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Abstract
In this work we investigate a combination of classical PDE constrained optimization methods
and a rounding strategy based on shape optimization for the identification of interfaces. The
goal is to identify radioactive regions in a groundwater flow represented by a control that is
either active or inactive. We use a relaxation of the binary problem on a coarse grid as initial
guess for the shape optimization with higher resolution. The result is a computationally
cheap method that does not have to perform large shape deformations. We demonstrate
that our algorithm is moreover able to change the topology of the initial guess.

1 Introduction
Parameter estimation and optimal control for problems modeled by partial differential equations
usually aims for optimizers which are continuous variables. Yet, there are many applications,
where it is known, that a parameter only takes a discrete number of values. This could be
for instance a spatially distributed binary variable representing a compound of two different
materials. Common problems in this field are ranging from electrical impedance tomography to
tolopogy optimization of elastic materials. See for instance [4, 15, 2]. In this work we focus on
groundwater flows through regions that are potentially contaminated with radioactive substances.
The aim is to recover the locations of the radioactive sources based on measurements of the
contaminated groundwater. In applications of these kinds the variable is not the value of the
parameter itself but the shape of the interfaces separating the different, discrete states. This can
significantly reduce the degrees of freedom of the optimization problem and thereby enable high
spatial resolutions. PDE-constraint shape optimization has turned out to be very effective for a
wide range of applications [21, 19, 16, 10, 1, 8]. Yet, these methods require a good initial guess
of the number of shapes and their approximate location, which is usually a strong assumption.
Basically, there are two possible ways to resolve the shapes of the desired interfaces. It can
either be resolved by edges in a finite element mesh or implicitly described by level-set functions.
In both cases an optimization algorithm has to move the mesh or the level-set function along
descent directions. This leads to numerical instabilities for larger deformations, which is the
case for an inaccurate initial guess. One has to deal with a decreasing mesh quality after each
optimization step. Especially larger translations of shapes are problematic. This is due to the
fact that a shape derivative mainly contains information for deformations which are normal to the
boundary. Deformations in tangent direction do not affect the objective function. Approaches
to overcome this issue are presented for instance in [22, 23].

A common problem with shape representations by level-sets are increasing slopes during the
transport of the function. This requires a so called reinitialization of the level-set after several

∗Universität Trier, D-54286 Trier, Germany, Email: siebenborn@uni-trier.de

1

ar
X

iv
:1

71
1.

02
53

5v
1 

 [
m

at
h.

O
C

] 
 7

 N
ov

 2
01

7



optimization steps [2]. Therefore, a level-set has to be determined which represents a given shape.
This is computationally expensive and does not suit for black-box solvers. For instance in [17]
the combination of level-set shape optimization and volume formulation of shape derivatives is
investigated for tomography problems.

Another possible approach, without resolving shapes, is to relax the optimal control problem
to continuous parameter values and apply a rounding strategy to the minimizer (see for instance
[11]).

In this work we aim at a combination of both ideas, which means to start with a relaxation
of the problem and then use shape optimization based on level-sets as a rounding strategy. First
we apply a semismooth Newton optimization algorithm to come up with a continuous parameter
distribution in the range between zero and one. Then we use this function as a level-set, such that
the mean value of the parameter describes the shape of the interface. This is a simple rounding
strategy which usually leads to poor results. We then proceed with a shape optimization based
on this level-set function. The benefit here is, that only small deformations have to be made
since the rounded minimizer of the relaxation is a good initial guess in terms of location and
number of possible shapes.

From a computational point of view it is attractive that the initial guess for the interface of
interest does not have to be of very high resolution. We thus present numerical results, where
the relaxation problem is solved on a coarse grid only. This solution is then interpolated to finer
grids and a high resolution shape optimization algorithm is applied.

This work has the following structure: In Section 2 we introduce the model equations and
the associated optimization problems. Section 3 presents two approaches, a relaxation solver
together with a rounding strategy and a shape optimization method, which are combined into
one algorithm. Finally, in Section 4 we demonstrate our algorithm in two and three dimensional,
numerical test cases.

2 Model equations and problem formulation
In this work we focus on a fluid flow in a porous medium driven by advection and diffusion,
which transports a tracer. In a bounded Lipschitz domain Ω ⊂ Rd, with dimension d ∈ {2, 3},
u : Ω → R measures the concentration of the tracer. It is transported along the velocity
field b ∈ W 1,∞ (Ω,Rd) with diffusivity constant c ∈ L∞(Ω). With this model we simulate a
groundwater flow in a domain with radioactive sources given by f ∈ L2(Ω). Therefore, Ω is
subdivided into two areas, Ωout and Ωint, a clean and a contaminated one. The source f depends
on the shape of Ωint. We further assume that concentration measurements of the tracer u are
given in Ωm ⊆ Ω. Figure 1 gives a sketch of this situation. The corresponding model is described
by the stationary advection-diffusion equations

−c∆u+ div(bu) = f in Ω

ubTn− c∂u
∂n

= gu on ∂Ω.
(2.1)

The tracer is assumed to enter and leave the domain under the influence of both advection and
diffusion, which is expressed as boundary conditions g = max

{
0, bTn

}
, where n denotes the

outward-pointing normal vector on ∂Ω. We obtain the weak formulation by multiplying with
test functions w and integrating over Ω which yields∫

Ω
−c∆uw + w div(bu) dx =

∫
Ω
fw dx.
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Figure 1: The flow domain Ω = Ωint ∪ Ωout with outer boundary ∂Ω, velocity field b and the
location of data measurements Ωm

By applying Green’s identity we obtain∫
Ω
c(∇u)T∇w − ubT∇w dx+

∫
∂Ω
w(ubTn− c∂u

∂n
) ds =

∫
Ω
fw dx

and finally integration by parts yields the problem in weak form:
Find u ∈ H1(Ω) such that∫

Ω
c(∇u)T∇w − ubT∇w dx+

∫
∂Ω
wgu ds︸ ︷︷ ︸

=:a1(u,w)

=
∫

Ω
fw dx︸ ︷︷ ︸

=:l1(w)

(2.2)

for all w ∈ H1(Ω).
The original optimization problem for given data measurements ū is of the form

min
f

1
2

∫
Ωm

(u− ū)2 dx

s.t. f(x) ∈ {0, 1} a.e. in Ω and (2.2)

(2.3)

The binary variable f reflects the situation, that the material in the flow domain can either
be contaminated or not. Values in (0, 1) are not allowed. From a computational point of view
this problem is challenging, especially when high spatial resolutions are preferred. Moreover,
a discrete optimization approach produces solutions which typically depend on the chosen dis-
cretization.

In the following we reformulate problem (2.3) into two stages. First a relaxed version where
intermediate values are allowed as

min
f∈L2(Ω)

1
2

∫
Ωm

(u− ū)2 dx+ µ

2

∫
Ω
f2 dx

s.t. 0 ≤ f ≤ 1 a.e. in Ω and (2.2).

(2.4)

Here the second term is a regularization for µ > 0. A solution of problem (2.4) leaves open
the question for a rounding strategy of f towards 0 or 1 in order to approximated the original
problem (2.3).
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Given a solution f of (2.4) we define the shape of interest by the rounding strategy
Ωint = {x ∈ Ω: f(x) > 0.5}. In order to improve the result, thereafter we turn to the follow-
ing optimization problem:

min
Ω

J(u,Ω) := 1
2

∫
Ωm

(u− ū)2 dx

s.t. (2.2) with f(x) =
{

1, x ∈ Ωint

0, x ∈ Ω \ Ωint

(2.5)

Note that problem (2.5) is restricted to the original state equation (2.2) with a modified right
hand side, which now depends on the shape of Ωint. In this problem formulation it is minimized
over Ω and not Ωint, which determines the shape of the source f . Later, descent directions will
be continuous deformations defined on Ω, which are zero at ∂Ω such that the outer shape is
fixed. Thus, Ωint is simultaneously changed together with Ω.

If we assume a reasonable solution of the relaxed problem (2.4) and an efficient rounding
strategy, we have a good initial guess for (2.5) and only small corrections to the shape of the
distribution of f have to be made.

In the following we formulate the Lagrangian of problem (2.5) where we indicate the depen-
dence of f on Ω by f(Ω) and obtain

G (u,w, f(Ω)) = 1
2

∫
Ωm

(u− ū)2 dx+
∫

Ω
c(∇u)T∇w − ubT∇w dx

+
∫
∂Ω
wgu ds−

∫
Ω
fw dx. (2.6)

Differentiating (2.6) with respect to the state variable u in the sense

d

dt
G (u+ tz, w, f(Ω))

∣∣∣
t=0

= 0 ∀ z ∈ H1(Ω)

then yields the weak formulation of the adjoint equation: Find w ∈ H1(Ω) such that∫
Ω
c(∇w)T∇z − zbT∇w dx+

∫
∂Ω
zgw ds = −

∫
Ωm

(u− ū)z dx (2.7)

for all z ∈ H1(Ω).
Up to now we have considered the general case of arbitrary velocity fields, which is impor-

tant for the presentations in Section 3. For the physical model we make the assumption of
incompressiblity of the velocity b.

Remark 2.1. If we choose a velocity field that fulfills div(b) = 0, the state equation simplifies
to

−c∆u+ bT∇u = f

due to the identity div(bu) = udiv(b) + bT∇u. In that case we can apply Green’s identity to the
adjoint equation (2.7) and obtain∫

Ω
−cz∆w − zbT∇w dx +

∫
∂Ω
z(gw + c

∂w

∂n
+ wbTn − wbTn) ds = −

∫
Ωm

(u − ū)z dx.
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From that we can derive the adjoint PDE in strong from

−c∆w + (−bT )∇w = −χΩm(u− ū) in Ω

w(−bT )n− c∂w
∂n

= (g − bTn)︸ ︷︷ ︸
=max{0,−bTn}

w on ∂Ω.

Note that in this case the same assembly routine can be used with a different direction of the
velocity field.

In the case div(b) = 0 and g = max
{

0, bTn
}

one can proof existence and uniqueness of
weak solutions. This yields the invertability of the control-to-state map, which is an important
ingredient for the optimization algorithms in the next section.

Remark 2.2. In order to apply Lax Milgram theorem, which yields existence and uniqueness of
solutions of (2.2), we first observe the equivalence

−
∫

Ω
ubT∇u dx =

∫
Ω

udiv(bu)︸ ︷︷ ︸
=u2div(b)+ubT∇u

dx −
∫
∂Ω
u2bTn ds

⇔ −
∫

Ω
ubT∇u dx = −1

2

∫
∂Ω
u2bTn ds.

By assuming Γ1 := {x ∈ ∂Ω :
∣∣bTn∣∣ ≥ η} for η > 0 and |Γ1| > 0 the generalized Friedrichs

inequality (cf. [25, Chapter 2]) yields a constant r > 0, which is independent of u, such that

a1(u, u) =
∫

Ω
c(∇u)T∇u dx− 1

2

∫
∂Ω
u2bTn ds +

∫
∂Ω
gu2 ds

=
∫

Ω
c(∇u)T∇u dx+ 1

2

∫
∂Ω

∣∣bTn∣∣u2 ds

≥ min
{
c,
η

2

}(∫
Ω

(∇u)T∇u dx+
∫

Γ1

u2 ds

)
≥ r‖u‖H1(Ω)

which yields the coercivity of a1.

Note that under the assumptions in Remark 2.1 and 2.2 also the adjoint equation admits a
unique solution.

3 Optimization algorithm
The idea we follow in this section is to combine solutions of the problems (2.4) and (2.5) in order
to obtain an approximate solution for (2.3). Note that a discussion on a regularization strategy
for the binary problem (2.3) is thereby shifted to the relaxation and shape optimization problem.
For simplicity we discuss the relaxation problem in a finite dimensional setting. This means that
the optimization operates on discretized PDEs. After that we introduce the shape optimization
problem and show the link between both.

3.1 A continuous optimization approach
In our algorithm we compute an initial guess of the parameter distribution by solving the relaxed
problem (2.4). This is in the class of PDE-constraint optimal control problems with bounds on
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the control. In this subsection we concentrate on a finite dimensional setting. This means that
we apply the semi-smooth Newton optimization algorithm on the discretization of (2.4). For a
discussion on optimization in function spaces see for instance [14, 27, 26]. A survey on methods
for similar problems can be found in [13].

In the following we assume Vh ⊂ H1(Ω) to be the standard finite element space with Lagrange
polynomials on a triangulation or structured mesh in Ω. Let M be the mass matrix and S the
stiffness matrix corresponding to the model problem (2.2), both in terms of Vh. Further, let M̃
be a reduced mass matrix in the sense

∫
Ωm

p1p2 dx for all p1, p2 ∈ Vh. We can then formulate
the finite dimensional optimization problem

min
f∈Vh

J(u, f) := 1
2 (u− ū)T M̃ (u− ū) + µ

2 f
TMf

s.t. Su = Mf and 0 ≤ f ≤ 1.

From this we can derive the reduced cost functional

Ĵ(f) := 1
2

[(
S−1Mf

)T
M̃S−1Mf − 2

(
S−1Mf

)T
M̃ū+ ūM̃ ū+ µfTMf

]
and further by differentiation with respect to f the reduced gradient

∇Ĵ(f) = MTS−T M̃S−1Mf −MTS−T M̃ū+ µMf

and the Hessian
∇2Ĵ(f) = MTS−T M̃S−1M + µM.

Note that S−1 and S−T are only used as symbols for the state (2.2) and adjoint (2.7) solver.
We apply for both PDEs an iterative solver, which is further discussed in Section 4. Similarly
a multiplication with the mass matrix M means the assembly of a volumic source term. This
matrix is not built explicitly.

Let J be the index set of the degrees of freedom in Vh. Then we define the active set for
upper and lower bounds

Ak+ := {j ∈ J : λk + γ
(
fk − f+

)
> 0}

Ak− := {j ∈ J : λk + γ
(
fk − f−

)
< 0}

(3.1)

and the active set Ak := Ak+ ∪ Ak−, respectively. Further, let Ik := J \ Ak denote the inactive
set. With χAk , χAk

−
and χAk

+
we denote restriction operators to the active sets.

We can then formulate the semismooth Newton system, which reflects the primal-dual active
set algorithm[

∇2Ĵ(fk) I
γχAk −χIk

](
δf
δλ

)
= −

(
∇Ĵ(fk) + λk

γχAk
+

(fk − f+) + γχAk
−

(fk − f−)− χIkλk

)
for the case γ = µ. For a further discussion on the choice of the parameter γ see [3]. This system
can be transformed to a symmetric version[

∇2Ĵ(fk) χTAk

χAk 0

](
δf
δλAk

)
= −

(
∇Ĵ(fk) + χAkλk

χAk
+

(fk − f+) + χAk
−

(fk − f−)

)
(3.2)

where δλAk ∈ R|A
k| is the restriction of Lagrange multiplier δλ to the active set. Updates are

then computed via λk+1 ← λk+χTAkδλAk and λk+1
Ik ← 0. This is computationally more favorable
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since it allows to use MINRES instead of GMRES as linear solver. Yet, it should be remarked
that the dimension of system (3.2) changes in every iteration k when the number of indices in
the active set Ak changes.

The advantage of an iterative Krylov method is, that we do not need to construct the system
matrix in (3.2), which would require to compute S−1 and S−T . Only a function for matrix vector
products is necessary, which then invokes the iterative solvers for state (2.2) and adjoint (2.7)
equations.

3.2 Shape optimization approach
In the previous subsection we describe an algorithm that yields a solution to the relaxation of
our original optimization problem. This minimizer takes values in the interval [0, 1]. For the
moment we assume that we have a rounding strategy, which determines regions where the source
term (right hand side in problem (2.3)) is active and where not. This strategy is later described
in more detail. We now concentrate on a gradient descent for the shape problem (2.5), which is
subsequent to (2.4).

We start with the definition of shape functionals like in the objective function in problem
(2.5).

Definition 3.1. Let D ⊂ Rd, D 6= ∅ for d ∈ N, d ≥ 2 and A ⊂ {Ω: Ω ⊂ D}. A function

J : A→ R, Ω 7→ J(Ω)

is called a shape functional.

In order to analyze sensitivities of shape functionals with respect to deformations of the
underlying shape we define the perturbation of a domain.

Definition 3.2. Let D be as in Definition (3.1) and {Ft}t∈[0,T ] for T > 0 a family of mappings
Ft : D → Rd such that F0 is the identity on Rd restricted to D. We define the perturbation of a
domain Ω ⊂ D by

Ωt := {Ft(x) : x ∈ Ω}

and the perturbed boundary Γt of Γ = ∂Ω analogously.

In the field of shape optimization there are two common choices for Ft (for further reading
see [24, 6]). Given a differentiable vector field v : Rd → Rd the perturbation of identity has the
following form

Ft(x) = x+ tv(x). (3.3)

Alternatively, the velocity method, where shapes are assumed to be particles following a transport
equation in terms of the velocity field v as

∂ξx(t)
∂t

= v (ξx(t)) , t ∈ [0, T ]

ξx(0) = x

Ft(x) = ξx(t).

The proof of Theorem 3.5 is based on the perturbation of identity. Yet, in Section 3.3 and 4
we will focus on deformations according to the velocity method, which is a natural choice when
dealing with level-sets.

The sensitivity analysis in this work makes use of the concept of material derivatives.
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Definition 3.3. Let Ω,Ωt, Ft be as in Definition 3.2 and {ut : Ωt → R, t < T} a family of
functions on perturbed domains. The material derivative of p(= p0) in x ∈ Ω is given by

u̇(x) = lim
t↘0

(ut ◦ Ft)(x)− u(x)
t

.

In the following we use both u̇ and Dm(u) for the material derivative of u.
Finally, the directional derivative of a shape is defined as follows:

Definition 3.4. Let again D ⊂ Rd, D 6= ∅ for d ∈ N, d ≥ 2 be open. Further, let Ω ⊂ D and
J be a shape functional according to Definition 3.1. The shape derivative of J at Ω in direction
v ∈ C1

0 (D,Rd) is defined as

dJ(Ω)[v] := lim
t↘0

J(Ωt)− J(Ω)
t

.

With these definitions we can formulate the directional derivative of the objective function
in the shape optimization problem.
Theorem 3.5. Let u ∈ H1(Ω) denote the weak solution of (2.2), which additionally fulfills the
constraints in (2.5), with a source f depending on Ωint. Further, let w ∈ H1(Ω) be the weak
solution of the adjoint equation (2.7). The shape deriviative of the functional J in direction of a
vector field v ∈ C1

0 (D,Rd) is given by

dJ(u,Ω)[v] =
∫

Ω
−c(∇u)T

(
∇v + (∇v)T

)
∇w − ubT (∇v)T∇w

+ div(v)
[

1
2χΩm(u− ū)2 + c(∇u)T∇w − ubT∇w − fw

]
dx. (3.4)

Proof. Following the presentation in [6, Chapter 10, Section 5.2] we reformulate the objective
function J as the solution of the saddle point problem

J(u,Ω) = inf
u∈H1(Ω)

sup
w∈H1(Ω)

G(u,w,Ω) (3.5)

where w plays the role of the Lagrange multiplier. We then apply Theorem 2.1 in [5] in order to
differentiate the right hand side of (3.5) in direction of a vector field v ∈ C1

0 (D,Rd) according to
the transformation (3.3). The following two identities show the material derivative of integrated
quantities for both a volume integral over Ω and a surface integral over ∂Ω

Dm

(∫
Ωt

pt dx

)
=
∫

Ω
ṗ+ div(v)p dx

Dm

(∫
∂Ωt

pt dx

)
=
∫
∂Ω
ṗ+ div∂Ω(v)p dx.

For more details and a proof we refer the reader to [12, 28]. We then obtain the shape derivative
at Ω in direction v

dG (u,w, f(Ω)) [v] = d

dt
G (ut, wt, f(Ωt))

∣∣∣
t=0

=∫
Ω
Dm

[
1
2χΩm(u− ū)2 + c(∇u)T∇w − ubT∇w − fw

]
+ div(v)

[
1
2χΩm(u− ū)2 + c(∇u)T∇w − ubT∇w − fw

]
dx

+
∫
∂Ω
Dm(wgu) + div∂Ω(v)wgu ds. (3.6)
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Under the assumption that v vanishes in a small neighborhood of ∂Ω we can neglect div∂Ω(v).
This is reasonable due to the fact, that the outer shape of Ω is not intended to be a variable in
the optimization. Utilizing rules for the material derivatives (cf. [28]) it follows that

Dm(1
2χΩm

(
u− ū)2) = χΩm u̇(u− ū)

Dm

(
c(∇u)T∇w

)
= c(∇u̇)T∇w + c(∇u)T∇ẇ − c(∇u)T (∇v + (∇v)T )∇w

Dm

(
ubT∇w

)
= u(bT∇ẇ − bT (∇v)T∇w) + u̇bT∇w

Dm (fw) = ḟw + fẇ.

Plugging this into equation (3.6) and verifying that ḟ = ˙χΩint = 0 we obtain

dG (u,w, f(Ω)) [v] =∫
Ω
χΩm u̇(u− ū) + c(∇u̇)T∇w + c(∇u)T∇ẇ − c(∇u)T

(
∇v + (∇v)T

)
∇w

− u(bT∇ẇ − bT (∇v)T∇w)− u̇bT∇w − ḟw − fẇ dx

+ div(v)
[

1
2χΩm(u− ū)2 + c(∇u)T∇w − bT∇w)− fw

]
dx+

∫
∂Ω
Dm(wgu) ds.

Since u and w are solutions to (2.2) and (2.7), respectively, we can plug u̇ and ẇ in the role of
test functions and obtain (3.4).

Note that in the formulation of the shape optimization problem (2.5) a set of feasible shapes
is not specified. This discussion is beyond the scope of this work and can be found for instance
in [23]. Here we assume that the inner product of a suitable shape space is given by the following
bilinear form: Let a2 : H1 (Ω,Rd)×H1 (Ω,Rd)→ R be given by

a2(p, q) := (1− α)
∫

Ω

d∑
i=1

(∇pi)T∇qi dx+ α

∫
Ω

d∑
i=1

pi qi dx (3.7)

for an α ∈ (0, 1). We then solve

a(ψ, v) = dJ(u,w,Ω)[v] ∀ v ∈ H1 (Ω,Rd) (3.8)

in order to obtain a representation ψ for the shape gradient. In [22] the bilinear form of linear
elasticity is chosen and advantages with respect to mesh quality are discussed. Yet, here we
concentrate on (3.7) since no boundary conditions have to be specified. This is important since
we assume that the position of shapes are unknown. It is thus possible that shapes are close to
the outer boundary of Ω. If we specify a bilinear form for the gradient representation, which
is based on, e.g., homogeneous Dirichlet conditions, the deformation field ψ is influenced in the
neighborhood of the shapes in an unintended manner.

3.3 A combined optimization algorithm
A common approach (see for instance [19, Section 6.3]) would be to use the vector field ψ as a
deformation to the finite element mesh in Ω. This deformation can either be in the form of the
perturbation of identity (3.3) or the velocity method (3.2). Assuming that the interface between
Ωout and Ωint is resolved within the finite elements, this approach can be used as a descent
direction for the objective in (2.5). The advantage of this approach is that Ωint and the source
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term f are perfectly resolved within the mesh in each optimization iteration. On the other hand,
one has to steadily reassemble all arising discretization operators for the PDEs.

Alternatively, we follow the so called level-set approach (see for instance [2]). The interface
between Ωint and Ωout is implicitly prescribed by a level-set of a function φ : Ω→ R in the form

x ∈


Ωout if φ(x) < 0
∂Ωint if φ(x) = 0
Ωint if φ(x) > 0.

The advantage of this approach is, that interfaces do not have to be resolved in the mesh.
As a result structured grids are possible for the discretization of the PDEs leading to major
computational advantages. Yet, the interpretation of ψ as a descent direction is more com-
plicated compared to a mesh deformation. For this purpose we define the level-set function
φ : Ω× (0, T ]→ R to be a density distribution in an advection diffusion transport equation

∂φ

∂t
− ε∆φ+ div(ψφ) = 0 in Ω× (0, T ]

φψTn− ε∂φ
∂n

= gφ on ∂Ω× (0, T ]

φ = φ̃ in Ω× {0}

(3.9)

where again g = max{0, ψTn} is chosen. The associated variational form is given by:
Find φ ∈ L2 (0, T : H1(Ω)

)
with φt ∈ L2 (0, T : H1(Ω)′

)
such that∫

Ω
pφt(t) dx +

∫
Ω
c(∇φ(t))T∇p− φ(t)ψT∇p dx +

∫
∂Ω
pgφ(t) ds = 0 (3.10)

for all p ∈ H1(Ω), for t pointwise a.e. in (0, T ) and φ(0) = φ̃.
Note that the diffusive part in this model might look surprising, since we want a pure transport

of the level-set function φ̃. Yet, the small influence of diffusion, which is controlled by a factor ε,
leads to smooth shapes and makes the separation and union of shapes possible. This is further
discussed in Section 4. The shape gradient ψ enters the system as a time-dependent velocity
field. The velocity ψ is assumed to be piece-wise constant in time and changes when a new
descent direction in the optimization problem is computed.

Remark 3.6. Note that the weak formulation requires ψ ∈ L∞(Ω) which we can not guarantee.
Since ψ is the weak solution of (3.8), further assumptions on the shape derivative dJ(u,w,Ω)[v]
would be required. Yet, in the discretized problem for a finite dimensional subspace the combina-
tion of (3.8) and the transport equation of the level set (3.10) provides the desired result.

From a computational point of view it is a crucial advantage that the shape derivative (3.4)
and gradient ψ, given by (3.8), can be completely described by volume terms. It is thus not
necessary to reconstruct the implicit surface {x ∈ Ω : φ(x) = 0} at any point in the algorithm.
However, care has to be taken by the integration of the right hand side in (2.2) since f = χΩint

is not representable in Vh. The choice of appropriate quadrature rules is discussed in Section 4.
Algorithm 1 shows the combination of the two optimization approaches discussed above.

From line 1 to 9 we have the classical primal-dual active set algorithm for the relaxed problem.
Then the initial level-set function φ0 is defined to reflect the interface ∂Ωint at the mean value of
the minimizer fk. This is done in line 9. Since fmin = 0 or fmax = 1 is not necessarily fulfilled,
we choose this rounding strategy instead of ∂Ωint = {x ∈ Ω : f(x) = 0.5}. In any case we obtain
φ0 ∈ [−0.5, 0.5].
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Algorithm 1 Combined optimization algorithm
1: Choose f0 = 0.5 as initial guess
2: k ← 0
3: while

∥∥∥∥( δf
δλAk

)∥∥∥∥
2
> ε1 do

4: Evaluate Ak+, Ak− and Ik according to (3.1)
5: Solve system (3.2) with MINRES
6: fk+1 ← fk + δf , λk+1 ← λk + χTAk δλAk and λk+1

Ik ← 0
7: k ← k + 1
8: end while
9: Compute initial level-set function φ0(x)← fk(x)−fk

min
fk

max−fk
min
− 1, x ∈ Ω

10: Optional: Interpolate φ0 from coarse grid VH to finer grid Vh, H > h

11: k ← 0
12: while ‖ψ‖L2(Ω) > ε2 do
13: Solve state equation (2.2) for u
14: Solve adjoint equation (2.7) for w
15: Compute shape gradient by solving a(ψ, v) = dJ(u,w,Ω)[v] for all v ∈ (Vh)d according to

(3.8)
16: Propagate the level-set by solving (3.9) for (0, T ] with φ̃ = φk and set φk+1 ← φ(T )
17: k ← k + 1
18: end while

Remark 3.7. We need additional assumptions for the initial level-set φ0 to produce a feasi-
ble shape Ωint. A minimum fmin and maximum fmax has to exist in Ω. Further, the set{
x ∈ Ω : φ0(x) = 0

}
has to cut out the domain Ωint. At least φ0 ∈ C(Ω) would be desirable.

Therefor, we could modify the Lagrangian (2.7) by adding the regularization of the relaxed prob-
lem and neglect the condition 0 ≤ f ≤ 1 leading to G̃(u,w, f) = G(u,w, f)+ µ

2
∫

Ω f
2 dx. The third

part of the optimality system given by the partial derivative of G̃ with respect to f is µf−w = 0 in
strong form. We can thus transfer the regularity of the adjoint w to f , which is under additional
assumptions in H2(Ω). Since in this work Ω is a d ∈ {2, 3} dimensional domain, the Sobolev
embedding theorem yields H2(Ω) ↪→ C(Ω). For further discussions we refer the reader to [7,
Section 6.3] for the homogeneous Dirichlet case and [20] for Robin-type boundary conditions.

With the initial guess of the location, number and shape of inclusions Ωint we then proceed
in line 10 of Algorithm 1. This step is optional and interpolates φ0 given in a coarse grid finite
element space VH to a finer space Vh. This is further addressed in Section 4. The lines 12 to 18
finally implement the shape optimization problem.

4 Numerical results
In this section we demonstrate the performance of the combined optimization Algorithm 1. We
therefore choose two test environments. First a two dimensional setting where PDE solutions are
computationally cheap and can be done by matrix factorization. A second test case is a similar
setting in three dimensions where we concentrate on the application of iterative solvers. In both
cases we want to emphasis the ability of the algorithm to change the topology of the domain Ω
in the sense, that we are not restricted to the number of inclusions Ωint, which are determined

11



Figure 2: Shape of the source term for simulated data.

Figure 3: PDE solution with diffusion coefficient c = 0.01 and and velocity field b = (1, 0)T
according to the source term depicted in Figure 2.

as initial guess in line 10 of Algorithm 1.
In the two dimensional setting the domain Ω with two inclusion Ωint is visualized in Figure

2. The domain is discretized by a 300 × 100 equidistant, structured mesh and we choose Vh
to be the standard bilinear finite element space. By choosing the source term f = χΩint we
compute a reference solution u according to the model equations (2.1). We then add Gaussian
noise to reference state and use it as measurements ū for the optimization algorithm. We choose
the variance to be 5% of the maximum value of the PDE state. Let umax be the maximum of
the discretized solution u the noise is then chosen according to N (0, umax · 0.05). The reference
solution is depicted in Figure 3 and the corresponding measurements in Figure 4. In a first test
we assume full observability, which means that Ωm = Ω.

The underlying model is based on a diffusivity constant c = 0.01 and a constant velocity field
b = (1, 0)T . In order to recover the shapes we start the primal-dual active set algorithm with
a regularization parameter µ = 5e−2 and accordingly γ = 2e+1. The effect of µ on the initial
guess is as follows. Decreasing µ leads to an initial solution that is closer to the original shape
depicted Figure 2. However there are unintended small shapes appearing all over the domain
due to the noisy data. Increasing the µ leads to an underestimation of the original shapes. Yet,

12



Figure 4: Advection-diffusion solution with normally distributed, additive noise according to
N (0, umax · 0.05).

Figure 5: Initial level-set after relaxation problem and before shape optimization (dashed) and
final level-set after shape optimization (solid).

this initial guess is more smooth, which is visualized in Figure 5 as the dashed line. The strategy
we follow is to find the smallest µ such that the number of shapes is stable and does not change,
which is done manually for the moment.

Both the tolerance for the Newton iteration in line 3 of Algorithm 1 and the tolerance for the
inner MINRES iteration in line 5 are chosen to be ε1 = 1e−12. Figure 6 visualized the number
of MINRES iterations and the norm of the Newton residual. In this example we only consider
one computational grid for both the initial phase and the shape optimization. Although it can
be proven, that the outer Newton iteration has a mesh-independent convergence (cf. [14]), this
is not true for the linear subproblems. Note that in each MINRES iteration two PDEs have to
be solved resulting in significant computational cost. This issue is addressed later for the three
dimensional case.

Figure 7 visualizes the initial shape and the first shape gradient. As pointed out in Section 3
the advantage of a volume formulation of shape derivative dJ(u,w,Ω)[v] and gradient ψ is, that
∂Ωint does not have to be constructed geometrically at any time in the algorithm. Only for the
integration of the piecewise constant source term f , which arises in the state equation (2.2) and
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Figure 6: Number of MINRES iterations in each linear sub-problem in primal-dual active set
algorithm together with l2-norm of Newton residual (log-scale).

Figure 7: Zoom into the junction of the two shapes in Figure 5 with a visualization of the shape
gradient and its impact to the level-set function.

the shape derivative (3.4), the actual shape Ωint has to be known. The quadrature is performed
according to Algorithm 2. The idea is to detect cells where the level-set function φ passes zero
values and increase the order of the underlying quadrature rule. For our particular choice of
Vh these are cells where the nodal values in one element do not have the same sign. Note that
this procedure works for piecewise linear, bilinear or trilinear basis functions in Vh only. This
quadrature is not exact, since the integrand is not a polynomial in the cells, where the level-set
function passes zero. Yet, this saves us from reconstructing a geometric representation of the set
{x ∈ Ω : φ(x) = 0}. A more accurate but computationally more expensive strategy would for
instance be to use techniques like extended finite elements (XFEM) [18].

Figure 8 and 9 show the transport of the level-set. In the first figure φ0 is visualized as the
height of the surface. The transparent plane represents the zero level and the red line, which is
the intersection of this plane and the level-set function, is interpreted as ∂Ωint. Figure 9 shows
the same final level-set after the shape optimization part of Algorithm 1.

For the representation of the gradient ψ we choose α = 1e−2. The transport of the level-set
function φ given by the model (3.9) is discretized using a backward Euler time stepping with
a step-length of ∆t = 1. With each gradient φ one time step is computed. The values of the
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Algorithm 2 Choosing the quadrature order
Require: Let {f1, . . . , fn} be the nodal values within one finite element ej

1: if min{f1, . . . , fn} ·max{f1, . . . , fn} < 0 then
2: Choose Gauss-Legendre nodes of order q = 2
3: else
4: Choose Gauss-Legendre nodes of order q = 8
5: end if

Figure 8: Initial level-set after relaxation problem and before shape optimization.

gradient φ are decreasing during the optimization, which makes it necessary to link the diffusion
coefficient ε to φ. Otherwise, the transport of the level-set would turn into diffusion dominated
model, which is not intended. Let φmax be the maximum of the absolute values of the discretized
gradient φ. We then choose ε = φmax · 2e−3.

The objective function during the second phase of Algorithm 1 can be seen in Figure 10. Here
we can see the difference between the model and the measurements ‖u− ū‖L2(Ω) for the relaxed
control (dashed line) and after rounding the relaxed control with respect to the mean average
(dotted line). We observe, that the relaxed control leads to a better objective value than the
rounded one. Yet, by moving the level set slightly in the direction of the shape gradient we can
even outperform the relaxed solution. The algorithm stops according to the criterion in line 12
for ε2 = 1e−4.

Figure 9: Final level-set function after shape optimization.
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Figure 10: Objective value during shape optimization and level of objective function with respect
to relaxed control (dashed line, log-scale).

Figure 11: Inital guess (left) and final solution after 60 shape optimization iterations (right) with
partial measurements

We now run the same test as before, yet with partial measurements only. The setting is similar
to the one in Figure 1. We have a grid of 6× 6 sensors, which are equidistantly distributed, such
that Ωm covers 26.4% of Ω. The purpose of this test is, that the relaxation problem overestimates
the number of shapes as depicted in Figure 11 on the left. Here it can be seen on the right, that
after the stopping criterion is reached, three shapes are united into one. These results are
achieved by increasing the diffusion in the level-set transport equation to ε = φmax · 5e−3.

Our second example is a three dimensional case similar to the two dimensional one. Here we
want to point out the computational cost for the relaxation problem. Since we only want a rough
estimation of the number and position of the shapes Ωint, we solve this problem on a coarser level.
As pointed out earlier we solve the state (2.2) and adjoint equation (2.7) with an iterative solver.
Here we choose a GMRES iteration preconditioned with geometric multigrid, which is based on
a hierarchical grid structure. The standard geometric multigrid preconditioner of the PETSc
toolbox is used with one V-cycle per GMRES iteration. The preconditioner is configured with
two SOR pre-smoothing and two post-smoothing steps, respectively. We thus have the geometric
structure and interpolation operators of several finite element spaces Vh1 ⊂ · · · ⊂ Vhl

available.
The spaces Vhi

are again based on linear finite elements. This is utilized in line 10 of Algorithm
1, where the initial guess obtained by the relaxation solver can optionally be interpolated to a
fine grid for the shape optimization.

The computational domain for the three dimensional test is a cuboid given by Ω = [0, 2] ×
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Figure 12: Initial configuration after relaxation problem on coarse grid (top left) and level-set
after 10, 50 and 100 (bottom right) shape optimization steps.

[0, 1]× [0, 1]. Further, the source term, which is used to generate the measurements, is chosen to
be Ωint = [0.3, 0.7]× [0.4, 0.8]× [0.2, 0.4] ∪ [0.5, 0.7]× [0.5, 0.7]× [0.2, 0.8] ∪ [0.9, 1.3]× [0.2, 0.6]×
[0.5, 0.8]. The velocity field is given by the constant b = (1, 0, 0)T . We have again additive noise
on the measurements, which is distributed according to N (0, umax · 0.05). These measurements
are generated on fine grid and the multigrid restriction is used to obtain a representation on the
coarse grid for the relaxation problem. Ω is discretized by 10, 350 tetrahedrons on the coarse
grid using the Delaunay algorithm in the mesh generator GMSH [9]. We then obtain by three
hierarchical refinements 5, 299, 200 elements on the finest grid level. The second grid VH := Vh2

is used for the relaxation problem and the finest grid VH := Vh4 for the shape optimization.
Figure 12 shows the ∂Ωint after the relaxation problem and after 10, 50, 100 iterations of the

shape optimization. In the first picture it can be seen how the intial guess is influenced by edges
in the coarse grid. This is smoothed out in the following shape optimization iterations on the
much finer grid. The parameter are chosen similar to the two dimensional case as µ = 5e−2,
γ = 2e+1, α = 1e−1, ε1 = 1e−12 and ε2 = 1e−4. The propagation of the level-set function is
controlled by ε = φmax · 6e−3, ∆t and one time step per optimization iteration. As a result we
can see that again it is possible to split the shape into two.

5 Conclusion
This paper presents a method towards mixed integer PDE constrained optimization by circum-
venting the computational complexity of combinatorial optimization approaches. The original
PDE constrained problem with binary variables, which represent a control that is either active or
inactive, is replaced by a relaxed problem leading to an approximate solution. Yet, this approx-
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imate solution is a control with continuous and not discrete values. It turns out that a rounding
strategy based on the average value of the relaxed control may lead to poor results. Using this
as an initial guess we improve the control by interpreting it as a level-set function and moving
it slightly in the direction of a shape gradient. From a computational point of view this method
is attractive since it can be formulated for structured grids. The important fact is, that the
interface, which separates active and inactive control, does not have to be constructed during
the algorithm.

We also demonstrate that the relaxation problem can be computed on a much finer grid than
the shape problem leading to a computationally cheap algorithm with high spatial resolution.
Moreover, we are able to bypass some major challenges of shape optimization methods. Since the
shape part of our algorithm starts with a good initial guess, large deformations are not necessary.
We also demonstrate that we are not bound to the topology of the initial guess. The domain
formulation of shape derivatives and gradients together with a small amount of diffusion on the
level-set transport equation enables us to join and split shapes.
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