Skip to main content
Log in

Modeling Stochastic Dominance as Infinite-Dimensional Constraint Systems via the Strassen Theorem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We use the Strassen theorem to solve stochastic optimization problems with stochastic dominance constraints. First, we show that a dominance-constrained problem on general probability spaces can be expressed as an infinite-dimensional optimization problem with a convenient representation of the dominance constraints provided by the Strassen theorem. This result generalizes earlier work which was limited to finite probability spaces. Second, we derive optimality conditions and a duality theory to gain insight into this optimization problem. Finally, we present a computational scheme for constructing finite approximations along with a convergence rate analysis on the approximation quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  2. Shaked, M., Shanthikumar, J.: Stochastic Orders. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  3. Noyan, N., Rudolf, G., Ruszczyński, A.: Relaxations of linear programming problems with first order stochastic dominance constraints. Oper. Res. Lett. 34(6), 653–659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dentcheva, D., Henrion, R., Ruszczyński, A.: Stability and sensitivity of optimization problems with first order stochastic dominance constraints. SIAM J. Optim. 18(1), 322–337 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Drapkin, D., Schultz, R.: An algorithm for stochastic programs with first-order dominance constraints induced by linear recourse. Discrete Appl. Math. 158(4), 291–297 (2010). https://doi.org/10.1016/j.dam.2009.07.008

    Article  MathSciNet  MATH  Google Scholar 

  6. Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. Soc. Ind. Appl. Math. J. Optim. 14(2), 548–566 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints. Math. Program. 99, 329–350 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance constraints. J. Bank. Finance 30(2), 433–451 (2006)

    Article  MATH  Google Scholar 

  9. Roman, D., Darby-Dowman, K., Mitra, G.: Portfolio construction based on stochastic dominance and target return distributions. Math. Program. 108(2), 541–569 (2006). https://doi.org/10.1007/s10107-006-0722-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Nie, Y., Wu, X., Homem-de Mello, T.: Optimal path problems with second-order stochastic dominance constraints. Netw. Spat. Econ. 12(4), 561–587 (2012). https://doi.org/10.1007/s11067-011-9167-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Fábián, C., Mitra, G., Roman, D.: Processing second-order stochastic dominance models using cutting-plane representations. Math. Program. 130(1), 33–57 (2011). https://doi.org/10.1007/s10107-009-0326-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Gollmer, R., Gotzes, U., Schultz, R.: A note on second-order stochastic dominance constraints induced by mixed-integer linear recourse. Math. Program. 126(1), 179–190 (2011). https://doi.org/10.1007/s10107-009-0270-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Dentcheva, D., Ruszczyński, A.: Robust stochastic dominance and its application to risk-averse optimization. Math. Program. 125, 85–100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dentcheva, D., Ruszczyński, A.: Optimization with multivariate stochastic dominance constraints. Math. Program. 117, 111–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Mello, T.H., Mehrotra, S.: A cutting surface method for uncertain linear programs with polyhedral stochastic dominance constraints. SIAM J. Optim. 20(3), 1250–1273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, J., Homem-de Mello, T., Mehrotra, S.: Sample average approximation of stochastic dominance constrained programs. Math. Program. 133(1–2), 171–201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lizyayev, A., Ruszczyński, A.: Tractable almost stochastic dominance. Eur. J. Oper. Res. 218(2), 448–455 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haskell, W., Shen, Z., Shanthikumar, J.: Optimization with a class of multivariate integral stochastic order constraints. Ann. Oper. Res. 206(1), 147–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dentcheva, D., Ruszczyński, A.: Stochastic dynamic optimization with discounted stochastic dominance constraints. SIAM J. Control Optim. 47(5), 2540–2556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haskell, W., Jain, R.: Stochastic dominance-constrained Markov decision processes. SIAM J. Control Optim. 51(1), 273–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Armbruster, B., Delage, E.: Decision making under uncertainty when preference information is incomplete. Working Paper (2011)

  22. Hu, J., Mehrotra, S.: Robust decision making using a general utility set. Technical Report, Working Paper, Department of IEMS, Northwestern University (2012)

  23. Hu, J., Mehrotra, S.: Robust decision making using a risk-averse utility set. Technical Report, Working Paper, Department of Industrial Engineering and Management Sciences, Northwestern University (2012)

  24. Strassen, V.: The existence of probability measures with given marginals. Ann. Math. Stat. 36(2), 423–439 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  25. Armbruster, B., Luedtke, J.: Models and formulations for multivariate dominance constrained stochastic programs. IIE Trans. 47(1), 1–14 (2014)

    Article  Google Scholar 

  26. Luedtke, J.: New formulations for optimization under stochastic dominance constraints. SIAM J. Optim. 19, 1433–1450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Armbruster, B.: A short proof of Strassen’s theorem using convex analysis. (2016). arXiv:1603.00137

  28. Wang, W., Ahmed, S.: Sample average approximation of expected value constrained stochastic programs. Oper. Res. Lett. 36(5), 515–519 (2008). https://doi.org/10.1016/j.orl.2008.05.003

    Article  MathSciNet  MATH  Google Scholar 

  29. Durrett, R.: Probability: Theory and Examples. Thomson Brooks/Cole, Grove (2005)

    MATH  Google Scholar 

  30. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  31. Bot, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  32. Rockafellar, R.T.: Conjugate Duality and Optimization, vol. 14. SIAM, Philadelphia (1974)

    Book  MATH  Google Scholar 

  33. Bonnans, J., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  34. Hernandez-Lerma, O., Lasserre, J.B.: Approximation schemes for infinite linear programs. SIAM J. Optim. 8(4), 973–988 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hernandez-Lerma, O., Lasserre, J.B.: Further Topics On Discrete-Time Markov Control Processes. Springer, New York (1999)

    Book  MATH  Google Scholar 

  36. Aliprantis, C., Border, K.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by A*STAR Grant 1421200078 and MOE tier I Grant R-266-000-083-113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Haskell.

Additional information

Communicated by René Henrion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haskell, W.B., Toriello, A. Modeling Stochastic Dominance as Infinite-Dimensional Constraint Systems via the Strassen Theorem. J Optim Theory Appl 178, 726–742 (2018). https://doi.org/10.1007/s10957-018-1339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1339-9

Keywords

Mathematics Subject Classification

Navigation