Skip to main content

Advertisement

Log in

Variational Formulation of a General Equilibrium Model with Incomplete Financial Markets and Numeraire Assets: Existence

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We present a general equilibrium model with incomplete financial markets and numeraire assets. We assume that there are 2 periods of time, say today and tomorrow. In period 0, households exchange goods and assets and then consumption takes place; in period 1, one of S possible states of nature occurs. In each of them, assets pay their returns, which are measured in units of a given physical good, i.e., the numeraire commodity; households exchange goods; finally, consumption takes place. We define a consumption, portfolio holding, commodity and asset price vector as an equilibrium vector associated with a given economy, if at those prices and economies households maximize, and market clears. While the existence proof by Geneakoplos and Polemarchakis (Essays in honor of K.J. Arrow, vol 3, Cambridge University Press, Cambridge, pp 65–95, 1986) uses a fixed point argument, we provide an independent existence result in terms of variational inequalities. That approach allows us to get the desired existence result under some different and more general or realistic assumptions than those usually made in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. A distribution of resources among households is Pareto optimal if no redistribution can make everyone better off.

  2. Indeed, in the economies we described in the setup of the paper, the domain of the households’ utility functions is \({\mathbb {R}}_{+}^{G}\) and not \({\mathbb {R}}_{++}^{G}\) as in the example we present. On the other hand, it can be shown that our results apply easily to that case just modifying in a simple manner the proof presented in [22].

References

  1. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MathSciNet  Google Scholar 

  2. McKenzie, L.W.: On equilibrium in Graham’s model of world trade and other competitive systems. Econometrica 22, 147–161 (1954)

    Article  Google Scholar 

  3. Geanakoplos, J.: An introduction to general equilibrium with incomplete asset markets. J. Math. Econ. 19, 1–38 (1990)

    Article  MathSciNet  Google Scholar 

  4. Magill, M., Quinzii, M.: Theory of Incomplete Markets, vol. I. The MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  5. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, New York (1998)

    MATH  Google Scholar 

  6. Battinelli, A., Benevieri, P., Carosi, L., Villanacci, A.: Differential Topology and General Equilibrium with Complete and Incomplete Markets. Kluwer, Boston (2002)

    MATH  Google Scholar 

  7. Dana, R.-A., Jeanblanc, M.: Financial Markets in Continuous Time. Springer, New York (2007)

    MATH  Google Scholar 

  8. Cerny, A.: Mathematical Techniques in Finance, 2nd edn. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  9. Stokey, N.L., Lucas, R.E., Prescott, E.C.: Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge (1989)

    Google Scholar 

  10. Cass, D.: Competitive equilibrium with incomplete financial markets. J. Math. Econ. 42, 384–405 (2006)

    Article  MathSciNet  Google Scholar 

  11. Werner, J.: Equilibrium in economies with incomplete financial markets. J. Econ. Theory. 36, 110–119 (1985)

    Article  MathSciNet  Google Scholar 

  12. Geanakoplos, J., Polemarchakis, H.M.: Existence, regularity, and constrained suboptimality of competitive allocations when assets structure is incomplete. In: Heller, W.P., Starr, R.M., Starret, D.A. (eds.) Essays in Honor of K.J. Arrow, vol. 3, pp. 65–95. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  13. Stampacchia, G.: Formes bilinéaires coercitives sur les ensemble convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  14. Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Memorie dell’Accademia Nazionale dei Lincei. 91–140 (1964)

  15. Benedetti, I., Donato, M.B., Milasi, M.: Existence for competitive equilibrium by means of generalized quasivariational inequalities. Abstr. Appl. Anal. 2013, 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  16. Donato, M.B., Milasi M., Vitanza, C.: Generalized Variational Inequality and General Equilibrium Problem. J. Convex Anal. 25 (2018)

  17. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  18. Jofré, A., Rockafellar, R.T., Wets, R.J.B.: Variational inequalities and economic equilibrium. Math. Oper. Res. 32, 1–20 (2007)

    Article  MathSciNet  Google Scholar 

  19. Donato, M.B., Milasi, M., Villanacci, A.: Incomplete financial markets model with nominal assets: variational approach. J. Math. Anal. Appl. 457, 1353–1369 (2018)

    Article  MathSciNet  Google Scholar 

  20. Aussel, D., Dutta, J.: Generalized Nash equilibrium problem, variational inequality and quasiconvexity. Oper. Res. Lett. 36, 461–464 (2008)

    Article  MathSciNet  Google Scholar 

  21. Bergstrom, T.: Free disposal. In: EatweIl, J., Milgate, M., Newman, P. (eds.) The New Palgrave: A Dictionary of Economics. The MacMillan Press Limited, London (1989)

    Google Scholar 

  22. Aussel, D., Cotrina, J.: Quasimonotone quasivariational inequalities: existence results and applications. J. Optim. Theory Appl. 158, 637–652 (2013)

    Article  MathSciNet  Google Scholar 

  23. Ansari, Q.H., Lalitha, C.S., Mehta, M.: Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization. CRC Press, New York (2014)

    MATH  Google Scholar 

  24. Tan, N.X.: Quasi-variational inequality in topological linear locally convex Hausdorff spaces. Math. Nachr. 122, 231–245 (1985)

    Article  MathSciNet  Google Scholar 

  25. Aussel, D.: New developments in quasiconvex optimization. In: Al-Mezel, S.A.R.F., Al-Solamy, R.M., Ansari, Q.H. (eds.) Fixed Point Theory, Variational Analysis, and Optimization, pp. 171–206. Chapman and Hall/CRC Press, New York (2014)

    Chapter  Google Scholar 

  26. Cambini, A., Martein, L.: General Convexity and Optimization, Theory and Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Bernadette Donato.

Appendices

Appendices

Appendix A: Example

We present an example which describes equilibria in an economy which satisfies all assumptions we made in Sect. 2.Footnote 2

We consider a simple economy with two households, two states in period 1, one good per spot and one asset with yield 1 in each spot in period 1. Households’ utility functions are of the so-called Cobb–Douglas type, i.e., weighted sum of logarithms. We also consider no-arbitrage good and asset prices, i.e., \(p^{0}+q=p^{0}+\nu ^{1}+\nu ^{2}=S+1=3\) with \(p^{0},\nu ^{1},\nu ^{2}>0\). Then, household h’s maximization problem is the following one.

$$\begin{aligned} \begin{array}{lll} &{} \max _{\left( x_{h}^{0},x_{h}^{1},x_{h}^{2},b_{h}\right) }\alpha _{h}^{0}\log x_{h}^{0}+\alpha _{h}^{1}\log x_{h}^{1}+\alpha _{h}^{2}\log x_{h}^{2}\\ \text {s.t.} &{} -p^{0}\left( x_{h}^{0}-e_{h}^{0}\right) -qb_{h}\le 0 \\ &{} \left( x_{h}^{1}-e_{h}^{1}\right) +b_{h}\le 0 \\ &{} -\left( x_{h}^{2}-e_{h}^{2}\right) +b_{h}\le 0, \end{array} \end{aligned}$$

where \(\left( \alpha _{h}^{0},\alpha _{h}^{1},\alpha _{h}^{2}\right) \in {\mathbb {R}}_{++}^{3}\). Observe that since utility functions are strictly increasing in each good, the solution set to the above problem is equal to the solution set to the problem with equality constraints. Denoted the Lagrange multiplier of household h in state s by \(\lambda _{h}^{s}\), for \( h\in \left\{ 1,2\right\} \) and \(s\in \left\{ 0,1,2\right\} \), we have that the associated Lagrange conditions are

$$\begin{aligned} \left\{ \begin{array}{l} \frac{\alpha _{h}^{0}}{x_{h}^{0}}-\lambda _{h}^{0}p^{0} =0 \\ \frac{\alpha _{h}^{1}}{x_{h}^{1}}-\lambda _{h}^{1} =0 \\ \frac{\alpha _{h}^{2}}{x_{h}^{2}}-\lambda _{h}^{2} =0 \\ -\lambda _{h}^{0}q+\lambda _{h}^{1}+\lambda _{h}^{2} =0 \\ -p^{0}\left( x_{h}^{0}-e_{h}^{0}\right) -qb_{h} =0 \\ -\left( x_{h}^{1}-e_{h}^{1}\right) +b_{h} =0 \\ -\left( x_{h}^{2}-e_{h}^{2}\right) +b_{h} =0 \end{array}\right. \qquad \text {or} \qquad \left\{ \begin{array}{l} x_{h}^{0} =\frac{\alpha _{h}^{0}}{\lambda _{h}^{0}p^{0}}=\frac{ p^{0}e_{h}^{0}-qb_{h}}{p^{0}} \\ x_{h}^{1} =\frac{\alpha _{h}^{1}}{\lambda _{h}^{1}}=e_{h}^{1}+b_{h} \\ x_{h}^{2} =\frac{\alpha _{h}^{2}}{\lambda _{h}^{2}}=e_{h}^{2}+b_{h} \\ -\frac{\alpha _{h}^{0}q}{p^{0}e_{h}^{0}-qb_{h}}+\frac{\alpha _{h}^{1}}{ e_{h}^{1}+b_{h}}+\frac{\alpha _{h}^{2}}{e_{h}^{2}+b_{h}} =0 \\ \lambda _{h}^{0} =\frac{\alpha _{h}^{0}}{p^{0}e_{h}^{0}-qb_{h}} \\ \lambda _{h}^{1} =\frac{\alpha _{h}^{1}}{e_{h}^{1}+b_{h}} \\ \lambda _{h}^{2} =\frac{\alpha _{h}^{2}}{e_{h}^{2}+b_{h}} \end{array}\right. \end{aligned}$$

Observe that equation

$$\begin{aligned} \frac{\alpha _{h}^{0}q}{-p^{0}e_{h}^{0}+qb_{h}}+\frac{\alpha _{h}^{1}}{ e_{h}^{1}+b_{h}}+\frac{\alpha _{h}^{2}}{e_{h}^{2}+b_{h}}=0 \end{aligned}$$
(22)

allows to find \(b_{h}\) as a function of q and exogenous variables; recall also that \(p^{0}=3-q\).

Given to utility weights and to endowments the values listed in the table below, we have that \(b_{1}=\frac{1}{4q}\left( -7q+18\right) \) and \(b_{2}=\frac{1}{4q }\left( -5q+9\right) \).

Using market clearing for assets (\(b_{1}+b_{2}=0\)), we then get that the unique equilibrium value of q is \(\frac{9 }{4}\) and then equilibrium price in period zero is \(p^{0}= \frac{3}{4}\). It also follows that \(b_{1}\left( q\right) =\frac{1}{4}=-b_{2}\). Then, the equilibrium allocations are

$$\begin{aligned} x_{1}=\left( \frac{5}{4},\frac{5}{4},\frac{5}{4}\right) \text { and } x_{2}=\left( \frac{7}{4},\frac{7}{4},\frac{7}{4}\right) \text {,} \end{aligned}$$

and the values of the utility functions in equilibrium are

$$\begin{aligned} u_{1}\left( x_{1}\right) =4\log \frac{5}{4}=0.892\,57\text { and } u_{2}\left( x_{2}\right) =4\log \frac{7}{4}=2.\,238\,5\text {.} \end{aligned}$$

Observe also that \(q=\nu ^{1}+\nu ^{2}=\frac{3}{2}+\frac{3}{4} =\frac{9}{4}\,\).

The equilibrium in the complete market case.

Markets are complete if the return matrix has full rank, say it is the identity matrix. In that case, household h problem becomes the following one (we normalized to 1 the price of good 2):

$$\begin{aligned} \begin{aligned}&\max _{\left( x_{h}^{0},x_{h}^{1},x_{h}^{2}\right) }\alpha _{h}^{0}\log x_{h}^{0}+\alpha _{h}^{1}\log x_{h}^{1}+\alpha _{h}^{2}\log x_{h}^{2} \\&\text {s.t.}\quad -p^{0}\left( x_{h}^{0}-e_{h}^{0}\right) -p^{1}\left( x_{h}^{1}-e_{h}^{1}\right) -\left( x_{h}^{2}-e_{h}^{2}\right) =0, \end{aligned} \end{aligned}$$

with associated Lagrange conditions

$$\begin{aligned} \begin{aligned}&\frac{\alpha _{h}^{0}}{x_{h}^{0}}-\mu p^{0} =0 \\&\frac{\alpha _{h}^{1}}{x_{h}^{1}}-\mu p^{1} =0 \\&\frac{\alpha _{h}^{2}}{x_{h}^{2}}-\mu =0 \\&-p^{0}\left( x_{h}^{0}-e_{h}^{0}\right) -p^{1}\left( x_{h}^{1}-e_{h}^{1}\right) -\left( x_{h}^{2}-e_{h}^{2}\right) =0 \end{aligned} \end{aligned}$$

We then find that in the complete market case, equilibrium prices are \( p^{0}=\frac{12}{17}, p^{1}=\frac{19}{17}, \ p^{2}=1\) and equilibrium allocations and utilities are as described in the table below.

$$\begin{aligned} \begin{array}{ccccccccc} &{} &{} x^{0} &{} &{} x^{1} &{} &{} x^{2} &{} &{} u \\ &{} &{} &{} &{} &{} &{} &{} &{} \\ h=1 &{} &{} \frac{5}{4} &{} &{} \frac{15}{19} &{} &{} \frac{30}{17} &{} &{} 1.\,122\,7 \\ &{} &{} &{} &{} &{} &{} &{} &{} \\ h=2 &{} &{} \frac{7}{4} &{} &{} \frac{42}{19} &{} &{} \frac{21}{17} &{} &{} 2.\,357\,4 \end{array} \end{aligned}$$

The complete market equilibrium allocation is “Pareto superior” to the incomplete market equilibrium allocation, i.e., in the former case both households get a higher value of their utility functions. Indeed, it is a well-known fact that while for any economy, equilibrium allocation in the complete market case is Pareto optimal, or efficient, for almost all economies, they are inefficient in the incomplete market case.

Appendix B: Basic Notions on Variational Inequalities

For the reader’s convenience, we recall here basic definitions of the set-valued analysis and some basic concepts of variational analysis, that are useful in the paper.

Definition B.1

(see, e.g., [23]) Let \(F:{\mathbb {R}}^n \rightrightarrows {\mathbb {R}}^m\) be a set-valued map. We define the domain and the graph of F, respectively:

$$\begin{aligned}&Dom\, F:=\{x\in {\mathbb {R}}^n: \,\ F(x)\ne \emptyset \}; \\&Graph(F):=\{(x,y)\in {\mathbb {R}}^n\times {\mathbb {R}}^m: y\in F(x)\}. \end{aligned}$$

Let F be such that \(Dom \, F\ne \emptyset \). F is:

  1. (a)

    upper semicontinuous at \(x\in {\mathbb {R}}^n\), iff for each open set \(V\subset {\mathbb {R}}^m\), where \(F(x)\subset V\), there exists a neighborhood \(U\subset {\mathbb {R}}^n\) of x such that for all \(x^{\prime }\in U:\, F(x^{\prime })\subset V\);

  2. (b)

    lower semicontinuous at \(x\in {\mathbb {R}}^n\), iff for any sequence of elements \(\{x_n\}_{n\in {\mathbb {N}}}\subset {\mathbb {R}}^n\), \( x_n\rightarrow x\), and for any \(y\in F(x)\), there exists a sequence \( \{y_n\}_{n\in {\mathbb {N}}}\subset {\mathbb {R}}^m\), with \(y_n\in F(x_n)\; \forall n\) and \(y_n\rightarrow y\);

  3. (c)

    closed, iff for any sequences \(\{x_n\}_{n\in {\mathbb {N}} }\subset {\mathbb {R}}^n\), \(\{y_n\}_{n\in {\mathbb {N}}}\subset {\mathbb {R}}^m\), if \( x_n\rightarrow x\) and \(y_n\in F(x_n)\), \(y_n\rightarrow y\) then \(y\in F(x)\).

Definition B.2

Let \(C\subseteq {\mathbb {R}}^n\) be a nonempty, closed and convex set and let \(S:C\rightrightarrows {\mathbb {R}}^{n}\) and \({\varPhi }:C\rightrightarrows {\mathbb {R}}^{n}\) be set-valued maps. A generalized quasivariational inequality associated with \(C,S,{\varPhi }\), denoted by GQVI, is the following problem:

$$\begin{aligned} \text {``}{} Find {\overline{x}}\in S({\overline{x}})\; s. t. \; \exists \,\ \varphi \in {\varPhi }({\overline{x}}) with \;\; \langle \varphi , x- {\overline{x}}\rangle \ge 0 \;\ \forall x\in S({\overline{x}}).\text {''} \end{aligned}$$
(23)

In particular, when \(S(x)=C\) for all \(x\in C\), (23) is a Generalized Variational Inequality, GVI; when \({\varPhi }\) is single-valued, (23) reduces to the quasivariational inequality, QVI. When both \({\varPhi }(x)\) is singleton and \(S(x)=C\), for all \(x\in C\), we have the classical Stampacchia Variational Inequality, VI.

Theorem B.1

(see [24]) Let C be a nonempty, convex and compact subset of \({\mathbb {R}}^n\). Let \({\varPhi }:C \rightrightarrows {\mathbb {R}}^n\) and \(S:C \rightrightarrows C\) be two set-valued maps satisfying the following properties:

  1. (i)

    S is closed, lower semicontinuous and with nonempty, convex and compact values;

  2. (ii)

    \({\varPhi }\) is upper semicontinuous with nonempty, convex and compact values.

Then, the GQVI (23) admits at least a solution.

Now, we deal with the connection between a maximum problem and a suitable variational problem when the objective function is quasiconcave and continuous (see [20, 25, 26]).

Definition B.3

The function \(u:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) is said to be

  1. (i)

    quasiconcave, iff for any xy and \(\lambda \in [0,1] \) one has

    $$\begin{aligned} u(\lambda x+(1-\lambda ) y)\ge \min \{u(x), u(y)\}\,; \end{aligned}$$
  2. (ii)

    semistrictly quasiconcave, iff for any xy such that \(u(x)\ne u(y)\), one has

    $$\begin{aligned} u(\lambda x+(1-\lambda )y) > \min \{u(x), u(y)\}, \quad \forall \lambda \in ]0,1[\,; \end{aligned}$$
  3. (iii)

    strictly quasiconcave, iff for any xy, with \( x\ne y\), one has

    $$\begin{aligned} u(\lambda x+(1-\lambda )y) > \min \{u(x), u(y)\}, \quad \forall \lambda \in ]0,1[. \end{aligned}$$

We can characterize the quasiconcave functions in terms of upper level sets. Let us denote, for any \(\alpha \in {\mathbb {R}}\), by \(U_{\alpha }(u)\) and \( U^>_{\alpha }(u)\) the upper level set and the strict upper level set, respectively, associated with u and \(\alpha \):

$$\begin{aligned} U_{\alpha }(u)=\{x\in {\mathbb {R}}^n: u(x)\ge \alpha \},\qquad U^>_{\alpha }(u)=\{x\in {\mathbb {R}}^n: u(x)>\alpha \}. \end{aligned}$$

For a lighter notation, we will use, for any \(x\in {\mathbb {R}}^n\), \(U_{u(x)}\) and \( U^>_{u(x)}\) instead of \(U_{u(x)}(u)\) and \(U^>_{u(x)}(u)\).

Proposition B.1

(Theorem 2.2.3 in [26]) Let \(u:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) be a function. One has:

u is quasiconcave, if and only if, for any \(\alpha \in {\mathbb {R}}\), the upper level set \(U_{\alpha }(u)\) is a convex set (the strict upper level set \( U^>_{\alpha }(u)\) is a convex set).

When the function u is quasiconcave, let us set N(x) and \(N^{>}(x)\) the normal cones, respectively, to the sets \(U_{u(x)}\) and \(U_{u(x)}^{>}\):

$$\begin{aligned}&N(x):=\{h\in {\mathbb {R}}^n:\;\langle h,z-x\rangle \le 0\quad \forall \;z\in U_{u(x)}\}, \\&N^{>}(x):=\{h\in {\mathbb {R}}^n:\;\langle h,z-x\rangle \le 0\quad \forall \;z\in U_{u(x)}^{>}\}. \end{aligned}$$

It is clear that \(N(x)\subseteq N^{>}(x)\) for all \(x\in {\mathbb {R}}^n\), and when u is semistrictly quasiconcave one has \(N(x)=N^{>}(x)\) for all \(x\notin argmax_{{\mathbb {R}}^n}u \).

Let us define \({\mathcal {G}}:{\mathbb {R}}^{n}\rightrightarrows {\mathbb {R}}^{n}\) such that

$$\begin{aligned} {\mathcal {G}}^{\prime }(x):=\left\{ \begin{array}{ll} {\overline{B}}(0,1), &{} if\,\ x\in \displaystyle \mathrm {argmax}_{{\mathbb {R}}^n}u, \\ &{} \\ conv\Big (N^{>}(x)\cap S(0,1)\Big ), &{} if\,\ \displaystyle x\notin \mathrm {argmax}_{{\mathbb {R}}^n}u, \end{array} \right. \end{aligned}$$
(24)

where \(\quad {\overline{B}}(0,1)=\{x\in {\mathbb {R}}^{n}:\Vert x\Vert \le 1\}\) is the closed unit ball of \({\mathbb {R}}^{n}\).

Definition B.4

Given a function \(u:{\mathbb {R}}^{n}\rightarrow {\mathbb {R}}\), we say that u is

  1. (i)

    Locally non-satiated, if \(\forall x\in {\mathbb {R}}^n\) and \(\forall \varepsilon >0\), \(\exists x^{\prime }\in B\left( x,\varepsilon \right) \) such that \(u\left( x^{\prime }\right) >u\left( x\right) \);

  2. (ii)

    Non-satiated, if \(\ \forall x\in {\mathbb {R}}^n\) \(\exists x^{\prime }\in {\mathbb {R}}^n\) such that \(u\left( x^{\prime }\right) >u\left( x\right) \).

Proposition B.2

If \(u:{\mathbb {R}}^{n}\rightarrow {\mathbb {R}}\) is continuous. Then, u is semistrictly quasiconcave and non-satiated if and only if u is quasiconcave and locally non-satiated.

Proposition B.3

Let \(u:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) be continuous, quasiconcave and strictly increasing in the component j. Then, u is semistrictly quasiconcave and non-satiated.

Proof

For any \(x\in {\mathbb {R}}^n\) and \(\varepsilon >0\), we pose

$$\begin{aligned} (x^{\prime })^i:=\left\{ \begin{array}{lll} x^i, &{} &{} \quad \text {if}\quad i\ne j, \\ x^j+K, &{} &{} \quad \text {if}\quad i=j, \end{array} \right. \end{aligned}$$

with \(0<K<\varepsilon \). One has that \(x^{\prime }\in B\left( x,\varepsilon \right) \) and, since u is strictly increasing in j, \( u(x^{\prime })>u(x)\), that is u is locally non-satiated. Hence, from Proposition B.2 u is semistrictly quasiconcave and non-satiated. \(\square \)

Theorem B.2

(see [20]) Let \(u:{\mathbb {R}}^n\rightarrow {\mathbb {R}}\) be a continuous and semistrictly quasiconcave function. Then, the set-valued map \({\mathcal {G}}^{\prime }\) is with nonempty, convex and compact values, and upper semicontinuous.

Theorem B.3

(see Proposition 4.1 in [22]) Let \(u:{\mathbb {R}}^n\rightarrow {\mathbb {R}}^{n}\) be a continuous and semistrictly quasiconcave function and let K be a convex set. Then, \({\widetilde{x}}\in K\) is solution to the maximization problem

$$\begin{aligned} \max _{x\in K}u(x) \end{aligned}$$

if and only if \({\widetilde{x}}\) is solution to GVI

$$\begin{aligned} ``\ \text {Find}\;\;{\widetilde{x}}\in K\;\text {s. t.}\;\exists \,\ g\in {\mathcal {G}}({\widetilde{x}})\;\;\text {with}\;\;\langle g,x-{\widetilde{x}}\rangle \ge 0\quad \forall x\in K.'' \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donato, M.B., Milasi, M. & Villanacci, A. Variational Formulation of a General Equilibrium Model with Incomplete Financial Markets and Numeraire Assets: Existence. J Optim Theory Appl 179, 425–451 (2018). https://doi.org/10.1007/s10957-018-1388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1388-0

Keywords

Mathematics Subject Classification

Navigation