Skip to main content
Log in

Error Bounds for the Solution Sets of Quadratic Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this article, two types of fractional local error bounds for quadratic complementarity problems are established, one is based on the natural residual function and the other on the standard violation measure of the polynomial equalities and inequalities. These fractional local error bounds are given with explicit exponents. A fractional local error bound with an explicit exponent via the natural residual function is new in the tensor/polynomial complementarity problems literature. The other fractional local error bounds take into account the sparsity structures, from both the algebraic and the geometric perspectives, of the third-order tensor in a quadratic complementarity problem. They also have explicit exponents, which improve the literature significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually, an arbitrary system of polynomial equalities and inequalities can be reduced to a system of quadratic polynomial equalities and inequalities via polynomial reduction. This technique will be presented in Sect. 4.

  2. During the second revision, one referee kindly pointed out that an improvement can be given, if instead using Theorem 3.3 in the recent monograph by Hà and Pham [27]. The exponent in (2) can be improved to \(\frac{1}{R(n+r+s-1,d+1)}\)

  3. The first version only gave the proof for \({\mathbf {x}}\in V(\epsilon )\). One referee suggested the current version.

References

  1. Cottle, R.W., Pang, J.-S., Stone, R.: The Linear Complementarity Problem, Computer Science and Scientific Computing. Academic Press, Boston (1992)

    Google Scholar 

  2. Facchinei F., Pang J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. vol. 1 and 2. Springer, New York (2003)

  3. Huang, Z.-H., Qi, L.: Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66(3), 557–576 (2017)

    Article  MathSciNet  Google Scholar 

  4. Sturmfels, B.: Solving Systems of Polynomial Equations. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  5. Wang, J., Hu, S., Huang, Z.-H.: Solution sets of quadratic complementarity problems. J. Optim. Theory Appl. 176, 120–136 (2018)

    Article  MathSciNet  Google Scholar 

  6. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bai, X.L., Huang, Z.-H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)

    Article  MathSciNet  Google Scholar 

  8. Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fan, J.Y., Nie, J., Zhou, A.: Tensor eigenvalue complementarity problems. Math. Program. 170, 507–539 (2017). https://doi.org/10.1007/s10107-017-1167-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Ling, C., He, H.J., Qi, L.: On the cone eigenvalue complementarity problem for higher-order tensors. Comput. Optim. Appl. 63, 143–168 (2016)

    Article  MathSciNet  Google Scholar 

  11. Song, Y.S., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 3, 308–323 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Song, Y.S., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)

    Article  MathSciNet  Google Scholar 

  13. Song, Y.S., Yu, G.H.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170(1), 85–96 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13(2), 227–241 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Ling, L., He, H., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67, 341–358 (2018)

    Article  MathSciNet  Google Scholar 

  16. Luo, Z.Q., Tseng, P.: Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem. SIAM J. Optim. 2, 43–54 (1992)

    Article  MathSciNet  Google Scholar 

  17. Robinson, S.M.: Some continuity properties of polyhedral multifunctions. Math. Programm. Stud. 14, 206–214 (1981)

    Article  MathSciNet  Google Scholar 

  18. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49(4), 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  19. Pang, J.-S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  Google Scholar 

  21. D.Acunto D., Kurdyka K.: Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials, Annales Polonici Mathematici. Instytut Matematyczny Polskiej Akademii Nauk, 87, 51–61 (2005)

    Article  MathSciNet  Google Scholar 

  22. Hörmander, L.: On the division of distributions by polynomials. Ark. Mat. 3, 555–568 (1958)

    Article  MathSciNet  Google Scholar 

  23. Li, G.: Global error bounds for piecewise convex polynomials. Math. Program. 137, 37–64 (2013)

    Article  MathSciNet  Google Scholar 

  24. Łojasiewicz, S.: Sur le problème de la division. Stud. Math. 18, 87–136 (1959)

    Article  Google Scholar 

  25. Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)

    Article  MathSciNet  Google Scholar 

  26. Li, G., Mordukhovich, B.S., Pham, T.S.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math. Program. 153, 333–362 (2014)

    Article  Google Scholar 

  27. Hà, H.V., Pham, T.S.: Genericity in polynomial optimization. Series on Optimization and its Applications, vol. 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2017)

    MATH  Google Scholar 

  28. Luo, Z.Q., Sturm, J.: Error bounds for quadratic systems. In: Frenk, H., et al. (eds.) High Performance Optimization, pp. 383–404. Springer, Boston (2000)

    Chapter  Google Scholar 

  29. Luo, Z.Q., Pang, J.S.: Error bounds for analytic systems and their applications. Math. Program. 67, 1–28 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful for the two referees and the editor for helpful comments and valuable suggestions. In particular, one referee’s suggestion improves Theorem 3.1. This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 11171328 and 11431002), and Innovation Research Foundation of Tianjin University (Grant Nos. 2017XZC-0084 and 2017XRG-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglong Hu.

Additional information

Communicated by Guoyin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Wang, J. & Huang, ZH. Error Bounds for the Solution Sets of Quadratic Complementarity Problems. J Optim Theory Appl 179, 983–1000 (2018). https://doi.org/10.1007/s10957-018-1356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1356-8

Keywords

Mathematics Subject Classification

Navigation