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Abstract. This paper deals with the non-uniqueness of the solutions of an analysis-Lasso
regularization. Most of previous works in this area is concerned with the case where the solution
set is a singleton, or to derive guarantees to enforce uniqueness. Our main contribution consists in
providing a geometrical interpretation of a solution with a maximal D-support, namely the fact that
such a solution lives in the relative interior of the solution set. With this result in hand, we also
provide a way to exhibit a maximal solution using a primal-dual interior point algorithm.
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1. Introduction. We consider the problem of estimating an unknown vector
x0 ∈ Rn from noisy observations

(1) y = Φx0 + w ∈ Rq,

where Φ is a linear operator from Rn to Rq and w is the realization of a noise. This
linear model is widely used in imaging for degradation such that entry-wise masking,
convolution, etc, or in statistics under the name of linear regression. Typically, the in-
verse problem associated to (1) is ill-posed, and one should add additional information
in order to recover at least an approximation of x0.

During the last decade, sparse regularization in orthogonal basis has become a
classical tool in the analysis of such inverse problem, in particular in imaging [4, 8]
or in statistics and machine learning [19]. The sparsity of some coefficients x ∈ Rn is
measured using the counting function, or abusively `0 norm, which reads

||x||0 = Card(supp(x)) where supp(x) = {i ∈ {1, . . . , n} : xi 6= 0} ,

where supp(x) is coined the support of the vector x. The associated regularization

Argmin
x∈Rn

1

2
||y − Φx||22 + λ||x||0

is however known to be NP-hard [12]. A first way to alievate this issue is to con-
sider greedy methods, such as the Matching Pursuit [9] or derivation from it as the
OMP [14], CoSAMP [13], etc. This will not be the concern of this paper which focus
on one of its most popular convex relaxation through the `1-norm. More precisely,
we consider the Lasso optimization problem [19] which reads

(2) Argmin
x∈Rn

1

2
||y − Φx||22 + λ||x||1,

where the `1-norm is defined as ||x||1 =
∑n
i=1 |xi|.
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2 A. BARBARA, A. JOURANI AND S. VAITER

In this work, we consider a more general framework, known as the sparse analysis
prior, cosparse prior or generalized Lasso. The idea is to not measure the sparsity
of the coefficients in an orthogonal basis, but in any dictionary. Formally, a dictio-
nary D is a linear operator from Rp to Rn which is defined through p n-dimensional
atoms di which may be redundant. Using this dictionary, one can build an analysis
regularization which reads ||D∗ · ||1 associated to the variational framework defined as

(3) Xλ = Argmin
x∈Rn

h(x) =
1

2
||y − Φx||22 + λ||D∗x||1.

This framework is known in the signal processing community as sparse analysis regu-
larization [5, 22] or cosparse regularization [11]. Probably the most popular example
of analysis sparsity-inducing regularizer is the Total Variation which was introduced
in [17] in a continuous setting for denoising. In the discrete setting, it corresponds to
take D∗ as a discretization of a derivative operator. In the context of one-dimensional
signals, a popular choice is to take a forward finite difference. Other popular choices
of dictionary includes translation invariant wavelets (which can be viewed as a higher
order total variation following [18]) or the concatenation of a derivative operator with
the identity, known under the name of Fused Lasso [20] in statistics.

When there is no noise, i.e. y = Φx0, it is common to use a constrained version
of (3) which reads

(4) X0 = Argmin
x∈Rn

||D∗x||1 subject to Φx = y.

It has been first introduced in [4] under the name Basis Pursuit for D = Id, and one
can easily see that (4) can be recasted as linear program (LP).

It is important to keep in mind that Xλ, nor X0 is typically not a singleton.
Most of previous works in this area is concerned with the case where the solution set
is a singleton, or to derive guarantees to enforce uniqueness. Necessary and sufficient
conditions has been derived in [24, 23] and also in [7] for the constrained case. In
this paper, we tackle the case where Xλ is not a singleton, and we want to better
understand the structure of the solution set in this case. Some insights are given
in [21], but the results are limited to the case where D = Id. In this work, the
authors give a bound on the size of the support, and prove that the LARS algorithm
converges to a solution with a maximal support. To our knowledge, our work is the
first to consider the analysis case.

2. Contributions. In section 3, we review some properties of the solution set.
In all this paper, we consider the following hypothesis of restricted injectivity

(5) KerD∗ ∩Ker Φ = {0},

in order to ensure that Xλ is well-defined and bounded. We prove in particular that
Xλ is a polytope, i.e. a bounded polyhedron.

Our main contribution is proved in section 4. It consist in providing a geometrical
interpretation of a solution with a maximal D-support, namely the fact that such
a solution lives in the relative interior of the solution set. More precisely, we are
concerned with the characterization of a vector of maximal D-support, i.e. a solution
of (3) such that for every x ∈ Xλ, ||D∗x||0 6 ||D∗x+||0.

Definition 1. A vector x+ ∈ Rn is a solution of maximal D-support if x+ is a
solution, i.e. x+ ∈ Xλ such that for every x ∈ Xλ, ||D∗x||0 6 ||D∗x+||0.
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We denote by Sλ the set of solution of (3) which have maximal D-support. Clearly
this set is well-defined and contained in Xλ. Our result is the following.

Theorem 2. Let x̄ ∈ Xλ. Then x̄ is a maximally D-supported solution if, and
only if, x̄ ∈ riXλ (or equivalently if x̄ ∈ riSλ). In other words,

Sλ = riSλ = riXλ.

We recall that for any set S, the relative interior riS of S is defined as its interior
with respecto to the topology of the affine hull of S.

With this result in hand, we provide a way to construct such maximal solutions.
In section 5, we show that with the help of a technical penalization using the so-called
concave gauge [2], we can construct a path which converges to a point in the relative
interior of Xλ, and more specifically, to the analytic center with respect to the chosen
gauge. We defer the precise statement to section 5.

3. The Solution Set. This section deals reviews some properties of the solution
set Xλ. The following proposition shows that even if Xλ is not reduced to a singleton,
its image by Φ or the analysis-`1-norm is single-valued.

Proposition 3 (Unique image). Let x1, x2 ∈ Xλ. Then,
1. they share the same image by Φ, i.e., Φx1 = Φx2 ;
2. they have the same analysis-`1-norm, i.e., ||D∗x1||1 = ||D∗x2||1.

A proof of this statement can be found for instance in [22].
It is known that standard `2-regularization suffers from sign inconsistencies, i.e.

two differents solutions can be of opposite signs at some indice. The following propo-
sition gives another important information: the cosign of two solutions cannot be
opposite.

Proposition 4 (Consistency of the sign). Let x1, x2 ∈ Xλ. Then,

∀i ∈ {1, . . . , p}, u1iu
2
i > 0,

where uk = D∗xk for k = 1, 2.

Proof. The proof of this statement follows closely the proof found in [1] for `1.
Suppose there exists i such that u1i and u2i have opposite signs. Then, one has

(6)
|u1i + u2i |

2
<
|u1i |+ |u2i |

2
.

Let z = u1 +u2. Using the convexity of x 7→ ||y−Φx||22 and inequality (6), we get that

1

2
||y − Φz||22 + ||D∗z||1<

1

2

((
1

2
||y − Φx1||22 + ||D∗x1||1

)
+

(
1

2
||y − Φx2||22 + ||D∗x2||1

))
= min
x∈Rn

1

2
||y − Φx||22 + ||D∗x||1,

which is a contradiction.

Condition (5) (we recall that all through this paper, we suppose this condition
holds) ensures that Xλ is a non-empty, convex and compact set. Recall for all the
following that given a lower semicontinuous real-valued extended convex function h
on Rl, its recession function can be defined by (Theorem 8.5 of [15])

h∞(d) = lim
λ↑+∞

h(z + λd)− h(z)

λ
, ∀(z, d) ∈ dom(h)× Rl.
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In fact, as stated by the following proposition, the solution set Xλ is a polytope.

Proposition 5. Xλ is a polytope (i.e. a bounded polyhedron).

Proof. Let us first prove that Xλ is a non-empty, convex and compact set. It
follows with the help of hypothesis (5) that {d : h∞(d) 6 0} = {0}. Hence, Xλ is
bounded.

We shall now prove that Xλ is a polytope. Let x̄ ∈ Xλ. According to Proposi-
tion 3, we have

Xλ ⊆ {x ∈ Rn : ||D∗x||1 = ||D∗x̄||1} ∩ {x ∈ Rn : Φx = Φx̄} .

The reverse inclusion came from the fact that if x shares the same image by Φ as x̄
and the same analysis-`1-norm, then the objective function at x is equal to the one
at x̄, hence is also a solution. Thus,

Xλ = {x ∈ Rn : ||D∗x||1 = ||D∗x̄||1} ∩ {x ∈ Rn : Φx = Φx̄} .

Hence, Xλ is a polyhedron. Since Xλ is a bounded set, it is also a polytope.

Owing to Proposition 5, we can rewrite the set Xλ as the convex hull of k points
in Rn as

Xλ = conv{a1, . . . , ak},

where ai are the extremal points of Xλ. Observe that each ai lives on the boundary
of the analysis-`1-ball of radius ||D∗x̄||1. Naturally, we can even rewrite the solution
as

Xλ = A∆k = {Az : z ∈ ∆k} ,

where A is a matrix n× k such that its columns are the vectors ai and the n-simplex
∆n of Rn is defined as

∆n =

{
x ∈ Rn :

n∑
i=1

xi = 1 and ∀i, xi > 0

}
= conv{e1, . . . , en},

where (e1, . . . , en) is the canonical basis of Rn. Since ai are the extremal points of Xλ,
notice that A has maximal rank. Observe in particular that the lines of the matrix
D∗A have same signs according to Proposition 4.

4. Maximal support and proof of Theorem 2. We recall that a vector
x+ ∈ Rn is a solution of maximal D-support if x+ is a solution, i.e., x+ ∈ Xλ such
that for every x ∈ Xλ, ||D∗x||0 6 ||D∗x+||0. The following proposition proves that the
D-maximal support is indeed uniquely defined.

Proposition 6. Let x ∈ Xλ. Then the two following propositions are equivalent.
1. x is a solution of maximal D-support, i.e. x ∈ Sλ.
2. For any x̄ ∈ Xλ, supp(D∗x̄) ⊆ supp(D∗x).

Proof. The two directions are proved separately.
(1) ⇒ (2). Suppose there exists i0 ∈ {1, . . . , p} such that i0 ∈ supp(D∗x̄) and i0 6∈
supp(D∗x). Observe that x̃ = 1

2 (x̄+ x) is also an element of Xλ by convexity of Xλ.
Using Proposition 4, we get that supp(D∗x̃) ⊇ supp(D∗x̄)∪supp(D∗x). In particular,
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supp(D∗x̃) ⊇ supp(D∗x) ∪ {i0} ) supp(D∗x). Hence, | supp(D∗x̃)| > | supp(D∗x)|
which contradicts the fact that x has maximal D-support.
(2)⇒ (1). Taking the cardinal in the property ∀x̄ ∈ Xλ, supp(D∗x̄) ⊆ supp(D∗x) is
sufficient.

In particular, two solutions of maximal support share the same D-support. Notice
that in this case, the sign vectors are also the same.

We start by a technical Corollary of Proposition 4 which will be convenient in the
following.

Corollary 7. There exists an integer m ∈ N, a matrix Λ = diag(λi)i=1,...,p with
λi ∈ {−1, 1} for i ∈ {1, . . . ,m} and λi = 0 for i ∈ {m+ 1, . . . , p}, and a permutation
matrix Σ such that for Γ = ΛΣ, one has

ΓD∗Xλ ⊂ (R+)m × {0}p−m.

Moreover, for all x ∈ Xλ, ||ΓD∗x||1 = ||D∗x||1.
Proof. Let x+ an element of Sλ. Consider I = supp(D∗x+), J = Ic and m = |I|.

Let Σ be the permutation matrix associated to any permutation σ which sends I to
{1, . . . ,m}. Define the matrix Λ by its diagonal as

λσ(i) =


1 if (D∗x+)σ(i) > 0

−1 if (D∗x+)σ(i) < 0

0 if (D∗x+)σ(i) = 0.

Now take any solution x ∈ Xλ and consider the vector u = ΓD∗x. Let i ∈
{1, . . . ,m}, then

ui = 〈ei, ΛΣD∗x〉.

Since Λ is self-adjoint, one has

ui = 〈Λei, ΣD∗x〉.

Since Λ is a diagonal matrix, we get that

ui = λi〈ei, ΣD∗x〉.

Now, since Σ is a permutation matrix, we have that Σ∗ = Σ−1, i.e.

ui = λi〈Σ−1ei, D∗x〉.

Using the permutation σ associated to Σ, we have that

ui = λi〈eσ−1(i), D
∗x〉,

which can be rewritten as

ui = λi〈dσ−1(i), x〉.

According to Proposition 4, one have (D∗x)σ−1(i)(D
∗x+)σ−1(i) > 0. Moreover, λi =

λσ(σ−1(i)) has the same sign than (D∗x+)σ−1(i). Thus, ui = λi〈dσ−1(i), x〉 > 0.
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For i ∈ {m+ 1, . . . , p}, we have that

ui = λi〈ei, ΣD∗x〉 = 0,

since λi = 0.

Note that the matrix Λ and Σ are not uniquely defined. Corollary 7 allows us to work
only on positive vectors in dimension m.

We will also need to exclude at some point the case where a solution x lives in the
kernel of D∗. The following lemma shows that if this is the case, then the solution
set is reduced to a singleton Xλ = {x}.

Lemma 8. If there exists x ∈ KerD∗ ∩Xλ, then Xλ = {x} .
Proof. We recall that Xλ ⊂ x+ Ker Φ. Let x̄ ∈ Xλ, and rewrite it as x̄ = x+ h

where h ∈ Ker Φ. Then, according to Proposition 3, one has ||D∗x̄||1 = ||D∗x||1 = 0.
In particular, ||D∗x̄||1 = ||D∗x + D∗h||1 = ||D∗h||1 = 0. Using hypothesis (5), we get
that h = 0.

We can now provide the proof of Theorem 2.

Proof of Theorem 2. We exclude here the case whereXλ is reduced to a singleton,
since the result is then trivially verified. Let us prove both direction separately.

(⇐: riXλ ⊆ Sλ). First, we recall that riXλ = ri(A∆k) = A ri ∆k. Let x̄ ∈ riXλ.
We have

x̄ = Az̄ with
k∑
i=1

z̄i = 1 and z̄i > 0.

For i ∈ {1, . . . ,m}, one has

(ΓD∗x̄)i = (ΓD∗Az̄)i = 〈ei, ΓD∗Az̄〉 = 〈ei, ΛΣD∗Az̄〉.

Using the fact that Λ is a diagonal matrix and Σ is a permutation matrix, we have
that

(ΓD∗x̄)i = λi〈DΣ−1ei, Az̄〉,

which can be rewritten, using the fact that Σ−1ei = eσ−1(i) where σ is the permutation
associated to Σ, as

(ΓD∗x̄)i = λi〈dσ−1(i), Az̄〉.

Now, one can rewrite it as

(ΓD∗x̄)i = λi〈(D∗A)∗eσ−1(i), z̄〉.

Since for any i, z̄i > 0 and, according to Proposition 4, there exists j0 such that
((D∗A)∗eσ−1(i))j0 > 0, one concludes that (ΓD∗x̄)i 6= 0.

(⇒: Sλ ⊆ riXλ). We are going to prove that Sλ = riSλ. Indeed, according to
(⇐), riXλ ⊆ Sλ. Moreover, since every element of Sλ is also an element of Xλ, we
have riXλ ⊆ Sλ ⊆ Xλ. In particular, aff Xλ = aff Sλ. Let

α = min
i∈supp(D∗x+)

|(D∗x+)i| = min
i∈{1,...,m}

(ΓD∗x+)i
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where x+ is an element of Sλ. Note that according to Lemma 8, since Xλ is not
reduced to a singleton, then supp(D∗x+) has cardinal greater than 1, hence α > 0.

Now take any u ∈ B∞(x+, r) ∩ aff Xλ where

r =
α− ε

||ΓD∗||∞,∞
,

and 0 < ε < α.
Let’s prove first that ΓD∗u ∈ (R∗+)m × {0}p−m. From the definition of u, we get

that

||ΓD∗u− ΓD∗x||∞ 6 ||ΓD∗||∞,∞||u− x||∞ 6 α− ε.

For i ∈ {1, . . . ,m}, one has |(ΓD∗u)i − (ΓD∗x)i| 6 α− ε. In particular one has

(ΓD∗u)i − (ΓD∗x)i > −α+ ε⇔ (ΓD∗u)i > (ΓD∗x)i − α+ ε.

Since (ΓD∗x)i−α > 0 and ε > 0, we conclude that (ΓD∗u)i > 0. Thus, (ΓD∗u)i > 0
for i ∈ {1, . . . ,m} and (ΓD∗u)i = 0 for i 6∈ {1, . . . ,m}.

It remains to prove that u is a solution of (3), i.e. u ∈ Xλ. Since u ∈ aff Xλ,
there exists t ∈ R and x ∈ Xλ such that

u = x+ + t(x− x+).

From this equality, we get that

||D∗u||1 = ||ΓD∗u||1 =

p∑
i=1

(ΓD∗u)i according to Corollary 7

=

p∑
i=1

(1− t)(ΓD∗x+)i + t(ΓD∗x)i

= (1− t)||ΓD∗x+||1 + t||ΓD∗x||1
= ||D∗x+||1 since ||D∗x+||1 = ||D∗x||1.

Moreover, Φu = Φx+ + t(Φx − Φx+) = Φx+. Thus, u is a solution which concludes
our proof.

5. Finding a Maximal Solution. Using the classical barrier function, in this
section we show how to get a path that converges to a relative interior point of Xλ,
which turns out to be the analytic center of Xλ.

Setting Q = Φ∗Φ is the Gram matrix and c = Φ∗y, we start by rewriting our
initial problem (3) as an augmented quadratic program under constraints, i.e.

min
x∈Rn,t∈Rp

1

2
〈Qx, x〉 − 〈c, x〉+ λ

p∑
i=1

ti subject to

{
−t 6 D∗x 6 t

ti > 0
,

witch also can be rewritten as

min
x∈Rn,t∈Rp

1

2
〈Qx, x〉 − 〈c, x〉+ λ

p∑
i=1

ti subject to


−t+ s = D∗x

t− s′ = D∗x

ti > 0, si > 0, s′i > 0

.
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Now observe that t =
1

2
(s + s′). Then setting z =

1

2

(
s
s′

)
, Ip the p by p iden-

tity matrix, Ĩ =
(
Ip −Ip

)
and e = (1, · · · , 1) ∈ R2p, we come to the following

equivalent formulation of the problem

(7) min
x∈Rn,z∈R2p

f(x, z) subject to z ∈ [0,+∞)2p

where

f(x, z) =

{
1

2
〈Qx, x〉 − 〈c, x〉+ λ〈e, z〉 if D∗x+ Ĩz = 0

+∞ elsewhere,

or equivalently

f(x, z) =

{
1

2
‖Φx− y‖2 − 1

2
‖y‖2 + λ〈e, z〉 if D∗x+ Ĩz = 0

+∞ elsewhere.

Its classical dual is

(8) max
x∈Rn,s∈R2p,u∈Rp

g(x, s, u) subject to s ∈ [0,+∞)2p

where

g(x, s, u) =

{
−1

2
〈Qx, x〉 if Du+ c−Qx = 0, s = λe− Ĩ∗u

−∞ elsewhere.

We set S(P ) (resp. S(D)) the optimal solutions’ set of problem (7) (resp. problem (8)).
We know thatXλ is non-empty and so S(P ). Since, in addition (7) is a convex problem
with polyedral constraints, S(D) is non empty and there is no duality gap. We denote
by α the optimal value of the two problems.

Proposition 9.
1. The optimal solution S(P ) of the problem (7) is bounded or equivalently the

set {(dx, dz) : f∞(dx, dz) 6 0, dz > 0} = {0},
2. S(., (D)) = {(s, u) : ∃x ∈ Rn such that (x, s, u) ∈ S(D)} is bounded, in other

words, the dual feasible solutions’ set is bounded in (s, u).

Proof. 1. Because of relation (5) it is not difficult to show that the optimal
solution S(P ) of the problem (7) is bounded.

2. Let (xk, sk, uk) be a sequence of the dual feasible solutions’ set. We have

sk = λe− Ĩ∗u =

(
λep

λep

)
−
(
uk

−uk
)

> 0, where ep = (1, · · · 1) ∈ Rp. It follows that

−λep 6 uk 6 λep. Hence (uk) and then (sk), is bounded.

Using the classical logarithmic barrier function introduced by Frish [6], we deal
with the family of problems (Pµ)µ>0 given by

θ(µ) = min
x∈Rn,z∈R2p

Fµ(x, z) = f(x, z) + ζ(z, µ)

where

ζ(z, µ) =

 µξ (z/µ) if µ > 0,
ξ∞(z) if µ = 0,
+∞ elsewhere,
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ξ(z) =

{
− lnϕ(z) if ϕ(z) > 0,
+∞ elsewhere, and ϕ(z) =


(

2p∏
i=1

zi

) 1
2p

if z > 0,

−∞ elsewhere.

Note that the function ϕ is strictly quasiconcave and then according to Lemma
1 of [2], for every µ > 0, the function ζµ : z 7→ ζ(z, µ) is strictly convex on (0,+∞)2p.

Proposition 10. For every µ > 0, the function Fµ is inf-compact on Rn × R2p

and strictly convex on Rn × (0,+∞)2p.

Proof. Let us show that

ξ∞(d) =

{
0 if d > 0,
+∞ elsewhere.(9)

Let (z, d) ∈ dom(ξ) × R2p. We have necessarily z > 0. First we observe that when
d 6∈ [0,+∞)2p, z + λd 6∈ [0,+∞)2p for λ large enough and then ξ∞(d) = +∞. Now
consider the case d > 0. Since z > 0 we have necessarily z + d > 0. The concave
gauge function ϕ is monotone with respect to its domaine the positive orthant. Then
by Proposition 2.1 of [3],

0 < ϕ(z + d) 6 ϕ(z + λd) 6 ϕ(λz + λd) = λϕ(z + d)

for λ large enough. It follows that

0 = lim
λ↑+∞

lnϕ(z + d)− lnϕ(z)

λ
6 lim
λ↑+∞

lnϕ(z + λd)− lnϕ(z)

λ

6 lim
λ↑+∞

lnλϕ(z + d)− lnϕ(z)

λ
= 0

and hence lim
λ↑+∞

lnϕ(z + λd)− lnϕ(z)

λ
= 0. Consequently ξ∞(d) = 0.

By Proposition 9, we have {(dx, dz) : f∞(dx, dz) 6 0, dz > 0} = {(0, 0)}. Thus
{(dx, dz) : Fµ∞(dx, dz) 6 0, dz > 0} = {(0, 0)}, or equivalently, Fµ is inf-compact.

Now let us proceed to prove the strict convexity of Fµ. Take (x, z) 6= (x′, z′) in
Rn × (0,+∞)2p and t ∈ (0, 1). In the case where z 6= z′, by strict-convexity of ζµ on
(0,+∞)2p we have necessarily Fµ(t(x, z)+(1−t)(x′, z′)) < tFµ(x, z)+(1−t)Fµ(x′, z′).
Assume that z = z′. Using (5) and the definition of f we obtain Φx 6= Φx′ and the
result follows by using the strict convexity of ‖.‖22.
Propositions 10 and 9 assert that for every µ > 0 there is a unique optimal solution
(x(µ), z(µ)) to (Pµ). Moreover using the fact that Fµ(x, ·) is a barrier function for
every x ∈ Rn, z(µ) > 0. Consider the function γ : Rn × [0,+∞)2p × [0,+∞) →
R ∪ {+∞} defined by

γ(x, z, µ) = Fµ(x, z).

Then we have the following proposition.

Proposition 11. The function γ is convex and lsc on Rn × R2p × [0,+∞). It
is inf-compact on Rn × R2p × [0, µ], ∀µ > 0 being fixed. Moreover θ is convex and
continuous on [0,+∞), θ(0) = α and f(x, z) = γ(x, z, 0), ∀(x, z) ∈ Rn × (0,+∞)2p.

Proof. It is known that the function ζ is convex on R2p × [0,+∞) and so is γ.
The function θ is then convex on [0,+∞) as the infimum over (x, z) of a convex
function in (x, z, µ). Now the function ζ(z, .) is continuous on [0,+∞) and, because
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of (9), ζ(z, 0) = 0 for all z ∈ (0,+∞)2p. Thus f(x, z) = γ(x, z, 0) for all (x, z) ∈
Rn × (0,+∞)2p and therefore θ(0) = α (the optimal value of the problem (7)). Set
γ̃ = γ|Rn×R2p×[0,µ] the restriction of γ to the set Rn ×R2p × [0, µ]. Then {(dx, dz, µ) :
γ̃∞(dx, dz, µ) 6 0, dz > 0, µ = 0} = {(dx, dz, 0) : f∞(dx, dz) 6 0, dz > 0} =
{(0, 0, 0)} (see Proposition 9). The function γ is then inf-compact on Rn×R2p× [0, µ].
Consequently, there is a compact S̃ such that (x(µ), z(µ)) ∈ S̃, ∀µ ∈ (0, µ], i.e.,
(x(µ), z(µ))µ∈(0,µ) is bounded. We established that θ is convex on [0,+∞). It is then
continuous on (0,+∞). Let us show now that lim

µ↓0
θ(µ) = θ(0) = α. In this respect

we shall prove that lim
µ↓0

µ ln

(
ϕ(z(µ))

µ

)
= 0. Let (µk)k∈N be a positive sequence such

that lim
k↑+∞

µk = 0. We established that (x(µ), z(µ))µ∈(0,µ] is bounded. It follows that

the set {(x(µk), z(µk))} contains a subsequence converging to a point (x̃, z̃). In the
case where z̃ > 0 the result is obvious. Assume that ϕ(z̃) = 0. Then for k sufficiently
large one has

α− µk ln

(
ϕ(z)

µk

)
6 θ(µk) = f(x(µk), z(µk))− µk ln

(
ϕ(z(µk))

µk

)
6 f(x, z)− µk ln

(
ϕ(z)

µk

)

for every (x, z) satisfying z > 0. Since lim
k↑0

µk ln

(
ϕ(z)

µk

)
= 0, we have

α 6 lim inf
k↑+∞

θ(µk) 6 f(x, z)

and then

α 6 lim sup
k↑+∞

θ(µk) 6 inf
x,z
{f(x, z) : z > 0} = inf

x,z
{f(x, z) : z > 0} = α.

Consequently lim
k↑+∞

θ(µk) = α.

Given µ > 0, the KKT optimalty conditions for the problem (Pµ) can be formu-
lated, for some u ∈ Rp, as

Qx(µ)− c−Du = 0,

λe− µ

2p
(Z(µ))−1e− Ĩ∗u = 0,

D∗x(µ) + Ĩz(µ) = 0,

where Z(µ) = diag(z(µ)). Observe that u is necessarily unique. Put

u = u(µ) and s(µ) =
µ

2p
Z−1(µ)e.

We rewrite the KKT conditions as
Qx(µ)− c−Du(µ) = 0 (E1)

λe− s(µ)− Ĩ∗u(µ) = 0 (E2)

Z(µ)s(µ) =
µ

2p
e (E3)

D∗x(µ) + Ĩz(µ) = 0 (E4)
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Proposition 12. For every µ > 0, (s(µ), u(µ)) is a feasible solution to (8) and(
(s(µ), u(µ)

)
µ∈(0,µ] is bounded.

Proof. By (E1), (E2) and the fact that s(µ) =
µ

2p
(Z(µ))−1e > 0, (u(µ), s(µ)) is a

feasible solution to (8). The boundedness of (s(µ), u(µ))µ∈(0,µ] is due to Proposition
9.

Set I =
⋃

z∈S(.,(P ))

I(z) and J =
⋃

s∈S(.,(D))

J(s), where

S(., (P )) =
{
z : ∃x ∈ Rn such that (x, z) ∈ S(P )

}
,

S(., (D)) =
{
s : ∃u ∈ Rp such that (s, u) ∈ S(D)

}
,

I(z) = {i : zi > 0} the support of z and J(s) = {i : si > 0} the support of s.

Lemma 13. There is at least one (ẑ, ŝ) ∈ S(., (P ))× S(., (D)) such that I = I(ẑ)
and J = J(ŝ).

Proof. We have I a subset of a finite set {1, · · · , 2p}. Let then (z1, z2, · · · , zk) ∈
S(., (P ))k, for some k ∈ {1, 2, · · · , 2p} satisfying I = I

(
z1
)
∪ I

(
z2
)
∪ · · · ∪ I

(
zk
)
.

Set ẑ =
1

k

(
z1 + z2 + · · ·+ zk

)
. Since S(., (P )) is convex ẑ ∈ S(., (P )). So it is easy

to see that I(zi) ⊂ I(ẑ), ∀i ∈ {1, 2, · · · , k}. The result then follows. A vector ŝ is
constructed in a similar way.

Observe that every optimal solution (x, z) of the problem (7) satisfying I(z) = I is in
the relative interior of S(P ). Similarily every optimal solution (x, s, u) of the problem
(8) satisfying J(s) = J is in the relative interior of S(D).

Set

(x, z) = arg max

{
ϕI(zI) :

1

2
〈Qx, x〉 − 〈c, x〉+ λ〈e, z〉 = α, D∗x+ Ĩz = 0, zJ = 0

}
,

where

ϕI(zI) =


(∏
i∈I

zi

) 1
card(I)

if zJ ∈ (0,+∞)card(J)

−∞ elsewhere.

Symmetrically we set

(s, u) = arg max
{
ϕJ(sJ) : s = λe− Ĩ∗u, Du+ c−Qx = 0, sI = 0

}
,

where

ϕJ(sJ) =


(∏
i∈J

si

) 1
card(J)

if sJ ∈ (0,+∞)card(J)

−∞ elsewhere.

(x, z) is called the analytic center1 of (7) and (x, s, u) the analytic center of (8).
The uniqueness is ensured by the strict quasiconcavity of functions ϕI and ϕJ on the

1A generalization of the central path and the analytic center is proposed in [2] by using the so
called concave gauge functions.
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interior of their respective domain and the assumption (5). We now give an important
result.

Its proof is inspired in part by those of Theorems I.7 and I.9 in [16].

Theorem 14. Under assumption 5, we have

lim
µ↓0

(x(µ), z(µ), s(µ), u(µ)) = (x, z, s, u).

Moreover, (x, z) and (x, s, u) belong to the relative interior of S(P ) and S(D), respec-
tively.

Proof. We proved that
(
(x(µ), z(µ)

)
µ∈(0,µ] and

(
(s(µ), u(µ)

)
µ∈(0,µ] are bounded.

Let (µk)k∈N a positive increasing sequence satisfying

lim
k↑+∞

µk = 0 and lim
k↑+∞

(x(µk), z(µk), s(µk), u(µk)) = (x̃, z̃, s̃, ũ).

Then replacing µ by µk in (E1) − (E4) and letting k tend to +∞, we observe that
the pair {(x̃, z̃), (x̃, s̃, ũ)} satisfies the KKT optimality conditions of (7) and then it
is a primal-dual optimal solution pair of (7). Let us show now that I(z̃) = I and
J(s̃) = J . Now by (E1), (E2) and (E4) we have(

x(µk)− x
z(µk)− z

)
∈ Ker

(
D∗ Ĩ

)
and

(
Q(x(µk)− x)
−(s(µk)− s)

)
∈ Im

(
D

Ĩ∗

)
.

Then using the following orthogonality property

(10) Ker
(
D∗ Ĩ

)
=

[
Im

(
D

Ĩ∗

)]⊥
,

(E3) and the fact that 〈z, s〉 = 〈z̃, s̃〉 = 0 we have

〈z, s(µk)〉+ 〈s, z(µk)〉 = µk − 〈Q(x(µk)− x), x(µk)− x〉.

Since in addition I(z) = I, J(s) = J and Q is positive semi-definite we get∑
i∈I

zis(µ
k)i +

∑
i∈J

siz(µ
k)i = µk − 〈Q(x(µk)− x̃), x(µk)− x̃〉 6 µk.

But from (E3), z(µk)is(µ
k)i =

µk

2p
, ∀i. it follows that

∑
i∈J

si
s(µk)i

+
∑
i∈I

zi
z(µk)i

6 2p.

Now letting k tend to +∞, we get on the one hand

0 <
∑
i∈J

si
s̃i

+
∑
i∈I

zi
z̃i

6 2p < +∞

and then, by construction of I and J , we have necessarily I(z̃) = I and J(s̃) = J . On
the other hand, using the arithmetic-geometric mean inequality we get∏

i∈J

s

s̃i

∏
i∈I

z

z̃i

 1
2p

6
1

2p

∑
i∈J

s

s̃i
+
∑
i∈I

z

z̃i

 6 1
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and then
ϕJ(sJ)ϕI(zI) 6 ϕJ(s̃J)ϕI(z̃I).

But, by definition of (x, z, s, u), ϕJ(s̃J) 6 ϕJ(sJ) and ϕI(z̃I) 6 ϕI(zI). The result
then follows.

Consequently, the following corollary holds

Corollary 15. Under assumption (5), we have lim
µ↓0

x(µ) = x̄ ∈ riXλ.

Proof. By Theorem 14 (x, z) belongs to the relative interior of S(P ) and hence
x belongs to the linear projection of the relative interior of S(P ) which is equal to
riXλ.

Using the analysis, we propose an algorithm directly adapted from the Predictor-
corrector Mehrotra’s algorithm [10]. The pseudo-code is given in Algorithm 1. The
user is expected to give a primal-dual starting point (x0, z0, u0, s0) satisfying z0 > 0
and s0 > 0, the scenario Φ, D∗, y, a stopping criterion ε > 0, and a relaxation
parameter η ∈ (0, 1).

To illustrate our theoretical results, we consider a very simple scenario in R2 to
R. Let D = Id2, Φ = (1 1), y = 1 and λ = 1

2 . The first order conditions reads

2x1 + 2x2 − 2 + s1 = 0

2x1 + 2x2 − 2 + s2 = 0,

where s ∈ ∂|| · ||1(x). One can check that x? = ( 1
2 0)∗ is a solution. Using the fact

that Xλ ⊆ x? + Ker Φ and that every solution share the same `1-norm, we have that
Xλ = conv{( 1

2 0)∗, (0 1
2 )∗}. Figure 1 represents the evolution of the primal iterate

on the plane R2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 solution set

path 1

path 2

(a) Path

0.242 0.244 0.246 0.248 0.250 0.252 0.254
0.240

0.242

0.244

0.246

0.248

0.250

0.252

0.254

(b) Zoom around the analytical center

Fig. 1: Algorithm path. The red line corresponds to the solution set Xλ, the blue line
is the algorithm path for x0 = (0.7 0)∗ and the green line for x0 obtained by a least
square.
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Algorithm 1 Adapted predictor-corrector Mehrotra’s algorithm

Input: (x0, z0, u0, s0), Φ, D∗, y, ε > 0, η ∈ (0, 1)
Q← Φ∗Φ, c← Φ∗y
Set complementarity measure

r1 ← Qx− c−D∗u, r2 ← λe− s− Ĩ∗u, r3 ← Zs, r4 ← D∗x+ Ĩz.

µ← 〈z, s〉
2p

while max{‖r1‖2, ‖r2‖2, ‖r3‖2, ‖r4‖2} > ε do
Compute the affine scaling direction (dax, d

a
z , d

a
u, d

a
s) by solving the system

Qdax −D∗dau = −r1
−das − Ĩ∗dau = −r2
Sdaz + Zdas = −r3
D∗dax + Ĩdaz = −r4,

tamax ← max{t > 0 : z + tdaz > 0, s+ das > 0}

µa ← 〈z + tamaxd
a
z , s+ tamaxds〉
2p

σ ←
(
µa

µ

)3

. centering parameter

Compute corrector and centering direction (dcx, d
c
z, d

c
u, d

c
s) by solving

Qdcx −D∗
∗dcu = 0

−dcs − Ĩ∗dcu = 0
Sdcz + Zdcs = −Da

zd
a
s + σµe

D∗dax + Ĩdaz = 0,

where Da
z = diag(daz)

(dx, dz, du, ds)← (dax, d
a
z , d

a
u, d

a
s) + (dcx, d

c
z, d

c
u, d

c
s) . predictor direction

tmax ← max{t > 0 : z + tdz > 0, s+ ds > 0}
(x, z, u, s)← (x, z, u, s) + ηtmax(dx, dz, du, ds)
Update complementarity measure

r1 ← Qx− c−D∗u, r2 ← λe− s− Ĩ∗u, r3 ← Zs, r4 ← D∗x+ Ĩz.

end while
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