Skip to main content
Log in

Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider nonlinear optimization problems with cardinality constraints. Based on a continuous reformulation, we introduce second-order necessary and sufficient optimality conditions. Under such a second-order condition, we can guarantee local uniqueness of Mordukhovich stationary points. Finally, we use this observation to provide extended local convergence theory for a Scholtes-type regularization method, which guarantees the existence and convergence of iterates under suitable assumptions. This convergence theory can also be applied to other regularization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Candes, E., Wakin, M.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  2. Miller, A.: Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC Press, Boca Raton (2002)

    Book  MATH  Google Scholar 

  3. Weston, J., Elisseeff, A., Schölkopf, B., Kaelbling, P.: The use of zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 1439–1461 (2003)

  4. Galati, M.: Decomposition Methods for Integer Linear Programming. Ph.D. thesis (2010)

  5. Gade, D., Küçükyavuz, S.: Formulations for dynamic lot sizing with service levels. Naval Res. Logist. (NRL) 60(2), 87–101 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74(2), 121–140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Comput. Optim. Appl. 43(1), 1–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lorenzo, D.D., Liuzzi, G., Rinaldi, F., Schoen, F., Sciandrone, M.: A concave optimization-based approach for sparse portfolio selection. Optim. Methods Softw. 27(6), 983–1000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Murray, W., Shek, H.: A local relaxation method for the cardinality constrained portfolio optimization problem. Comput. Optim. Appl. 53(3), 681–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Loh, P.L., Wainwright, M.J.: Support Recovery Without Incoherence: A Case for Nonconvex Regularization. arXiv preprint arXiv:1412.5632 (2014)

  11. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23(3), 1480–1509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pan, L., Xiu, N., Fan, J.: Optimality conditions for sparse nonlinear programming. Sci. China Math. 60(5), 759–776 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burdakov, O.P., Kanzow, C., Schwartz, A.: Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 26(1), 397–425 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, M., Mitchell, J.E., Pang, J.S., Shen, X., Wächter, A.: Complementarity formulations of l0-norm optimization problems. Industrial Engineering and Management Sciences. Technical Report. Northwestern University, Evanston, IL, USA (2013)

  15. Červinka, M., Kanzow, C., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. 160(1–2), 353–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Branda, M., Bucher, M., Červinka, M., Schwartz, A.: Convergence of a scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization. Comput. Optim. Appl. (2018). https://doi.org/10.1007/s10589-018-9985-2

  17. Yuan, G., Ghanem, B.: Sparsity constrained minimization via mathematical programming with equilibrium constraints. arXiv preprint arXiv:1608.04430 (2016)

  18. Adam, L., Branda, M.: Nonlinear chance constrained problems: optimality conditions, regularization and solvers. J. Optim. Theory Appl. 170(2), 419–436 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Curtis, F.E., Wächter, A., Zavala, V.M.: A Sequential Algorithm for Solving Nonlinear Optimization Problems with Chance Constraints. Tech. Rep. 16T-012, COR@L Laboratory, Department of ISE, Lehigh University (2016)

  20. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  21. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht (1998). (Nonconvex Optimization and its Applications)

    Book  MATH  Google Scholar 

  22. Guo, L., Lin, G.H., Ye, J.J.: Second-order optimality conditions for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 158(1), 33–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoheisel, T., Kanzow, C.: First-and second-order optimality conditions for mathematical programs with vanishing constraints. Appl. Math. 52(6), 495–514 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nocedal, J., Wright, S.J.: Numerical Optimization, 2, ed edn. Springer series in operations research and financial engineering. Springer, New York [u.a.] (2006)

  26. Steffensen, S., Ulbrich, M.: A new relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 20(5), 2504–2539 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bertsekas, D.P., Ozdaglar, A.E.: Pseudonormality and a lagrange multiplier theory for constrained optimization. J. Optim. Theory Appl. 114(2), 287–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kanzow, C., Schwartz, A.: Mathematical programs with equilibrium constraints: enhanced fritz john-conditions, new constraint qualifications, and improved exact penalty results. SIAM J. Optim. 20(5), 2730–2753 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kanzow, C., Schwartz, A.: The price of inexactness: convergence properties of relaxation methods for mathematical programs with complementarity constraints revisited. Math. Oper. Res. 40(2), 253–275 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kirst, P., Rigterink, F., Stein, O.: Global optimization of disjunctive programs. J. Glob. Optim. 69(2), 283–307 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Alexandra Schwartz and Max Bucher is supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt. The authors would like to thank two anonymous referees and the editors for carefully reading the manuscript and asking the right questions, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Schwartz.

Additional information

Communicated by Nikolai Osmolovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucher, M., Schwartz, A. Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems. J Optim Theory Appl 178, 383–410 (2018). https://doi.org/10.1007/s10957-018-1320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1320-7

Keywords

Mathematics Subject Classification

Navigation