each gene codes a specific design variable). When the object of the optimization problem
is a modular system, each constitutive module is represented by a chromosome, while each gene
composing a chromosome codes a design variable related to the module.

In agreement with the paradigms of natural sciences, individuals characterized by a different num-
ber of chromosomes (i.e. modular structures composed of a different number of modules) belong
to different species. BIANCA has been conceived for crossing also different species, thus mak-
ing possible (and without distinction) the simultaneous optimization of species and of individuals.
This task can be attained thanks to some special genetic operators that have been implemented
to perform the reproduction phase between individuals belonging to different species, see Fig. 3.
Moreover, in BIANCA the information restrained in the population is exploited in order to allow
for a deep mixing of the individual genotype: in fact, all the genetic operators act on every single
gene of the individual, so allowing for a true independent evolution of each design variable. For
more details on the GA BIANCA the reader is addressed to [13].

In this study, the improved version of the GA BIANCA has been recoded into the MATLAB

ADAPTATION
STARTING
POPULATION (ﬁme.ss —> SELECTION
evaluation)

_____ N
1 11 1
1 Standard GA ' | Reproduction among species (Modular part) |
: Reproduction 1 : 1

1
1 ' NEW CROSSOVER :
I [ (chromosomes shifi, multi-point crossover ]
: CROSSOVER : : & reorder operators) 1
I
1 [ 1
1 [ l I
' H NEW MUTATION !
1 i (chromosomes number mutation, gene mutation & :
I MUTATION ' ch dditi letion operators) 1
1 [ 1

NEW GENERATION

NOT

OPTIMUM
SPECIES &
INDIVIDUAL

Figure 3: The genetic algorithm BIANCA: interactions of main operators
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environment. Even though this choice penalizes the computational time, the utilization of the
MATLAB version of the GA is easier when compared to the ancient FORTRAN version. In ad-
dition, thanks to the MATLAB structured variables, the architecture of the individual’s genotype

has been enriched and generalized as illustrated in Fig. 4. Without loss of generality, let Ny,

G -
Gene 1 ene Ng—stand INDIVIDUAL

Chrom. 1 STANDARD
SECTION

Chrom. nc—stana

Ne—mod(1) | ’ Ne—mod (Npm) ’—

_____________________________________ a
5 1
1 1
INDIVIDUAL

1 Gene 1 Gene ng,_. 1
. g7mod (1) MODULAR
1 SECTIONn. 1 1
1 1

1
1 1
: Chrom. Me—mod(1) :
e D e _____ T 1

.o

/T ITTTTTTTT |
1 Gene 1
b Gene 1 -~ n INDIVIDUAL 1
1 g7modNm MODULAR !
: Chrom. 1 SECTION n. N,,, :
1 1
1 1
1 1
| Chrom. 1
1 Me—mod (Nm) :

Figure 4: The general individual’s structure for the MATLAB version of BIANCA

be the number of different types of modules for the problem at hand. Each individual (i.e. a
point in the design space) is characterized by a genome composed of N,, + 1 sections having a
precise hierarchy. The first section (i.e. the standard section) is linked to the non-modular part
of the problem and its genotype is split in two parts: the first one is composed of a fixed number
(Ne—stand) of chromosomes and each chromosome is made of ng_stang genes. The second part is
composed of only one chromosome having N,,, genes which can be related (or not) to the values of
some genes of the first part. This first section undergoes the action of the standard GA operators,
see Fig. 3. As shown in Fig. 4, each gene belonging to the mono-chromosome structure of the
standard section is related to the number of modules 1. _,,04(k) of the generic k-th modular section,
(k =1,,N,,). Accordingly, each one of the remaining N,, modular sections is characterized by a
genotype composed of 1._,,04(k) chromosomes and ny_,,0q(k) genes. Of course, the reproduction
between species by means of the new genetic operators [13] is allowed only on the modular sections.
The structure of the individual’s genotype for problem (25) is illustrated in Fig. 5. The first part
of the standard section is characterized by one chromosome composed of two genes coding the
design variables m and p, respectively. The second part of the standard section is constituted of a
single chromosome with two genes coding the number of non-trivial components of the knot vector
(the number of modules of the first type, i.e. 1. _p04(1) = m — 2p — 1) and the number of weights
(the number of modules of the second type, i.e. 1¢_pod2) = m — p). Accordingly, the individual’s

genome possesses two modular sections: the first one is composed of m — 2p — 1 chromosomes with

12
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Figure 5: The individual’s structure for the curve fitting problem

only one gene coding the value of the knot vector component Uj, while the second one is made of
m — p chromosomes with a single gene coding the value of the weight wy in each control point.

Due to the strong non-linearity of problem (25), the aim of the genetic calculation is to provide
a potential sub-optimal point in the design space, which constitutes the initial guess for the sub-
sequent phase, i.e. the local optimization, where the MATLAB fmincon gradient-based algorithm
is employed to finalize the solution search. During this second phase only the components of the

knot vector and the weights are considered as design variables, see Fig. 2.

5 Studied Cases and Results

In this section, some meaningful numerical examples are considered in order to prove the effec-
tiveness of the proposed approach when dealing with the problem of the curve fitting. The set of

genetic parameters tuning the behavior of the GA (for each case) is listed in Table 1.

| Parameter ‘ Value
Number of populations (Npep) 1
Number of individuals (Nj,q) 250
Number of generations (Ngep) 320
Cross-over probability (peross) 0.85
Gene mutation probability (pput) 1/Ning
Chromosome shift probability (pspife) 0.5
Chromosome number mutation probability (Dmut—chrom) | (Nehy, — Nehyy)/Nind
Selection Operator Roulette wheel
Elitism Operator Active

Table 1: Setting of genetic parameters

In addition, the handling of optimization constraints is carried out through the automatic dy-
namic penalization (ADP) technique, see [21]. It is noteworthy that the number of both individuals

and generations are chosen to get Nipq X Ngen = 80000 function evaluations (as it is usual in lit-
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erature [13]) for each considered problem. Furthermore, Table 2 summarizes the design variables

together with their bounds for problem (25).

Problem P | Pub | Mup | mun | Ui | Ujub | Wap | Wiwp
The Descartes’ folium 1 6 9 38 0 1 1 3
The four-leaf clover 1 8 8 67 0 1 1 3
The flame 1 8 | 100 | 130 0 1 1 3
The tennis ball stitching | 1 8 8 67 0 1 1 3
The paddle curves 1 8 9 37 0 1 1 3

Table 2: Setting of variables boundaries.

As far as concerns the fmincon optimization tool employed for the local solution search at
the end of the first step, the numerical algorithm chosen to carry out the calculations is the
active-set method with non-linear constraints. For more details on the gradient-based approaches
implemented into MATLAB, the reader is addressed to [14]. The numerical results, for each case,

are collected in Table 3 and Table 4.

Curve p| n | m | Lrp | ®(&1,82) 9(&1,&2)

Descartes’folium 4115 | 20 | 3.01 0.4684 | —7.00 x 1072
Four-leaf clover 51 33 39 7.75 0.7572 —6.00 x 10~*
Flame 41109 | 114 | 284.66 | 0.9232 | —1.42 x 107!
Tennis ball stitching | 6 | 39 | 46 | 33.78 0.6235 —1.76 x 1072
Paddle - c1 21 10 | 13 | 4468 | 0.4522 | —8.20 x 1073
Paddle - c2 31 7 | 11 | 5885 | 0.3979 | —1.00 x 103
Paddle - c3 2] 6 9 | 83.92 0.2981 | —7.00 x 1074
Paddle - c4 41 9 | 14 | 99.63 0.4455 | —8.91 x 1072
Paddle - c5 21 10 | 13 [119.26 | 0.4059 | —2.28 x 102
Paddle - c6 51 8 | 14 [130.33 ] 04775 | —4.70 x 1073
Paddle - c7 3110 | 14 | 141.28 | 0.4229 | —4.70 x 102
Paddle - c8 3110 | 14 12994 | 0.4697 | —5.95 x 1072
Paddle - ¢9 31 10 | 14 | 10572 | 0.4285 | —9.23 x 1072
Paddle - c10 2 11 | 14 | 40.37 | 0.6360 | —4.68 x 1072
Paddle - t1 21 16 | 19 | 47536 | 0.5552 | —1.00 x 10~
Paddle - t2 2 14 | 17 | 54843 | 0.5051 | —1.00 x 10~ %

Table 3: Genetic Algorithm: Numerical Results.

Here, it is remarked that the objective function of the gradient based algorithm is provided by

Dyraq (&2) = L5 p® (&1,€2)™ . (26)

that is the classic objective function for the curve fitting problem. It should be highlighted that
the current objective function does not depend any more upon the discrete NURBS parameters:

they have been optimized through the genetic step and they are kept constant in the gradient step.
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Curve M+ 1 q)grad (52) daverage

Descartes’folium 50 | 1.60 x 107% | 2.53 x 10~°
Four-leaf clover 211 | 6.67 x 107* | 1.23 x 1072
Flame 315 | 7.16 x 107! | 2.69 x 1073
Tennis ball stitching | 201 | 3.98 x 1077 | 3.14 x 107°
Paddle - c1 86 | 5.94x1072]283x1073
Paddle - c2 97 [1.19x10° '] 3.56 x 1073
Paddle - ¢3 93 [1.26x10°1]382x1073
Paddle - c4 89 [1.10x 10t |3.712x 1073
Paddle - ¢5 86 | 1.12x10° 1| 3.89 x 1073
Paddle - c6 93 | 521 x1071 | 7.76 x 1073
Paddle - ¢7 90 | 1.13x107'[3.73x1073
Paddle - c8 89 |3.94x1071]7.05x1073
Paddle - ¢9 83 | 743 x1072]3.28x1073
Paddle - c10 78 4.21 x 109 | 2.63 x 1072
Paddle - t1 89 5.40 x 10° | 2.61 x 1072
Paddle - t2 88 5.00 x 107 | 2.54 x 1072

Table 4: Gradient Algorithm: Numerical Results.

Finally, in Table 4, the quantity dqyerage is defined as:

o 1/2
daverage = Ma (27)
pw+1

which is an average distance between the TPs and the fitting curve, so dqverage gives an idea of

the fairness of the method.

5.1 The Descartes’ Folium

The Descartes’ Folium is an open plane curve, whose parametric representation is

z(t) =at(t — 1), yt) = at(t — 1)(2t — 1). (28)

The set of p+ 1 = 50 TPs is extracted from Eq. (28) by setting a = 2 and it is shown in Fig.
6a. As it can be seen from the graphic results (Fig. 6b), the presence of the loop does not affect
the final quality of the approximating curve. From Table 3, it can be noticed that, due to the new
form of the objective function and to the presence of the constraint on the maximum curvature,
the optimum values of p and m are automatically determined by the GA because Eqgs. (19) and
(20) constitute implicit restrictions on both the degree of the basis functions and on the number

of components of the knot vector.

5.2 The Four-Leaf Clover

The Four-Leaf Clover is a plane closed curve described by the parametric equation
x(0) = cos(0)sin(20), y(0) = sin(0)sin(26). (29)
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Figure 6: The Descartes’ Folium

In this case, u+1 = 211 TPs have been extracted from the previous equation. The optimum fitting
curve is illustrated in Fig. 7b, while the related numerical results are listed in Table 3 and Table
4. Regarding the optimum value of p and m, the same considerations as those of example 5.1 can

be repeated here.
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Figure 7: The four-leaf clover

5.3 The Flame

The third test case is a non-parametrized plane closed curve. 315 TPs have been sampled by the
image of a flame, see Fig. 8a. This is a very challenging test case because of the complicated shape
and the derivatives discontinuity. Indeed, the boundaries of the two first design variables have been
broadened, in order to allow the curve to correctly evolve (see Table 2).

It must be pointed out that the constraint on the curvature is weaker than the previous cases,
see Table 3: this is due, of course, to the presence of the cuspids. Only for this example, the
resulting knot vector and weights are provided in Appendix to highlight the efficiency of the
adopted strategy: some components are marked in bold font because they are very close, even
the same. This fact reflects a well known NURBS property: if a knot has a multiplicity equal to
A, then the curve is p — X\ times continuously differentiable at the knot. As listed in Appendix,
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Figure 8: The flame

the NURBS fitting curve is characterized by weights of different value: in particular, such weights

get higher values for the control points located in the neighborhood of the cusps of the flame, see

Fig. 9. However, all the weights values are close to the unity, which means that the cusps can be
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Figure 9: Detail on the NURBS approximating the flame

properly described through a smart choice of the knot vector components.

5.4 The Tennis Ball Stitching

The tennis ball stitching is a three-dimensional parametric curve. It has been chosen in order to

provide a 3D test case for the curve fitting problem. The parametric form is:

x(t) = acos(t) + bcos(3t), y(t) = asin(t) — bsin(3t), z(t) = csin(2t). (30)
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The p + 1 = 201 TPs are extracted from Eq. (30) by setting @ = 2, b = 1 and ¢ = 2v/2. The TPs

as well as the optimum fitting curve are illustrated respectively in Fig. 10a and Fig. 10b.

*  target points
approx. curve
O control points

(a) Target points. (b) Approzimating curve.

Figure 10: The tennis ball stitching

5.5 The Paddle

In this subsection, a real-world engineering problem is faced. A paddle has been scanned and all
points representing its external surface are shown in Fig. 11. Hence, twelve subsets of TPs have
been extracted (see Fig. 12a): each set is supposed to constitute a primitive three-dimensional

curve that will be employed during the CAD reconstruction of the paddle. For each curve, a

Figure 11: Starting data set for the paddle problem

technological constraint on the curvature has been considered, as shown in Table 5.

Here, the effectiveness of the presented method is remarked through this real-world engineering
application, since a complicated set of scanned points can be easily treated and the resulting
NURBS curves restrain all the necessary information in order to rebuild the paddle, by adding a
technological constraint. Fig. 12b gives a global overview of the shape of the paddle primitive

curves provided by the proposed optimization procedure.
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Curve Xadm

Descartes’folium 7.0000
Four-leaf clover 6.0000
Flame 70.0000
Tennis ball stitching | 0.5500
Paddle - c1 0.2000
Paddle - c2 0.2000
Paddle - ¢3 0.1700
Paddle - c4 0.9000
Paddle - ¢5 0.9000
Paddle - c6 1.0000
Paddle - c7 0.2500
Paddle - c8 0.9000
Paddle - ¢9 0.8000
Paddle - c10 0.5500
Paddle - t1 0.0150
Paddle - t2 0.0120

Table 5: Maximum allowed curvature values

5.6 Discussion on the Presented Methodology

In this section, some remarks inherent to the parameters tuning the behavior of the GA (to be
set by the user) are discussed. A particular attention is dedicated to the definition of the bounds
for the design variables, which have been established according to the following considerations.

Continuous parameters bounds are simple to set.
e The knot vector components are defined between 0 and 1, so Uj;p = 0 and Ujyp, = 1.

e The weights of the NURBS curve can get, a priori, any real value in the range |0, co[. After
a preliminary check on the first three proposed benchmarks (the DescartesaAZs folium, the
Four-Leaf Clover and the Flame problems), it was observed that the curve shape is affected
by the ratio wy,/wy rather than by the single value of the weight related to each control
point. Moreover, as clearly shown in the Appendix of the paper, the weights are responsible
of minor adjustments, which become significant only in presence of singularities (as in the
case of the Flame problem). Taking into account these considerations, it has been set wy, = 1

and wyp = 3.

Unlike weights, the discrete parameters have a major influence on the shape of the NURBS curve

and their bounds must be carefully set.

e The minimum degree is, of course, pj, = 1. The maximum degree has been fixed in order
to avoid the introduction of noise that can become important when the upper bound is not
properly set. Accordingly, the maximum degree has been set to p,, = 8 for all the examples

with the exception of the first test case (the simplest one), where p,;, = 6.

19



-450

g c3 g d -500
- L -450
S . 1 Y , ‘ -400
330~ Py W ult ‘
-340— L ' -350
-350 ' = :
2 -300
-550 500 ’
-450 =250

(b) The resulting curves.

Figure 12: The paddle

e In order to establish lower and upper bounds for the number of the knot vector components
(m + 1), the user should think about an ideal number of control points tuning the shape
of the approximating NURBS curve. Indeed, this problem applies also in case of standard
curve fitting methods (which are not capable of automatically optimize discrete parameters),

where the user does not dispose of any criterion to choose a suitable number of control points.
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In the framework of the proposed method, the special GA utilized to perform the solution
search for the curve fitting problem (refer to Eq. (25)) is able to automatically determine the
optimum number of both knot vector components and degree of the basis functions, thus the
related optimum number of control points, i.e. nopr = Mopt — 1 — pope. Of course, the bounds
on the variable m can be inferred according to empirical rules (taken from practice), utilized
to define a criterion for setting the minimum and maximum number of control points. In

particular, the bounds on n can be set according to the following rules:

1) usually, the number of target points (x4 1) should be, at least, three times the number
of control points (in order to ensure redundancy). Therefore, the average number of

control points can be assumed equal to (u+ 1)/3;

2) asuitable interval can be defined around this average value. In particular, the maximum
number of control points must be lower than the number of target points, whilst the
minimum one should be always greater or equal to 2. Anyway, regardless the definition
of the interval for the variable m, an internal check (in the GA environment) is always
performed to satisfy the condition n > 1, thus meaningless situations, e.g. m = 8 and

p =17, are always discarded.

Since the proposed hybrid algorithm is very efficient, it can be asserted that it is not important
to choose the “right" narrow interval. When the shape of the curve is particularly complex and
does not let the user guess the size of the interval, a wider range can be set, being the GA able to
determine automatically the optimum value of the discrete parameters. Finally, it can be stated
that the external user has a lower impact in the context of the proposed approach when compared
to classical ones.

The previous discussion on the choice of the bounds for the number of knot vector components
suggests to investigate the sensitivity of the solution to the quantity of TPs. This is an interesting
task that allows for disputing about the robustness and the efficiency of the methodology. Since
the amount of parameters to be optimized is high, it is natural to wonder what happens when the
number of data points (TPs) is reduced, i.e. when the algorithm benefits from less information.

However, some remarks need a special attention.

Decreasing the number of TPs has a significant impact on the mathematical nature of the curve
fitting problem in the form of the CNLPP (25). If the number of TPs (i.e. data points) is less than
the number of design variables, the related system of equations becomes underdetermined and the
solution is not unique. Conversely, solving the curve fitting problem can be interpreted as find-
ing an approximate solution for an overdetermined system of equations. Therefore, talking about
curve fitting when the number of TPs is lower than the number of design variables is meaningless.
Indeed, in this case, there is not enough information to get a unique solution for the curve fitting

problem.
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Usually, in reverse engineering applications, the number of data points (retrieved, for instance,
by means of a 3D scanner) is very high. In practice, the size of points clouds can be properly
reduced (in order to save memory in data exchange) but a certain redundancy must be guaranteed
in order to approximate the data points with a single (or multiple) CAD entity like a NURBS

curve, tuned by a suitable number of parameters.

Taking into accounts these aspects, a sensitivity analysis to the number of TPs is provided in
the following for the Four-Leaf Clover example (Fig. 13). Solutions depicted in Figs. 13b-13d have
been obtained with a decreased number of TPs with respect to the reference solution of Fig. 13a
(see section 5.2) and by using the same value of maximum allowable curvature (Xqam = 6.0000).

Two cases have been considered:

a) the bounds of design variables have been chosen according to the aforementioned empiric

criteria (refer to Fig. 13b and Fig. 13c);

b) the bounds of design variables do not change with respect to the reference case (Fig. 13d).
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Figure 13: Sensitivity to the number of TPs: approximating curves

As it can be inferred from both Fig. 13 and numerical results of Table 6, if the upper bound
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of m is set according the proposed criterion, the lower is (1 4 1), the lower is the quality of the
solution: the quantity dgyerage increases and the approximating NURBS curve is not satisfactory,

in particular when the number of TPs is reduced to 54 (Fig. 13d).

Four-Leaf Clover H+ 1 Myp | T ¢ (El7 52) LTP q)grad (52) d(werage
1 211 | 67 [ 39| 0.7572 | 7.7516 | 6.67 x 10~* | 1.23 x 10~%
2 107 | 42 |28 ] 0.7064 | 7.7408 | 1.74 x 1072 | 3.91 x 10~
3 54 34 16| 06875 | 7.7105 | 1.07 x 10~ | 6.07 x 1073
4 54 67 | 63| 0.3286 | 7.7105 | 2.45 x 10731 | 9.18 x 1018

Table 6: Sensitivity to the number of TPs - Numerical results

This fact occurs because the criterion for choosing the bounds aims at balancing the number
of design variables with the number of TPs, which makes sense in the context of the curve fitting
problem. Nevertheless, when (1 + 1) = 54, the system becomes undetermined. Actually, since the
solution is not unique, when the upper bound of m is increased (Fig. 13d) without considering
the proposed empirical rule, the algorithm provides an excellent solution, which can be seen as the

solution of the related interpolation problem.

Finally, handling data points is an operation that should be carefully assessed: some crucial infor-
mation could be removed and this operation could have a high impact on the problem definition

(e.g. removing the peaks of singularity in the Flame example can lead to misleading results).

6 Conclusions

In this paper, a general mathematical formalization of the curve fitting problem together with an
original optimization procedure to perform the solution search in the framework of NURBS curves

has been presented.

The proposed approach relies on the following features.

1. A new expression of the objective function, together with a suitable constraint on the max-
imum value of the curvature, has been introduced. These modifications imply a restriction
on the integer design variables defining the shape of the NURBS curve. Moreover, the prob-
lem is stated as a CNLPP in which the number of unknowns is included among the design
variables. Therefore, the problem of curve fitting is formulated in the most general case
by considering as design variables both integer (the number of knots and the degree of the
blending functions) and continuous (the components of the knot vector and the weights)
parameters tuning the NURBS curve. These aspects are of paramount importance, since, in
this background, the related CNLPP is defined over a domain of variable dimension, thus

requiring a special optimization procedure to find a feasible solution.
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2. The non-convexity of the problem, together with a definition domain of variable dimension,
justifies the use of non-analytical methods. To this purpose, the solution search for the
curve fitting problem is performed by means of a hybrid optimization tool (a GA coupled to
a gradient-based method), of which the kernel is represented by a special GA able to deal

with CNLPPs characterized by a “variable number of design variables".

3. The constraint on the curvature is effectively handled by the GA through the ADP method
iteratively and automatically, i.e. by exploiting the genetic information restrained within
the population (both feasible and infeasible individuals) at the current generation, without

the need of defining arbitrary penalty coefficients at the beginning of the calculation.

The effectiveness of the proposed approach is proven through some numerical examples focusing on
2D and 3D parametric as well as real-world engineering problems. The presented method can adapt
the approximating curve to imposed level of smoothness, set through the curvature constraint: in
fact, the algorithm is capable of successfully approximate both smooth curves and curves with a
drastically discontinuous derivatives. The robustness of the method has been discussed with respect
to the sensitivity to both the boundaries of the design variables and the number of initial target
points. The number of knot vector components, i.e. the parameter that mainly affects the final
quality of the approximating curve, needs suitable bounds which can properly set by considering

some practical guidelines provided in this study.
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Appendix : Details of the NURBS Curve of the Flame Prob-
lem

The optimized Knot Vector for flame problem:

U = [0,0,0,0,0,0.0225, 0.0259, 0.0601, 0.0644, 0.0657, 0.0727, 0.0727, 0.0881,
0.0894,0.0894,0.1145,0.1145,0.1220,0.1410, 0.1527, 0.1527,0.1527, 0.1638,
0.1753,0.1778, 0.1833,0.1904, 0.1934, 0.1934, 0.1934, 0.2013, 0.2137, 0.2287,
0.2354,0.2422, 0.2627, 0.2642, 0.2850, 0.2855, 0.2939, 0.2944, 0.3054, 0.3327,
0.3457,0.3535, 0.3633, 0.3692, 0.3743, 0.3750, 0.3750, 0.3777, 0.3880, 0.3838,
0.3927,0.3927,0.4161,0.4161, 0.4327, 0.4405, 0.4547, 0.4595, 0.4736, 0.5001,
0.5075,0.5148, 0.5362, 0.5364, 0.5364, 0.5452, 0.5470, 0.5613, 0.5665, 0.5712,
0.5948, 0.5995, 0.6029, 0.6032, 0.6054, 0.6153, 0.6191, 0.6206, 0.6310, 0.6451,
0.6505,0.6516, 0.6829, 0.6872, 0.7094, 0.7106, 0.7309, 0.7503, 0.7614, 0.7722,
0.7859,0.7859,0.7964, 0.8005, 0.8087, 0.8237, 0.8414, 0.8482, 0.8482, 0.8655,
0.8687, 0.8821, 0.8837,0.9231,0.9231,0.9446,0.9563,1,1,1,1,1,].

The optimized weights vector for the flame problem:

w = [1.0029, 0.9997, 0.9992, 0.9857, 1.0179, 0.9971, 1.0009, 0.9978, 1.0109,
0.9895, 1.0040, 1.0111, 0.9769, 0.9893, 1.0297, 1.0127, 0.9786, 0.9974, 0.9847,
1.0164, 1.0162, 0.9817, 1.0005, 1.0005, 0.9965, 1.0023, 1.0000, 1.0071, 0.9898,
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1.0014, 0.9967, 0.9961, 1.0357, 0.9640, 1.0114, 1.0065, 0.9907, 0.9893, 1.0323,
0.9857, 0.9919, 0.9969, 1.0058, 0.9998, 0.9996, 0.9982, 1.0008, 1.0020, 1.0000,
1.0003,0.9961, 0.9912, 1.0246, 0.9788, 0.9959, 1.0669, 0.9176, 1.0248, 1.0124,
0.9721, 1.0761, 0.8686, 1.0859, 0.9872, 0.9891, 1.0072, 1.0080, 1.0115, 0.9620,
1.0305,0.9737, 1.0232, 0.9907, 1.0006, 1.0001, 1.0017, 1.0014, 0.9866, 1.0179,
0.9985, 0.9819, 1.0079, 1.0018, 1.0276, 0.9920, 0.8576, 1.1315, 1.1224, 0.8604,
0.9518, 1.0663, 1.0000, 0.9807, 1.0491, 0.9341, 0.9720, 1.0871, 0.9647, 1.0268,
0.9844, 0.9642, 1.0530, 0.9769, 0.9789, 1.0117, 1.0152, 0.9919, 0.9820, 1.0146,
1.0015, 1.
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