Skip to main content
Log in

Efficiency and Vulnerability Analysis for Congested Networks with Random Data

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this note, we combine two theories that have been proposed in the last decade: the theory of vulnerability and efficiency of a congested network, and the theory of stochastic variational inequalities. As a result, we propose a model that describes the performance and vulnerability of a congested network with random traffic demands and where the travel time can be affected by uncertainty. As an application, we investigate in detail the famous Braess’ network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nagurney, A., Qiang, Q.: A network efficiency measure for congested networks. Eur. Lett. Assoc. 79(3), 38005 (2007)

    Article  Google Scholar 

  2. Nagurney, A., Qiang, Q.: A network efficiency measure with application to critical infrastructure networks. J. Glob. Optim. 40, 261–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gwinner, J., Raciti, F.: Random equilibrium problems on networks. Math. Comput. Model. 43, 880–891 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gwinner, J., Raciti, F.: On a class of random variational inequalities on random sets. Numer. Funct. Anal. Optim. 27(5–6), 619–636 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gwinner, J., Raciti, F.: Some equilibrium problems under uncertainty and random variational inequalities. Ann. Oper. Res. 200, 299–319 (2012). https://doi.org/10.1007/s10479-012-1109-2

    Article  MathSciNet  MATH  Google Scholar 

  6. Jadamba, B., Khan, A., Raciti, F.: Regularization of stochastic variational inequalities and a comparison of an Lp and a sample-path approach. Nonlinear Anal. 94, 65–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  Google Scholar 

  8. Latora, V., Marchiori, M.: How the science of complex networks can help developing strategies against terrorism. Chaos Solitons Fractal 20, 69–75 (2004)

    Article  MATH  Google Scholar 

  9. Murray-Tuite, P.M., Mahassani, H.S.: Methodology for determining vulnerable links in a transportation network. Trans. Res. Rec. 1882, 88–96 (2004)

    Article  Google Scholar 

  10. Jenelius, E., Petersen, T., Mattson, L.G.: Road network vulnerability: identifying important links and exposed regions. Trans. Res. A 40, 537–560 (2006)

    Google Scholar 

  11. Sheffi, Y.: Urban Transportation Network: Equilibrium Analysis with Mathematical Programming Methods. Prentice Hall, Englewood Cliffs (1985)

    Google Scholar 

  12. Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Agdeppa, P., Yamashita, N., Fukushima, M.: Convex expected residual models for stochastic affine variational inequality problems and its applications to the traffic equilibrium problem. Pac. J. Optim. 6, 3–19 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Daniele, P., Giuffé, S.: Random variational inequalities and the random traffic equilibrium problem. J. Optim. Theory Appl. 167, 363–381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ravat, U., Shanbhag, U.V.: On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games. SIAM J. Optim. 21(3), 1168–1199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Singh, V.V., Jouini, O., Lisser, A.: Existence of Nash equilibrium for chance-constrained games. Oper. Res. Lett. 44, 640–644 (2016)

    Article  MathSciNet  Google Scholar 

  17. Patriksson, M.: The Traffic Assignment Problem. VSP BV, Oud-Beijerland (1994)

    MATH  Google Scholar 

  18. Maugeri, A., Raciti, F.: On existence theorems for monotone and nonmonotone variational inequalities. J. Convex Anal. 16, 899–911 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmenforschung 12, 258–268 (1968)

    MATH  Google Scholar 

  20. Raciti, F., Falsaperla, P.: Improved, non iterative algorithm for the calculation of the equilibrium in the traffic network problem. J. Optim. Theory Appl. 133, 401–411 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marcotte, P.: Application of Khobotov’s algorithm to variational inequalities and network equilibrium problems. INFORM 29, 258–270 (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of Fabio Raciti has been partially supported by University of Pisa (Grant PRA-2017-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Raciti.

Appendix

Appendix

We provide some details for the numerical approximation of the solution \(\hat{u}\) of (18) in this section. First, we need a discretization of the space \(X:= L^\mathrm{p} (\mathbb {R}^d,\mathbb {P},\mathbb {R}^k).\) We introduce a sequence \(\{ \pi _n \}_n\) of partitions of the support

$$\begin{aligned} \varUpsilon := [0, \infty [ \times [\underline{s},\overline{s}[ \times \mathbb {R}_{+}^m \end{aligned}$$

of the probability measure \(\mathbb {P}\) induced by the random elements RS,  and D. For this, we set

$$\begin{aligned} \pi _n = \left( \pi _n ^R , \pi _n ^S, \pi _n ^D\right) , \end{aligned}$$

where

$$\begin{aligned}&\pi _n^R := \left( r_n^0, \dots , r_n^{N_n^R}\right) , \ \ \pi _n^S := \left( s_n^0, \dots , s_n^{N_n^S}\right) ,\ \ \pi _n^{D_i} := \left( t_{n,i}^0, \dots , t_{n,i}^{N_n^{D_i}}\right) \\&0 =r_n^0<r_n^1< \cdots r_n^{N_n^R}= n, \ \ \underline{s} =s_n^0<s_n^1< \cdots s_n^{N_n ^S}= \overline{s}, \\&0 =t_{n,i}^0<t_{n,i}^1 < \cdots t_{n,i}^{N_n^{D_i}}= n \, \; (i= 1, \dots , m)\\&|\pi _n ^{R} | := \max \left\{ r_n^j-r_n^{j-1}: j=1,\dots , N_n^{R} \right\} \rightarrow 0 \;\; (n \rightarrow \infty )\\&|\pi _n^{S} | :=\max \left\{ s_n^k-s_n^{k-1}: k=1,\dots , N_n^S \right\} \rightarrow 0 \;\; (n \rightarrow \infty )\\&|\pi _n ^{D_i} | := \max \left\{ t_{n,i}^{h_i}-t_{n,i}^{h_i -1}: h_i=1,\dots , N_n^{D_i} \right\} \rightarrow 0 \;\; (i= 1, \dots , m;\, n \rightarrow \infty ). \end{aligned}$$

These partitions give rise to an exhausting sequence \(\{\varUpsilon _n\}\) of subsets of \(\varUpsilon \), where each \(\varUpsilon _n\) is given by the finite disjoint union of the intervals:

$$\begin{aligned} I_{jkh}^n := [r_n^{j-1}, r_n^{j}[ \times [s_n^{k-1}, s_n^{k}[ \times I_h^n \end{aligned}$$

where we use the multi-index \(h = (h_1,\cdots ,h_m)\) and

$$\begin{aligned} I_h ^n := \varPi _{i=1}^m[t_{n,i}^{h_i-1},t_{n,i}^{h_i}[. \end{aligned}$$

For each \(n \in \mathbb {N},\) we consider the space of the \(\mathbb {R}^l\)-valued step functions (\(l \in \mathbb {N}\)) on \(\varUpsilon _n\), extended by 0 outside of \(\varUpsilon _n\):

$$\begin{aligned} X_n^l := \left\{ v_n: v_n (r,s,t)= \sum _j \sum _k \sum _h v^n_{jkh} 1_{I^n_{jkh}} (r,s,t),\ v^n_{jkh} \in \mathbb {R}^l \right\} \end{aligned}$$

where \(1_I\) denotes the \(\{ 0,1\}\)-valued characteristic function of a subset I.

To approximate an arbitrary function \(w \in L^\mathrm{p} (\mathbb {R}^d, \mathbb {P}, \mathbb {R}),\) we employ the mean value truncation operator \(\mu _0 ^ n\) associated to the partition \(\pi _n \) given by

$$\begin{aligned} \mu _0^n w := \sum _{j=1}^{N_n^{R}}\sum _{k=1}^{N_n^{S}} \sum _{h}(\mu _{jkh} ^n w)\,1_{I_{jkh}^n}\,, \end{aligned}$$
(31)

where

$$\begin{aligned} \mu _{jkh} ^n w := \left\{ \begin{array}{ll} \displaystyle \frac{1}{\mathbb {P}(I_{jkh})} \int _{I_{jkh}^n} w(y) \, d \mathbb {P} (y), &{}\quad \text{ if } \mathbb {P}(I^n_{jkh}) > 0,\\ 0, &{}\quad \text{ otherwise. } \end{array} \right. \end{aligned}$$

Analogously, for a \(L^\mathrm{p}\) vector function \(v=(v_1,\dots ,v_l)\), we define

$$\begin{aligned} \mu _0^n v := \left( \mu _0^n v_1, \dots , \mu _0^n v_l\right) , \end{aligned}$$

for which one can prove that \(\mu _0^n v\) converges to v, in \(L^\mathrm{p} (\mathbb {R}^d, \mathbb {P}, \mathbb {R}^l)\). To construct approximations for

$$\begin{aligned} M_{\mathbb {P}}= \left\{ v \in L^\mathrm{p} (\mathbb {R}^d, \mathbb {P},\mathbb {R}^k): A v (r,s,t) \le t\,, \;\mathbb {P}-\text {a.s.}\right\} , \end{aligned}$$

we introduce the orthogonal projector \(q: (r,s,t) \in \mathbb {R}^d \mapsto t \in \mathbb {R}^m\) and define for each elementary cell \(I_{jkh}^n\),

$$\begin{aligned} {\overline{q}}_{jkh}^n = ( \mu _{jkh}^{n} q) \in \mathbb {R}^m,\quad \;(\mu _0 ^ n q) = \sum _{jkh} {\overline{q}}_{jkh}^n \, 1_{I^n_{jkh}} \in X_n^m. \end{aligned}$$

This leads to the following sequence of convex and closed sets of the polyhedral type:

$$\begin{aligned} M_{\mathbb {P}}^n := \left\{ v \in X_n^k :\ \ A v_{jkh}^n \le {\overline{q}}_{jkh}^n \,, \; \forall j,k,h \right\} . \end{aligned}$$

Since our objective is to approximate the random variables R and S,  we introduce

$$\begin{aligned} \rho _n =\sum _{j=1}^{N_n^R} r_n ^{j-1}\, 1_{[r_n^{j-1}, r_n ^j [} \in X_n \quad \text {and}\quad \sigma _n =\sum _{k=1}^{N_n^S} s_n ^{k-1}\, 1_{[s_n^{k-1}, s_n ^k [} \in X_n. \end{aligned}$$

Notice that

$$\begin{aligned}&\sigma _n (r,s,t) \rightarrow \sigma (r,s,t)=s \quad \text {in}\ \ L^{\infty } (\mathbb {R}^d, \mathbb {P}) \ \ \text {and} \\&\rho _n (r,s,t) \rightarrow \rho (r,s,t)=r \ \ \text {in}\ \ L^{p} (\mathbb {R}^d, \mathbb {P}). \end{aligned}$$

Combining the above ingredients, for \(n \in \mathbb {N}\), we consider the following discretized variational inequality: Find \(\hat{u} _n:=\hat{u}_n(y) \in M_{\mathbb {P}}^n \) such that for every \(v_n \in M_{\mathbb {P}}^n\), we have

$$\begin{aligned}&\int _{0}^{\infty } \int _{\underline{s}}^{\overline{s}}\int _{\mathbb {R}^d} [ \sigma _n(y) \, G(\hat{u}_n) + H(\hat{u}_n)]^{\top } [v_n - \hat{u}_n ] \, \mathrm{d}\mathbb {P}(y) \nonumber \\&\quad \ge \int _{0}^{\infty } \int _{\underline{s}}^{\overline{s}}\int _{\mathbb {R}^d} [ b + \rho _n(y) \, c]^{\top } [v_n - \hat{u}_n]\, \mathrm{d}\mathbb {P}(y). \end{aligned}$$
(32)

It turns out that (32) can be split in a finite number of finite dimensional variational inequalities: For every \(n \in \mathbb {N},\) and for every jkh,  find \(\hat{u}^n_{jkh} \in M^n_{jkh} \) such that

$$\begin{aligned} \left[ \tilde{F}_{k}^n (\hat{u}^n_{jkh})\right] ^{\top } \left[ v^n_{jkh}- \hat{u}^n_{jkh}\right] \ge \left[ \tilde{c}^{n}_{j}\right] ^{\top } \left[ v^n_{jkh}- \hat{u}^n_{jkh}\right] , \ \ \text {for every}\ v^n_{jkh} \in M^n_{jkh}, \end{aligned}$$
(33)

where

$$\begin{aligned} M^n_{jkh} := \left\{ v^n_{jkh} \in \mathbb {R}^k : A v^n_{jkh} \le {\overline{q}}_{jkh}^n \right\} , \quad \tilde{F}_{k}^n := s_n^{k-1} \, G + H, \quad \tilde{c}_{j}^n \,:= \, b + r_n^{j-1} \, c. \end{aligned}$$

Clearly, we have

$$\begin{aligned} \hat{u}_n = \sum _j \sum _k \sum _h \hat{u}^n_{jkh} \, 1_{I^n_{jkh}} \in X_n^k. \end{aligned}$$

We recall the following convergence result (see [5]):

Theorem A.1

Assume that \(F(\omega ,\cdot )\) is strongly monotone, uniformly with respect to \(\omega \in \varOmega \), that is

$$\begin{aligned} ( F(\omega ,x)-F(\omega ,y))^{\top } ( x-y) \ge \alpha \Vert x-y\Vert ^{2}\quad \forall x,\,y,\ \text {a.e.}\ \omega \in \varOmega , \end{aligned}$$

where \(\alpha >0\) and that the growth condition (11) holds. Then the sequence \( (\hat{u}_n ),\) where \(\hat{u}_n\) is the unique solution of (32), converges strongly in \(L^\mathrm{p} (\mathbb {R}^d, \mathbb {P},\mathbb {R}^k)\) to the unique solution \(\hat{u}\) of (16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadamba, B., Pappalardo, M. & Raciti, F. Efficiency and Vulnerability Analysis for Congested Networks with Random Data. J Optim Theory Appl 177, 563–583 (2018). https://doi.org/10.1007/s10957-018-1264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1264-y

Keywords

Mathematics Subject Classification

Navigation