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Abstract In view of the nature of pursuing profit, a selfish coefficient function is
employed to describe the degrees of selfishness of players in different coalitions, which
is the desired rate of return to the worth of coalitions. This function brings in the con-
cept of individual expected reward to every player. Built on different selfish coefficient
functions, the family of ideal values can be obtained by minimizing deviations from
the individual expected rewards. Then, we show the relationships between the family
of ideal values and two other classical families of values: the procedural values and the
least square values. For any selfish coefficient function, the corresponding ideal value
is characterized by efficiency, linearity, an equal-expectation player property and a nul-
lifying player punishment property, and also interpreted by a dynamic process. As two
dual cases in the family of ideal values, the center of gravity of imputation set value and
the equal allocation of nonseparable costs value are raised from new axiomatic angles.
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1 Introduction

In the theory of cooperative games with transferable utility, the Shapley value [1] is the
most eminent (single-valued) solution. It assigns to every player its expected marginal
contribution assuming that all possible orders of entrance of the players occur with
equal probability. For every player, the Banzhaf value [2] assumes that every coalition
without this player has equal probability to be the coalition, that is present when
the player enters. Under this assumption, it gives every player its expected marginal
contribution. Both values determine the payoff distribution depending on the marginal
contributions of the players. Deegan and Packel [3] switch perspectives and determine
the payoff for a player by considering the worths of coalitions the player belongs to.
They put forward the Deegan–Packel (DP) value, which provides for every player the
sum of the per capita worth of each coalition the player belongs to.

TheDP value is not efficient. Even though the DP value opens up a new perspective,
it ignores the possibility of coalition formation and the selfishness of the players. The
social selfish coefficient is established by Wang et al. [4] to offer a new interpretation
for the egalitarian Shapley value with an underlying procedure of sharing marginal
contributions to coalitions formed by players joining in random order. To pursue
more profit, the players assemble to form ‘the grand’ coalition. When players join a
coalition, it is appropriate for them to ask a part of payoff from the coalition. The
DP value divides the worth equally among the players in the coalition. We assume
that every player wants a specific share of the worth of every coalition it belongs
to. A so-called selfish coefficient function is used to describe the players’ selfishness
in different coalitions, i.e., the shares they request from every coalitions worth. The
individual expected reward is the player’s expected payoff over all coalitions the player
may take part in, assuming these coalitions occur with equal probability.

Given a game, we are usually interested to know how the fruits of cooperation are
shared among the players. In other words, we are looking for an allocation rule, satis-
fying a list of requirements, the axioms, that attribute payments to players in the game.
One basic requirement is that all players together have and can only distribute theworth
of the grand coalition consisting of all players. In consideration of this requirement,
assigning to every player its individual expected reward is usually unattainable.

Yet another approach to allocate payoffs is the basis of the nucleolus (Schmeidler
[5]) and prenucleolus (Sobolev [6]) which are both the outcome of a lexicographic
minimization procedure over the excess vector that can be associated with any coali-
tion. Ruiz et al. [7–9] introduce optimality theory to allocation in cooperative games.
In order to look for an allocation in which all the excesses are similar, according to
an egalitarian philosophy, Ruiz et al. [7] put forward the least square prenucleolus
and the least square nucleolus by choosing the payoff vector which minimizes the
variance of the excesses of the coalitions. Subsequently, Ruiz et al. [8,9] extend the
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definition to the family of least square values by minimizing the weighted variance
and to the family of individually rational least square values with adding the individ-
ual rationality constraint. Different from considering the excess vector of coalitions,
Nguyen [10] considers the core allocation that is closest to the Shapley value, as the
most fair core allocation. In the underlying paper, the optimality problem, minimiz-
ing the deviations from the individual expected rewards, will be the main pathway to
define new allocation methods, resulting in what we call the family of ideal values,
by choosing the allocations that satisfy this optimization theory principle for different
selfish coefficient functions.

For any efficient, symmetric and linear value, Ruiz et al. [8] give a special convey
to characterize its payoff vector with a certain sequence of coefficients. Driessen [11]
presents another equivalent formula, which reveals the explicit relationship between
the Shapley value and any efficient, symmetric, and linear value. Assuming that the
players arrive in the grand coalition in a random order,Malawski [12] introduces a new
notion of “procedural” value for cooperative TU games by redefining the distributive
method of the marginal contribution of every player. To further understand the family
of ideal values, our work shows a new equivalent statement for efficient, symmetric
and linear values. The family of least square values and the “procedural” values are
both special subsets of the family of ideal values.

There are several approaches to justify a value for TU games. Two approaches
are axiomatization and providing a dynamic process. An axiomatization gives a set of
axioms that are satisfied by only one solution. For any selfish functionm, them-equal-
expectation player property and the nullifying player m-punishment property are used
to axiomatically characterize the m-ideal value. A dynamic process for a value leads
the players to that value, starting from an arbitrary efficient payoff vector. Hwang et
al. [13] propose a dynamic process leading to the Shapley value based on a modified
version of Hamiache’s notion of an associated game. Later, Hwang et al. [14] adopt
excess functions to propose a dynamic process for the efficient Banzhaf–Owen index.
Following the steps of Hwang, we offer a dynamic process for the family of ideal
values with respect to a new complaint function.

After providing general results on axiomatization and a dynamic process for the
ideal values, we look more close at two special ideal values. TheCIS value, defined by
Driessen and Funaki [15], assigns to every player its individual worth and distributes
the remainder of the worth of the grand coalition equally among all players. The EANS
value, introduced by Moulin [16], is the dual of the CIS value. Using a reduced game
consistency, van den Brink and Funaki [17] provide characterizations for a class of
equal surplus sharing solutions including the CIS value and EANS value. Though
Hamiache [18] initially proposes the associated consistency with respect to a specific
associated game,Hwang [19,20] andXu et al. [21,22] apply the associated consistency
to the two values by modifying the construction of associated game. Xu et al. [23] also
provide a bidding mechanism as the noncooperative interpretation to the CIS value.
The underlying work will provide characterizations that are based on the individual
expected reward for the CIS value and the EANS value.

The paper is organized as follows. Section 2 recalls some preliminaries on coop-
erative game theory. Section 3 gives the definition of the family of ideal values and
compares it with two other classical families of values: the procedural values and the
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least square values. Section 4 introduces the axiomatization and dynamic process to
characterize the ideal values. Section 5 focuses on the CIS value and the EANS value.
Section 6 concludes and develops some suggestions for future research.

2 Preliminaries: Values for Cooperative Games

A cooperative game with transferable utility (TU) is a pair 〈N , v〉, where N is the
finite set of n players and v : 2N → R is the characteristic function assigning to each
coalition S ∈ 2N\{∅} the worth v(S), with the convention that v(∅) = 0. For each
coalition S, the real number v(S) represents the reward that coalition S can guarantee
by itself without the cooperation of the other players. The size of the player set S is
denoted by s. We denote by GN the game space consisting of all these TU games with
player set N .

In this context, any x ∈ R
N will be called a payoff vector, and for any coalition

S, x(S) = ∑
i∈S xi . A payoff vector x is said to be efficient or a preimputation if

x(N ) = v(N ). The set of preimputations of a game 〈N , v〉 is denoted I (N , v) =
{x ∈ R

N : x(N ) = v(N )}. Formally, a value on GN is a function φ that assigns a
payoff vector φ(N , v) = (φi (N , v))i∈N ∈ R

N to every game 〈N , v〉 ∈ GN . The value
φi (N , v) of player i represents an assessment by i of his or her gains for participating
in the game 〈N , v〉.

The Shapley value [1] is the solution that assigns to every player in any game its
expected marginal contribution assuming that all possible orders of entrance of the
players to the grand coalition occur with equal probability,

Shi (N , v) =
∑

S⊆N ,S�i

(n − s)!(s − 1)!
n!

(
v(S) − v(S\{i})), for all i ∈ N .

The Banzhaf value [2] assigns to every player in any game its expected marginal
contribution assuming that every coalition not containing this player, is equally likely
to occur,

Bai (N , v) = 1

2n−1

∑

S⊆N ,S�i

(
v(S) − v(S\{i})), for all i ∈ N .

As an alternative to the player’s marginal contributions to coalitions, the assessment
of player’s gains can also be determined by the worths of the coalitions they belong
to. TheDeegan–Packel (DP)-value [3] assumes that all coalitions are equally likely to
form, and players in a coalition divide the payoff (or the loss) equally. For any game
〈N , v〉 ∈ GN ,

DPi (N , v) =
∑

S⊆N ,S�i

v(S)

s
, for all i ∈ N .

For any game 〈N , v〉 ∈ GN , two players i, j ∈ N are symmetric if, for every
coalition S ⊆ N\{i, j}, v(S ∪ {i}) = v(S ∪ { j}). A game 〈N , v〉 ∈ GN is inessential,
if for all S ⊆ N , it holds that v(S) = ∑

i∈S v({i}). Denote by IN the linear space of
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all inessential games with player set N . A game 〈N , v〉 ∈ GN is monotonic, if for all
T ⊆ S ⊆ N , it holds that v(T ) ≤ v(S). Let φ : GN → R

N be a value. We give the
following axioms for a value φ,

– Efficiency For any game 〈N , v〉 ∈ GN ,
∑

i∈N φi (N , v) = v(N ).
– Symmetry (or, equal treatment property) For any game 〈N , v〉 ∈ GN , if players
i, j ∈ N are symmetric, then φi (N , v) = φ j (N , v).

– Linearity For any game 〈N , v〉, 〈N , w〉 ∈ GN and a, b ∈ R, φ(N , av + bw) =
aφ(N , v)+bφ(N , w), where av+bw is given by (av+bw)(S) = av(S)+bw(S),
for all S ⊆ N .

– Inessential game property For any inessential game 〈N , v〉 ∈ IN , the value satis-
fies φi (N , v) = v({i}) for all i ∈ N .

– Weak monotonicity For any monotonic game 〈N , v〉 ∈ GN , the value satisfies
φi (N , v) ≥ 0, for all i ∈ N .

– Coalitional monotonicity For any game 〈N , v〉, 〈N , w〉 ∈ GN and for every
coalition T ⊆ N , if v(T ) > w(T ) and v(S) = w(S) for every S �= T , then
φi (N , v) ≥ φi (N , w) for i ∈ T .

For any efficient, symmetric and linear value, Ruiz et al. [8] propose an universal
formula with respect to a sequence of coefficients.

Proposition 2.1 [8]Avalueφ : GN → R
N satisfies efficiency, symmetry and linearity

if and only if there exists ps ∈ R, s = 1, 2, . . . , n − 1, such that for any game
〈N , v〉 ∈ GN and i ∈ N,

φi (N , v) = 1

n
v(N ) +

∑

S�N ,S�i

ps
s

v(S) −
∑

S�N ,S ��i

ps
n − s

v(S). (1)

On account of the universal formula of efficient, symmetric and linear values pro-
vided by Ruiz et al. [8], Malawski [12] lists the conditions that a value satisfies
efficiency, symmetry, linearity and coalitional monotonicity and that a value satis-
fies efficiency, symmetry, linearity and weak monotonicity.

Lemma 2.1 [12] (i) A linear efficient value having the equal treatment property is
coalitionally monotonic if and only if, for every t < n, pt ≥ 0.

(ii) If a linear efficient value on GN with the equal treatment property is weakly
monotonic, then for every t = 1, 2, . . . , n − 1, the coefficients pt satisfy

(a)
(n
t

)
pt ≤ 1;

(b) ∀u = 1, 2, . . . , t ,
t∑

s=u

(n
s

)
ps ≥ −1.

Malawski [12] introduces a newnotion of a “procedural” value,which is determined
by an underlying procedure of sharing marginal contributions to coalitions formed by
players joining in random order. A procedure r is a family of nonnegative coefficients
((rk, j )kj=1)

n
k=1 such that

∑k
j=1 rk, j = 1, ∀k. The coefficient rk, j describes the share

of the player who is at place j in the order in the marginal contribution of the player
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who is at place k. For any game 〈N , v〉 ∈ GN and all players i ∈ N , the corresponding
procedural value is

ψr
i (N , v) =

∑

π∈�

∑

j∈Nπ,i

rπ( j),π(i)m j,π (v)

n! ,

where � is the set of all permutations of the set N . For any player j ∈ N and any
permutation π ∈ �, Hπ, j = {i : π(i) ≤ π( j)} and Nπ, j = {i : π(i) ≥ π( j)}. Then,
m j,π (v) is the marginal contribution of player j to coalition Hπ, j , i.e., m j,π (v) =
v(Hπ, j ) − v(Hπ, j\{ j}).
Theorem 2.1 [12] A value on GN is procedural if and only if it satisfies efficiency, lin-
earity, the equal treatment property, weak monotonicity and coalitional monotonicity.

Based on the excess vector, Ruiz et al. [7] select the unique payoff vector which
minimizes the variance of the excesses of the coalitions. Assuming different weights
for different coalitions, they [8] introduce the family of least square values by min-
imizing the weighted variance of the excesses. For any coalitional weights function
w : {0, 1, 2, . . . n} → R and any game 〈N , v〉 ∈ GN , the corresponding least square
value LSw assigns the solution of the following minimization problem,

Minimizex∈RN

∑

S⊆N

w(s)[v(S) − x(S)]2 s.t.
∑

i∈N
xi = v(N ). (2)

The corresponding least square value, being the solution of the minimization prob-
lem (2), is given by

LSw
i (N , v) = v(N )

n
+ 1

nα

[
∑

S:i∈S
(n − s)w(s)v(S) −

∑

S:i /∈S
sw(s)v(S)

]

,

where α =∑n−1
s=1 w(s)

(n−2
s−1

)
.

They also provide an axiomatic characterization for the least square family.

Proposition 2.2 [9] A value φ : GN → R
N satisfies efficiency, linearity, symmetry,

coalitional monotonicity and the inessential game property if and only if it belongs to
the family of least square values.

3 The Family of Ideal Values

3.1 Definition

As mentioned in the introduction, the DP value offers an interesting alternative to the
Shapley and Banzhaf values, focusing on the worths of coalitions a player belongs to,
instead of marginal contributions of a player. Especially in situations where players do
not focus on their individual marginal contributions but more on what they can earn
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by cooperating with other players, the DP value seems an attractive value. However,
in our opinion, the DP value misses two important points. The first is that it empha-
sizes the equal possibility of the coalitions to form, ignoring that coalitions are build
sequentially. The second is that it assumes that players in a coalition divide the full
worth of that coalition equally. Together, this implies that the sum of all coalitional
worths are allocated, which might not be feasible.1

Every player, who is motivated by profit to cooperate and join a coalition, may
want selfishly to get part of the formed coalition’s worth. We employ a function of
coalitional selfish coefficients to describe the individual selfish degree in the coalition.
A selfish coefficient function on N is a weights’ map m : 2N\{∅} → R that associates
with every nonempty S ⊆ N a real number m(S), which identifies the selfish degree
of players in this coalition. It means that every player wants to get m(S)v(S) from the
cooperation within coalition S. Without loss of generality, we restrict our attention to
nonnegative selfish coefficient functions, namely such that m(S) ≥ 0 for all S ⊆ N .
Further, we assume the selfish coefficient function to be symmetric assigning the same
selfish coefficient to coalitions of the same size, i.e., m(S) = m(s) for all S ⊆ N .

Based on a selfish coefficient function m, assuming that the probability that player
i participates to every coalition S � i , is equal, the m-individual expected reward of
player i ∈ N in game 〈N , v〉 ∈ GN is defined as

Em
i (N , v) = 1

2n−1

∑

S⊆N ,S�i
m(s)v(S).

We try to select the payoff vector in the preimputation set that makes every player
closer to their expected reward. Formally, consider the following problem for any
game 〈N , v〉 ∈ GN ,

Problem X : Minimizex∈RN

∑

i∈N

∑

S⊆N ,S�i
[m(s)v(S) − xi ]2

s.t.
∑

i∈N
xi = v(N ). (3)

Notice the difference with the minimization problem in (2), where the minimum is
taken over coalitional payoffs instead of individual rewards.

Theorem 3.1 Given any selfish coefficient function m, for 〈N , v〉 ∈ GN , Problem X
has a unique solution xm that is given by

xmi =
∑

S⊆N ,S�i

m(s)

2n−1 v(S) + 1

n

[

v(N ) −
∑

j∈N

∑

S⊆N ,S� j

m(s)

2n−1 v(S)

]

, i ∈ N . (4)

1 The Shapley value allocates the dividends of every coalition equally over the players in the coalition, and
since the sum of the dividends over all coalitions equals the worth of the grand coalition, the Shapley value
is efficient.
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Proof The objective function and the feasible set of Problem X are both convex.
Hence, there is only one optimal solution if it exists. It is necessary and sufficient to
verify the Lagrange conditions so as to find the optimal solution. The Lagrangian of
Problem X is

L(x, λ) =
∑

i∈N

∑

S⊆N ,S�i
[m(s)v(S) − xi ]2 + λ

[
∑

i∈N
xi − v(N )

]

.

Then, the derivative with respect to xi , i ∈ N of L(x, λ) is the following

Lxi (x, λ) = −2
∑

S⊆N ,S�i
[m(s)v(S) − xi ] + λ = 0.

Obviously, the derivative with respect to λ gives the efficiency constraint

Lλ(x, λ) =
∑

i∈N
xi − v(N ) = 0.

A simple calculation solves this linear system and shows that the unique point xm

satisfying these conditions is given by (4). ��
The solutions (4) to the maximization problem X form, what we call, the family

of ideal values. Notice that, using the individual expected rewards Em
i (N , v), these

solutions can be written as in the following definition.

Definition 3.1 For any selfish coefficient function m, value IVm : GN → R
N which

for any game 〈N , v〉 ∈ GN assigns the payoff vector

IVm
i (N , v) = Em

i (N , v) + 1

n

⎡

⎣v(N ) −
∑

j∈N
Em

j (N , v)

⎤

⎦ for every i ∈ N ,

is called an ideal value.

So, for any given selfish coefficient function m, the corresponding ideal value
distributes the m-individual expected reward to every player, and then the remainder
of the worth of the grand coalition N is equally distributed over all players. This gives
the solution of Problem X . Next, we explore the relation of ideal values with the least
square values and procedural values.

3.2 Relationships with Procedural and Least Square Values

Obviously, all ideal values are efficient, symmetric and linear. Aiming to facilitate
research of the family of ideal values, we develop the further relationship between
any ideal value and any efficient, symmetric and linear value by relating the selfish
coefficients m(s) to the coefficients ps in Proposition 2.1.
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Proposition 3.1 A value φ : GN → R
N satisfies efficiency, symmetry and linearity

if and only if there exists ms ∈ R, s = 1, 2, . . . , n − 1 such that for any game
〈N , v〉 ∈ GN and i ∈ N,

φi (N , v) =
∑

S�N ,S�i
msv(S) + 1

n

⎡

⎣v(N ) −
∑

j∈N

∑

S�N ,S� j

msv(S)

⎤

⎦ . (5)

Proof The right-hand side of (5) can be rewritten as

∑

S�N ,S�i
msv(S) + 1

n

⎡

⎣v(N ) −
∑

j∈N

∑

S�N ,S� j

msv(S)

⎤

⎦

= 1

n
v(N ) +

∑

S�N ,S�i
msv(S) − 1

n

∑

S�N

smsv(S)

= 1

n
v(N ) +

∑

S�N ,S�i

(
1 − s

n

)
msv(S) −

∑

S�N ,S ��i

s

n
msv(S)

= 1

n
v(N ) +

∑

S�N ,S�i

(
n − s

n

)

msv(S) −
∑

S�N ,S ��i

s

n
msv(S)

By straightforward computations, it then follows that the expression on the right-hand
side of (5) agreeswith the one on the right-hand side of (1) by choosingms = n

s(n−s) ps
for all s = 1, 2, . . . , n − 1. ��

For any game 〈N , v〉 ∈ GN and for any selfish coefficient function m : 2N\{∅} →
R, taking ms = m(s)

2n−1 , we can get the ideal value IVm(N , v). Especially coefficients
ms obtained from ideal values satisfy ms ≥ 0. Moreover, the relationship between
m(s) and ps is m(s) = n2n−1

s(n−s) ps .
Notice that the value of m(n) does not have any influence on the ideal value, so

from now on we put away the requirement on m(n).
From the expression m(s) = 2n−1ms = n2n−1

s(n−s) ps from the proof above, it is
clear that ps ≥ 0 if and only if m(s) ≥ 0 for all s = 1, 2, . . . , n − 1. Then, using
the nonnegativity of the selfish coefficient function, with Lemma 2.1(i) we obtain an
axiomatic characterization for the family of ideal values.

Theorem 3.2 A value φ : GN → R
N satisfies efficiency, symmetry, linearity, and

coalitional monotonicity if and only if it belongs to the family of ideal values.

This result strongly motivates the family of ideal values as being the coalitional
monotonic values among the ESL (efficient, symmetric, linear) values.

Combining Theorem 3.2 with Theorem 2.1, the family of ideal values has the
following connection with the procedural values.

Corollary 3.1 A value on GN belonging to the family of ideal values is procedural if
and only if it satisfies weak monotonicity.
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Combining with Lemma 2.1(ii), we get the conditions on the selfish coefficient
functions to obtain ideal values that are procedural.

Proposition 3.2 For any given selfish coefficient function m, if the ideal value IVm :
GN → R

N is procedural, then for every s = 1, 2, . . . , n − 1, the coefficients m(s)
satisfy

(n
s

) s(n−s)
n2n−1 m(s) ≤ 1.

Proof The equation can be deduced easily from condition (a) in Lemma 2.1(ii) and
the relation between m(s) and ps , s = 1, 2 . . . , n − 1. Condition (b) follows directly
from the selfish coefficients being nonnegative. ��

From Theorem 3.2, using Proposition 2.2, we also obtain the connection between
the family of ideal values and the family of least square values.

Corollary 3.2 A value on GN , belonging to the family of ideal values is a least square
value if and only if it satisfies the inessential game property.

Next, we want an explicit condition on m(s) for an ideal value to be a least square
value. For that, we first derive the explicit condition on the coefficients ps .

Lemma 3.1 An efficient, symmetric and linear value satisfies the inessential game
property, if and only if,

∑n−1
s=1

(n
s

)
ps = n − 1.

Proof Consider the unanimity game 〈N , uT 〉 which is defined as: for each S ⊆ N ,
uT (S) = 1 if S ⊇ T , and uT (S) = 0 if S � T . The ordered collection of unanimity
games (〈N , u{1}〉, 〈N , u{2}〉, . . . , 〈N , u{n}〉) forms a basis for IN . So any inessential
game 〈N , v〉 ∈ IN can be written as v(S) =∑ j∈N v({ j})u j (S), for all S ⊆ N .

Let φ : GN → R
N be a value that satisfies efficiency, symmetry and linearity.

Following the definition of the inessential game property, the value φ owning the
inessential game property is equivalent to that, for i ∈ N , φi (v) = v({i}) if 〈N , v〉 ∈
IN , i.e.,

φi (v) = φi

⎛

⎝
∑

j∈N
v({ j})u j

⎞

⎠ =
∑

j∈N
v({ j})φi (u j ) = v({i}).

It is also equivalent to

φi (ui ) = ui ({i}) = 1;
φi (u j ) = u j ({i}) = 0, j �= i.

By Proposition 2.1, the equivalent condition can be inferred as

φi (N , ui ) = 1

n
ui (N ) +

∑

S�N ,S�i

ps
s
ui (S) −

∑

S�N ,S ��i

ps
n − s

ui (S)

= 1

n
+

∑

S�N ,S�i

ps
s

= 1.
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So, n
∑

S�N ,S�i
ps
s =∑n−1

s=1 n
(n−1
s−1

) ps
s =∑n−1

s=1

(n
s

)
ps = n − 1.

And for any j ∈ N , j �= i ,

φi (N , u j ) = 1

n
u j (N ) +

∑

S�N ,S�i

ps
s
u j (S) −

∑

S�N ,S ��i

ps
n − s

u j (S)

= 1

n
+

∑

S�N ,S�{i, j}

ps
s

−
∑

S⊆N\{i},S� j

ps
n − s

= 1

n
+

n−1∑

s=2

(
n − 2

s − 2

)
ps
s

−
n−1∑

s=1

(
n − 2

s − 1

)
ps

n − s

= 1

n
−

n−1∑

s=1

(
n

s

)
ps

n(n − 1)
= 0.

This also indicates that
∑n−1

s=1

(n
s

)
ps = n − 1. ��

From this we obtain the conditions on the selfish coefficient functions m(s).

Proposition 3.3 For any given selfish coefficient function m, the ideal value IVm :
GN → R

N is a least square value, if and only if, the coefficients m(s) satisfy∑n−1
s=1

(n
s

) s(n−s)
n2n−1 m(s) = n − 1.

In this subsection, we described the relationship between the family of ideal values
and two important families of values from the literature: the procedural values and the
least square values. In the next section we provide two characterizations of specific
values within this family.

4 Characterization of the Ideal Values

There are several approaches to justify values for TU games. Two of these approaches
are axiomatization and providing a dynamic process.

4.1 Axiomatization

For any game 〈N , v〉 ∈ GN and for any selfish coefficient function m, two players
i, j ∈ N are m-equal-expectation players if their individual expected reward is equal,
i.e., Em

i (N , v) = Em
j (N , v). Player i ∈ N is a nullifying player if, v(S) = 0 for all

coalition S ⊆ N with i ∈ S.Given any selfish coefficient functionm, letφ : GN → R
N

be a value. We consider the following properties.

– m-Equal-expectation player property For every game 〈N , v〉 ∈ GN , if players
i, j ∈ N are m-equal-expectation player, then φi (N , v) = φ j (N , v).

– Nullifying player m-punishment property For every game 〈N , v〉 ∈ GN , if player
i ∈ N is a nullifying player, then φi (N , v) = − 1

n

∑
j∈N Em

j (N , v).
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Them-equal-expectation player property points out that players should get the same
payoff, if their individual expected rewards are equal. This makes sense if the players
take their individual expected reward as basis for their claim on the payoff.

The nullifying player m-punishment property determines the payoff for nullifying
players. If a player is a nullifying player, then every coalition he belongs to, specifically
the grand coalition, will gain zero. If the coalition without this player earns a positive
worth, then the nullifying player has a negative impact on the worth of this coalition. In
that case it seems appropriate to punish the nullifying player. The nullifying playerm-
punishment property puts this punishment for a nullifying player equal to the average
of all players’ individual expected rewards.

This punishment can bemotivated as follows. Although this paper considers classes
of games on a fixed player set N , suppose that a nullifying player i leaves the game.
The resulting game is the projection 〈N\{i}, v−i 〉 given by v−i (S) = v(S) for all
S ⊆ N\{i}. Assuming that the selfish coefficients m(s), s = 1, . . . , n − 1, do not
change, the total gain for the other players of i leaving the game is

∑

j∈N\{i}

[
Em

j (N\{i}, v−i ) − Em
j (N , v)

]

=
∑

j∈N\{i}

⎡

⎣ 1

2n−2

∑

S⊆N\{i}
m(s)v(S) − 1

2n−1

∑

S⊆N

m(s)v(S)

⎤

⎦

=
∑

j∈N\{i}

⎡

⎣ 2

2n−1

∑

S⊆N

m(s)v(S) − 1

2n−1

∑

S⊆N

m(s)v(S)

⎤

⎦

=
∑

j∈N\{i}

1

2n−1

∑

S⊆N

m(s)v(S) =
∑

j∈N\{i}
Em

j (N , v) =
∑

j∈N
Em

j (N , v),

where the second and fifth equality follow since v(S) = 0 if i ∈ S. So, the nullifying
player pays an equal share in the total loss resulting from its presence.

Remark 4.1 Let φ : GN → R
N be a value. For any 〈N , v〉 ∈ GN , given any selfish

coefficient function m, the value φ(N , v) satisfies the m-equal-expectation player
property since Em

j (N , v) = Em
j (N , v) if i and j are symmetric players in 〈N , v〉. It

implies that φ(N , v) satisfies symmetry.

With efficiency and linearity, these axioms characterize the corresponding ideal
value.

Theorem 4.1 For any given selfish coefficient functionm, the ideal value IVm : GN →
R

N is the unique value which satisfies efficiency, linearity, the m-equal-expectation
player property and the nullifying player m-punishment property.

Proof For any given selfish coefficient function m, it is obvious that the ideal value
IVm : GN → R

N satisfies efficiency, linearity, the m-equal-expectation player prop-
erty and the nullifying player m-punishment property.
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It remains to prove the uniqueness part. For any given selfish coefficient function
m, suppose that φm : GN → R

N is a value with the four mentioned properties. For any
T ⊆ N and T �= ∅, consider the standard game 〈N , bT 〉 defined as: for each S ⊆ N ,

bT (S) =
{
1, S = T ;
0, otherwise.

Let T ⊆ N , T �= ∅. Given any player i ∈ N\T , we have bT (S) = 0 for all i ∈ S ⊆
N , so Em

i (N , bT ) = 0. Now discussing player i ∈ T , it is apparent that bT (T ) = 1

and bT (S) = 0 for all i ∈ S ⊆ N , S �= T . This yields (i) Em
i (N , bT ) = m(t)

2n−1 for
all i ∈ T , (ii) all players in coalition T are m-equal-expectation players, and (iii)∑

j∈N Em
j (N , bT ) =∑ j∈T Em

j (N , bT ) = tm(t)
2n−1 .

Since any player i ∈ N\T is a nullifying player, by the nullifying player m-
punishment property, we have

φm
i (N , bT ) = − 1

n

∑

j∈N
Em

j (N , bT ) = − tm(t)

n2n−1 for all i ∈ N\T .

According to efficiency,

∑

i∈T
φm
i (N , bT ) = bT (N ) −

∑

i∈N\T
φm
i (N , bT ) = bT (N ) + (n − t)tm(t)

n2n−1 .

Because of the m-equal-expectation player property, for any player i ∈ T ,

φm
i (N , bT ) = bT (N )

t
+ (n − t)m(t)

n2n−1 .

Summarizing,

φm
i (N , bT ) =

{
bT (N )

t + (n−t)m(t)
n2n−1 , i ∈ T,

− tm(t)
n2n−1 , i ∈ N\T .

We conclude that φm(N , bT ) is unique for any ∅ �= T ⊆ N . Recall that the game
set {〈N , bT 〉 ∈ GN : ∅ �= T ⊆ N } forms a basis of the linear space GN . Together with
linearity of φm(N , v), this implies that φm(N , v) is unique for any 〈N , v〉 ∈ GN . So,
if φm(N , v) exists, it can only be the ideal value IVm . ��

4.2 Dynamic Process

In a characterization by a dynamic process, it is shown how, starting from any efficient
payoff vector, such a process can lead to an ideal value. In our dynamic process, the
main basis is a complaint function based on the selfish coefficient.

For any game 〈N , v〉 ∈ GN and payoff vector x ∈ I (N , v), the excess of the
coalition S with respect to the vector x in the game 〈N , v〉 is defined to be e(S, v, x) =
v(S) − x(S), i.e., it is the difference between the worth of the coalition and the total
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payoff assigned to the players in this coalition. For every selfish coefficient function
m, each player in coalition S wants to take the payoff m(s)v(S). So, the complaint of
player i in coalition Swith respect tom is the real number emi (S, v, x) = m(s)v(S)−xi .

Theorem 4.2 Let 〈N , v〉 ∈ GN and x ∈ I (N , v). For any selfish coefficient function
m, we have

∑

S⊆N\{i, j}
emi (S ∪ {i}, v, 2x) =

∑

S⊆N\{i, j}
emj (S ∪ { j}, v, 2x) ∀ i, j ∈ N

⇐⇒ x = IVm(N , v).

Proof Let 〈N , v〉 ∈ GN and x ∈ I (N , v). For any selfish coefficient function m, and
i, j ∈ N ,

∑

S⊆N\{i, j}
emi (S ∪ {i}, v, 2x) =

∑

S⊆N\{i, j}
emj (S ∪ { j}, v, 2x)

⇐⇒
∑

S⊆N\{i, j}
[m(s + 1)v(S ∪ {i}) − 2xi ] =

∑

S⊆N\{i, j}

[
m(s + 1)v(S ∪ { j}) − 2x j

]

⇐⇒
∑

S⊆N\{i, j}
2(xi − x j ) =

∑

S⊆N\{i, j}
m(s + 1)[v(S ∪ {i}) − v(S ∪ { j})]

⇐⇒ xi − x j =
∑

S⊆N\{i, j}

m(s + 1)

2n−1 [v(S ∪ {i}) − v(S ∪ { j})]. (6)

On the other hand, by the definitions of IVm(N , v),

IVm
i (N , v) − IVm

j (N , v)

=
∑

S⊆N ,S�i

1

2n−1m(s)v(S) −
∑

S⊆N ,S� j

1

2n−1m(s)v(S)

=
⎡

⎣
∑

S⊆N\{i, j}

1

2n−1m(s + 1)v(S ∪ {i}) +
∑

S⊆N\{i, j}

1

2n−1m(s + 2)v(S ∪ {i, j})
⎤

⎦

−
⎡

⎣
∑

S⊆N\{i, j}

1

2n−1m(s + 1)v(S ∪ { j}) +
∑

S⊆N\{i, j}

1

2n−1m(s + 2)v(S ∪ {i, j})
⎤

⎦

=
∑

S⊆N\{i, j}

m(s + 1)

2n−1 [v(S ∪ {i}) − v(S ∪ { j})] . (7)

By Eqs. (6) and (7), xi − x j = IVm
i (N , v) − IVm

j (N , v) for all i, j ∈ N . Hence,

∑

j∈N
(xi − x j ) =

∑

j∈N

[
IVm

i (N , v) − I Vm
j (N , v)

]
.
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That is, nxi − ∑
j∈N x j = nIVm

i (N , v) − ∑
j∈N IVm

j (N , v). Because of x ∈
I (N , v) and efficiency of IVm(N , v), nxi − v(N ) = nIVm

i (N , v) − v(N ). So, x =
IVm(N , v). ��

Notice that emi (S∪{i}, v, 2x) in Theorem4.2 is the complaint of player i in coalition
S ∪ {i} with respect to the payoff vector 2x . Although it is not immediately clear why
to consider twice the payoff vector, notice that the equation on the left side of the
equivalence in Theorem 4.2 can be written, for all i, j ∈ N , as

∑

S⊆N\{i, j}

(
emi (S ∪ {i}, v, x) − xi

) =
∑

S⊆N\{i, j}

(
emj (S ∪ { j}, v, x) − x j

)

which is equivalent to

xi − x j = 1

2n−2

∑

S⊆N\{i, j}

(
emi (S ∪ {i}, v, x) − emj (S ∪ { j}, v, x)

)
∀ i, j ∈ N

Defining the complaint of player i against player j as the difference between the
average complaint of i in all coalitions that contain player i and do not contain player j
(and vice versa), this can be seen as some kind of balanced mutual complaint property
stating that the difference in average complaint of i against j and the average complaint
of j against i is equal to the difference in their payoffs. In this way, the ideal value
IVm is the unique efficient value satisfying the balanced mutual complaint property.

Next, we adopt complaint functions to introduce a dynamic process that leads the
players to the ideal value.

Let 〈N , v〉 ∈ GN and x ∈ I (N , v). For any selfish coefficient functionm, we define
the m-correction function f m : I (N , v) → R

N as follows: for all i ∈ N ,

f mi (x) = xi + λ
∑

j∈N\{i}

∑

T⊆N\{i, j}

[
emi (T ∪ {i}, v, 2x) − emj (T ∪ { j}, v, 2x)

]

= xi + λ
∑

j∈N\{i}

∑

T⊆N\{i, j}

[
(emi (T ∪ {i}, v, x) − emj (T ∪ { j}, v, x)) − (xi − x j )

]
.

where λ belongs to (0, 1).∑
j∈N\{i}

∑
T⊆N\{i, j}

[
(emi (T ∪ {i}, v, x) − emj (T ∪ { j}, v, x)) − (xi − x j )

]
is a

correction on the current payoff assignment. The correction is based on the differences
in payoffs and mutual complaints. The m-correction function reflects the assumption
that player i does not ask for full correction (when λ = 1) but only a fraction λ of it.

The following lemma shows that the correction function is well defined, i.e., if
x ∈ I (N , v), then f m(x) ∈ I (N , v). This lemma plays a key role to prove the
necessary convergence results.

Lemma 4.1 Let 〈N , v〉 ∈ GN with n ≥ 3 and x ∈ I (N , v). For any selfish coefficient
function m, and for all i ∈ N,
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∑

j∈N\{i}

⎧
⎨

⎩

∑

T⊆N\{i, j}

[
emi (T ∪ {i}, v, 2x) − emj (T ∪ { j}, v, 2x)

]
⎫
⎬

⎭

= n2n−1(IVm
i (N , v) − xi )

and

∑

i∈N

∑

j∈N\{i}

⎧
⎨

⎩

∑

T⊆N\{i, j}

[
emi (T ∪ {i}, v, 2x) − emj (T ∪ { j}, v, 2x)

]
⎫
⎬

⎭
= 0.

Proof Let 〈N , v〉 ∈ GN and x ∈ I (N , v). For any selfish coefficient function m,
i, j ∈ N ,

∑

j∈N\{i}

⎧
⎨

⎩

∑

T⊆N\{i, j}

[
emi (T ∪ {i}, v, 2x) − emj (T ∪ { j}, v, 2x)

]
⎫
⎬

⎭

=
∑

j∈N\{i}

⎧
⎨

⎩

∑

T⊆N\{i, j}
[m(s + 1)v(S ∪ {i}) − 2xi

−m(s + 1)v(S ∪ { j}) + 2x j
]
⎫
⎬

⎭

=
∑

j∈N\{i}

⎧
⎨

⎩

∑

T⊆N\{i, j}
m(s + 1)[v(S ∪ {i}) − v(S ∪ { j})] − 2n−1(xi − x j )

⎫
⎬

⎭

Eq (7)=
∑

j∈N\{i}
2n−1

[
IVm

i (N , v) − I Vm
j (N , v) − xi + x j

]

= n2n−1(I Vm
i (N , v) − xi ),

where the last equality follows from x and IVm(N , v) both belonging to I (N , v).
Moreover,

∑

i∈N

∑

j∈N\{i}

⎧
⎨

⎩

∑

T⊆N\{i, j}

[
emi (T ∪ {i}, v, 2x) − emj (T ∪ { j}, v, 2x)

]
⎫
⎬

⎭

=
∑

i∈N
n2n−1(IVm

i (N , v) − xi ) = n2n−1(v(N ) − v(N )) = 0.

This completes the proof. ��
Let 〈N , v〉 ∈ GN and x ∈ I (N , v). For any selfish coefficient function m, we

define the dynamic sequence {xqf m }∞q=1 with respect to the correction function f m , for
all q ∈ N, by
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x0f m = x, x1f m = f m(x0f m ), x2f m = f m(x1f m ), . . . , xqf m = f m(xq−1
f m ).

For ‘small enough’ values ofλ, this dynamic process converges to the corresponding
ideal value.

Theorem 4.3 Let 〈N , v〉 ∈ GN . For any selfish coefficient function m, and 0 < λ <
1

n2n−2 , {xqf m }∞q=1 converges geometrically to IV
m(N , v) for each x ∈ I (N , v).

Proof Let 〈N , v〉 ∈ GN , x ∈ I (N , v), and take any selfish coefficient function m. By
definition of f m and Lemma 4.1, for i ∈ N ,

f mi (x) − xi

= λ
∑

j∈N\{i}

⎧
⎨

⎩

∑

T⊆N\{i, j}

[
emi (T ∪ {i}, v, 2x) − emj (T ∪ { j}, v, 2x)

]
⎫
⎬

⎭

= n2n−1λ(IVm
i (N , v) − xi ).

Hence,

IVm
i (N , v) − f mi (x) = IVm

i (N , v) − xi + xi − f mi (x)

= (1 − n2n−1λ)(IVm
i (N , v) − xi ).

For all q ∈ N,

IVm(N , v) − xqf m = (1 − n2n−1λ)q(IVm(N , v) − x).

If 0 < λ < 1
n2n−2 , then −1 < 1− n2n−1λ < 1 and {xqf m }∞q=1 converges geometrically

to IVm(N , v). ��

5 Two Special Cases: The CIS Value and the EANS Value

The center of gravity of imputation set value (CIS value), introduced by Driessen and
Funaki [15], is a solution on GN , which associates with each game 〈N , v〉 and all
players i ∈ N ,

CISi (N , v) = v({i}) + 1

n

⎡

⎣v(N ) −
∑

j∈N
v({ j})

⎤

⎦ .

TheCISvalue assigns to everyplayer its individualworth, anddistributes the remainder
of the worth of the grand coalition N equally among all players.
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The equal allocation of nonseparable cost value (EANS value) introduced by
Moulin [16] is given as

EANSi (N , v) = SCi (N , v) + 1

n

⎡

⎣v(N ) −
∑

j∈N
SC j (N , v)

⎤

⎦ ,

where SC j (N , v) = v(N )−v(N\{ j}) is the separable cost and the EANS value refers
to all players sharing the nonseparable cost v(N ) −∑ j∈N SC j (N , v) equally.

For any game 〈N , v〉 ∈ GN , its dual game 〈N , vD〉 is vD(S) = v(N ) − v(N\S)

for all S ⊆ N . Obviously, EANS(N , v) = CIS(N , vD) for all 〈N , v〉 ∈ GN since by
the definition of dual game, SC j (N , v) = vD( j) for all j ∈ N . So, the CIS value and
the EANS value are dual to each other. Furthermore, it is easy to show that the CIS
value is an ideal value by taking m(1) = 2n−1 and m(s) = 0, s = 2, 3, . . . , n − 1, so
is the EANS value by taking m(n − 1) = 2n−1 and m(s) = 0, s = 1, 2 . . . , n − 2.

Consistency, including reduced consistency and associated consistency, has been
used to characterize the CIS value [17,21,22] and the EANS value [17,19–22]. Xu et
al. [23] also provide a noncooperative interpretation of the α-CIS value, the extension
of CIS value, by a bidding mechanism. We apply Theorem 4.1 to the specific selfish
coefficient functions of the CIS and EANS values.

Taking as selfish coefficient function m̄, where m̄(1) = 2n−1 and m̄(s) = 0,
s = 2, 3, . . . , n − 1, for any game 〈N , v〉 ∈ GN , Em̄

i (N , v) = v({i}), i ∈ N . Using
this selfish coefficient function in Theorem 4.1 characterizes the CIS value. In that
case, we can replace the nullifying player m-punishment property by the inessential
game property.

Theorem 5.1 For any game 〈N , v〉 ∈ GN , the CIS value is the unique value that sat-
isfies efficiency, linearity, the inessential game property and the m̄-equal-expectation
player property.

Proof It can be easily checked that the CIS value satisfies efficiency, linearity, the
inessential game property and the m̄-equal-expectation player property. It remains to
prove the uniqueness.

Suppose that a solution φ : GN → R
N satisfies these four properties. For any game

〈N , v〉 ∈ GN , define v0(S) := v(S) −∑ j∈S v({ j}), S ⊆ N . Then, ∀i, j ∈ N , 0 =
v0(i) = Em̄

i (N , v0) = Em̄
j (N , v0) = v0( j) = 0. Because of the m̄-equal-expectation

player property, we have φi (N , v0) = φ j (N , v0). So based on the efficiency, for any
i ∈ N ,

φi (N , v0) = 1

n
v0(N ) = 1

n

⎡

⎣v(N ) −
∑

j∈N
v({ j})

⎤

⎦ .

Let w := v − v0, it is obvious that 〈N , w〉 is an inessential game. According to the
inessential game property, we have φi (N , w) = w({i}) = v({i}).
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Because v = w + v0, with linearity it follows that

φi (N , v) = φi (N , w)+φi (N , v0) = v({i})+1

n

⎡

⎣v(N ) −
∑

j∈N
v({ j})

⎤

⎦ = CISi (N , v).

This completes the proof. ��
Notice that in the proof of Theorem 5.1, we used only part of the linearity axiom.

In fact, in the axiomatization, we can replace linearity by the weaker additivity axiom.

– Additivity For any game 〈N , v〉, 〈N , w〉 ∈ GN ,φ(N , v+w) = φ(N , v)+φ(N , w),
where v + w is given by (v + w)(S) = v(S) + w(S), for all S ⊆ N .

With the appropriate selfish coefficient function, we can also obtain an axiomatiza-
tion of the EANS value as a corollary from Theorem 4.1. However, we can also take
the dual axiom of the m̄-equal-expectation player property.

– Dual m̄-equal-expectation player property For any game 〈N , v〉 ∈ GN and i, j ∈
N , if Em̄

i (N , vD) = Em̄
j (N , vD), then φi (N , v) = φ j (N , v).

Theorem 5.2 For any game 〈N , v〉 ∈ GN , the EANS value is the unique value that
satisfies efficiency, additivity, the inessential game property and the dual m̄-equal-
expectation player property.

Proof This proof is similar to the proof of Theorem 5.1 except the following.
For any game 〈N , v〉 ∈ GN , define v0(S) := v(S) −∑ j∈S SC j (N , v), S ⊆ N ,

where SC j (N , v) = v(N ) − v(N\{ j}). It is easy to verify that ∀i, j ∈ N ,
Em̄
i (N , (v0)D) = Em̄

j (N , (v0)D). Then, imitating the proof of Theorem 5.1, we can
complete this proof. ��

Motivated by the duality of the CIS value and the EANS value, we build the rela-
tionship of selfish coefficient functions of dual values in the family of ideal values as
follows.

Proposition 5.1 Let 〈N , v〉 ∈ GN . For any two selfish coefficient functions m and m∗,
the ideal values, IVm(N , v) and IVm∗

(N , v), are dual if the selfish coefficient functions
satisfy m∗(n − s) = m(s), s = 1, 2, . . . , n − 1.

Proof Let 〈N , v〉 ∈ GN . For any two selfish coefficient functions m and m∗, the ideal
values, IVm(N , v) and IVm∗

(N , v), are dual if and only if, IVm(N , v) = IVm∗
(N , vD).

So we need to prove that m∗(n − s) = m(s), s = 1, 2, . . . , n − 1 implies that
IVm(N , v) = IVm∗

(N , vD).
According to Proposition 3.1, it is easy to get that, for i ∈ N ,

IVm
i (N , v)

= ∑

S�N ,S�i
1

2n−1m(s)v(S) + 1
n

[

v(N ) − ∑

j∈N
∑

S�N ,S� j

1
2n−1m(s)v(S)

]

= 1
n v(N ) + ∑

S�N ,S�i
n−s
n2n−1m(s)v(S) − ∑

S�N ,S ��i
s

n2n−1m(s)v(S).

(8)
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Similarly,

IVm∗
i (N , vD)

= ∑

S�N ,S�i
1

2n−1m
∗(s)vD(S) + 1

n

[

vD(N ) − ∑

j∈N
∑

S�N ,S� j

1
2n−1m

∗(s)vD(S)

]

= 1
n v(N ) + ∑

S�N ,S�i
n−s
n2n−1m

∗(s)vD(S) − ∑

S�N ,S ��i
s

n2n−1m
∗(s)vD(S)

= 1
n v(N ) + ∑

S�N ,S�i
n−s
n2n−1m

∗(s)[v(N ) − v(N\S)]
− ∑

S�N ,S ��i
s

n2n−1m
∗(s)[v(N ) − v(N\S)]

= 1
n v(N ) − ∑

S�N ,S�i
n−s
n2n−1m

∗(s)v(N\S) + ∑

S�N ,S ��i
s

n2n−1m
∗(s)v(N\S)

= 1
n v(N ) + ∑

S�N ,S�i
n−s
n2n−1m

∗(n − s)v(S) − ∑

S�N ,S ��i
s

n2n−1m
∗(n − s)v(S).

(9)
By comparing Eq. (8) with Eq. (9), we can get that m∗(n − s) = m(s), s =

1, 2, . . . , n − 1, implies that IVm(N , v) = IVm∗
(N , vD). ��

As a corollary, we obtain that the family of ideal values is self-dual.

6 Conclusions

In this paper, we gave two types of characterization of ideal values for cooperative
TU games: an axiomatization and a dynamic process. Ideal values are based on the
idea that players expect to receive a certain part, determined by a selfish coefficient
function, from theworths of the coalitions they belong to. Since it is not usually feasible
to respect all players individual expected rewards, the values need to be normalized.
We compared the ideal values with three other classes from the literature and saw
that (i) they are exactly the coalitional monotonic ESL values, (ii) contain the class of
procedural values being the weakly monotonic ideal values, and (iii) contain the least
square values being the ideal values satisfying the inessential game property.

Future research on ideal values will be done on, for example, strategic implemen-
tation. Also, we will consider more general selfish coefficient functions. In this paper,
we assumed the selfish coefficient function to be symmetric meaning that the share the
players in a coalition expect to receive from the coalition’s worth only depends on the
size of the coalition. In reality, individual players might have different expectations
about their share in the worths of coalitions, and it is interesting to see what results
are still valid (in original or modified form) for these more general selfish coefficient
functions. Also, the impact of different degrees of selfishness on the above-mentioned
strategic implementation will be studied.

Since the family of ideal values contains the procedural values, it also contains
the egalitarian Shapley values [24,25], and it is worthwhile to investigate whether
within the family of ideal values there are ways to bring egalitarianism into TU game
solutions.
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Finally, certain specific ideal values might be worth investigating in more detail.
In this paper, we already considered the CIS and EANS values. Another interesting
ideal value might be based on the DP value, where the selfish coefficient function and
corresponding individual expected rewards are simply taken as every player expecting
a fraction 1

s of the worth of coalition S.
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