Skip to main content
Log in

Time-Delay Estimation in State and Output Equations of Nonlinear Systems Using Optimal Computational Approach

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Many real-world dynamics can be modeled as nonlinear time-delay systems. In order to capture a more realistic model for system dynamics, the exact values of time-delay should be taken into account. For nonlinear time-delay systems, the estimation of delays in both state and output equations is discussed. A cost function is defined based on least-square error between actual and estimated values of the output measurement. The value of time-delays in the nonlinear system are then derived using a gradient-based optimization method. Because of the implicit description of the cost function with respect to the delay value, its gradients cannot be obtained by standard analytical differentiation rules. In this case, the optimal computational methods are utilized to derive two formulas for computing the gradient. An optimization scheme is then formulated to estimate both state and output delays. The effectiveness of the proposed estimation method is finally demonstrated using the simulation results on a benchmark chemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chai, Q., Yang, C.H., Teo, K.L., Gui, W.H.: Optimal control of an industrial-scale evaporation process: sodium aluminate solution. Control Eng. Pract. 20(6), 618–628 (2012)

    Article  Google Scholar 

  2. Tengel, T., Sethson, I., Francis, M.S.: Conformational analysis by CD and NMR spectroscopy of a peptide encompassing the amphipathic domain of YopD from yersinia. Eur. J. Biochem. 269(15), 3659–3668 (2002)

    Article  Google Scholar 

  3. Na, J., Ren, X., Costa-Castello, R., Guo, Y.: Repetitive control of servo systems with time delays. Robot. Auton. Syst. 62(3), 319–329 (2014)

    Article  Google Scholar 

  4. Cheng, G., Wang, L., Loxton, R., Lin, Q.: Robust optimal control of a microbial batch culture process. J. Optim. Theory Appl. 167(1), 342–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Niculescu, S.I.: Delay Effects on Stability: A Robust Control Approach. Springer, Berlin (2001)

    MATH  Google Scholar 

  6. Michiels, W., Niculescu, S.I.: Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach, vol. 10, pp. 407–435. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2014). https://epubs.siam.org/doi/book/10.1137/1.9781611973631

  7. Pignotti, C.: A note on stabilization of locally damped wave equations with time delay. Syst. Control Lett. 61(1), 92–97 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biegler, L.T., Campbell, S.L., Mehrmann, V.: Control and Optimization with Differential-Algebraic Constraints. Advances in Design and Control. SIAM - Society for Industrial and Applied Mathematics, Philadelphia (2012)

    Book  MATH  Google Scholar 

  9. Xu, B., Lam, J.: Decentralized stabilization of large-scale interconnected time-delay systems. J. Optim. Theory Appl. 103(1), 231–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Control 27(4), 869–879 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pietri, D.B., Chauvin, J., Petit, N.: Adaptive control scheme for uncertain time-delay systems. Automatica 48(8), 1536–1552 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bresch-Pietri, D., Krstic, M.: Delay-adaptive predictor feedback for systems with unknown long actuator delay. IEEE Trans. Autom. Control 55(9), 2106–2112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bresch-Pietri, D., Krstic, M.: Delay-adaptive control for nonlinear systems. IEEE Trans. Autom. Control 59(5), 1203–1218 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, X., Xu, J.: Identification of time delay in nonlinear systems with delayed feedback control. J. Frankl. Inst. 352(8), 2987–2998 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fujarewicz, K., Lakomiec, K.: Parameter estimation of systems with delays via structural sensitivity analysis. Discrete Contin. Dyn. Syst. Ser. B 19(8), 2521–2533 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Drakunov, S.V., Perruquetti, W., Richard, J.P., Belkoura, L.: Delay identification in time-delay systems using variable structure observers. Annu. Rev. Control 30(2), 143–158 (2006)

    Article  Google Scholar 

  17. Belkoura, L.: Identifiabilty of systems described by convolution equations. Automatica 41(3), 505–512 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, F., Fei, F.X., Xu, Q., Deng, Y.F., Qi, Y.B., Balasingham, I.: A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems. Appl. Math. Comput. 219(2), 552–568 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Banks, H., Rehm, K., Sutton, K.: Inverse problems for nonlinear delay systems. Methods Appl. Anal. 17(4), 331–356 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Ma, M., Ding, F.: Recursive and iterative least squares parameter estimation algorithms for observability canonical state space systems. J. Frankl. Inst. 352(1), 248–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mu, P., Wang, L., Liu, C.: A control parameterization method to solve the fractional-order optimal control problem. J. Optim. Theory Appl. (2018). https://doi.org/10.1007/s10957-017-1163-7

  22. Chai, Q., Loxton, R., Teo, K.L., Yang, C.: A class of optimal state-delay control problems. Nonlinear Anal. Real World Appl. 14(3), 1536–1550 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Q., Loxton, R., Xu, C., Teo, K.L.: Parameter estimation for nonlinear time-delay systems with noisy output measurements. Automatica 60, 48–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Loxton, R., Teo, K.L., Rehbock, V.: An optimization approach to state-delay identification. IEEE Trans. Autom. Control 55(9), 2113–2119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, C., Loxton, R., Teo, K.L.: Switching time and parameter optimization in nonlinear switched systems with multiple time-delays. J. Optim. Theory Appl. 163, 957–988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10(1), 275–309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay. Syst. Control Lett. 59(5), 305–312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheng, G., Barbot, J.P., Boutat, D.: Identification of the delay parameter for nonlinear time-delay systems with unknown inputs. Automatica 49(6), 1755–1760 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Abooshahab, M.A., Ekramian, M., Ataei, M.: Time-delay estimation of nonlinear systems with delay in states and outputs. In: 4th International Conference on Robotics and Mechatronics (ICROM), pp. 367–373 (2016)

  30. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  31. Ahmed, N.U.: Dynamic Systems and Control with Applications. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  32. Chai, Q., Loxton, R., Teo, K.L., Yang, C.: Time-delay estimation for nonlinear systems with piecewise-constant input. Appl. Math. Comput. 219(17), 9543–9560 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Chai, Q., Loxton, R., Teo, K.L., Yang, C.: A unified parameter identification method for nonlinear time-delay systems. J. Ind. Manag. Optim. 9(2), 471–486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martin, R.: Optimal control drug scheduling of cancer chemotherapy. Automatica 28(6), 1113–1123 (1992)

    Article  MathSciNet  Google Scholar 

  35. Loxton, R.C., Teo, K.L., Rehbock, V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44(11), 2923–2929 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim. Theory Appl. 69(1), 129–137 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jian, J.: New sequential quadratically-constrained quadratic programming method of feasible directions and its convergence rate. J. Optim. Theory Appl. 129(1), 109–130 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Teo, K.L., Goh, C., Wong, K.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York (1991). https://espace.curtin.edu.au/handle/20.500.11937/24319

  39. Robert, G.B.: The Elements of Integration and Lebesgue Measure. Wiley, New York (1995)

    MATH  Google Scholar 

  40. Ni, B., Xiao, D., Shah, S.L.: Time delay estimation for MIMO dynamical systems with time-frequency domain analysis. J. Process Control 20(1), 83–94 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ekramian.

Additional information

Communicated by Lorenz Biegler.

Appendix: Proof of Lemma 4.1 [24, 29]

Appendix: Proof of Lemma 4.1 [24, 29]

First, we define

$$\begin{aligned} I := \{ \epsilon \in \mathbb {R};\tau + \epsilon ^k \in \mathfrak {T} \}, \end{aligned}$$

which is equivalent to

$$\begin{aligned} I=[-\tau _k,\bar{\tau }-\tau _k]. \end{aligned}$$

Thus, I is a closed interval of positive values, and \(0 \in I\). For each \(\epsilon \in I\), we define

$$\begin{aligned} \varphi ^\epsilon (t) := x^\epsilon (t)-x(t), \quad t\le T, \end{aligned}$$

and

$$\begin{aligned} \theta ^{\epsilon ,i}(t)=x^\epsilon (t-\tau _i-\epsilon \delta _{ki})-x(t-\tau _i),\quad t\le T, \quad i=1,\ldots ,m, \end{aligned}$$

If \(i \ne k\), then \(\delta _{ki}=0\), and \(\theta ^{\epsilon ,i}(t)=x^\epsilon (t-\tau _i)-x(t-\tau _i)\), which means

$$\begin{aligned} \theta ^{\epsilon ,i}(t)=\varphi ^\epsilon (t-\tau _i),\quad t\le T,\quad i\ne k, \end{aligned}$$
(46)

and from (3) one achieves

$$\begin{aligned} \varphi ^\epsilon (t)=0,\quad t\le 0. \end{aligned}$$
(47)

Lemma A.1

There exists a positive real number \(L_2>0\) such that for all \( \epsilon \in I\)

$$\begin{aligned} |x^\epsilon (t)|,|\gamma (t)|\le L_2,\quad t\in [-\bar{\tau },T], \end{aligned}$$
(48)

and

$$\begin{aligned} |\varphi ^\epsilon (t)|, \max _{i=1,\ldots ,m} |\theta ^{\epsilon ,i}(t)|\le L_2 |\epsilon |,\quad t \in [0,T]. \end{aligned}$$
(49)

The following result has been proved in [24]. This lemma can be proved by following similar arguments to those used in [38].

Lemma A.2

For almost all \(t \in [0,T]\),

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \frac{\theta ^{\epsilon ,k}(t)-\varphi ^\epsilon (t-\tau _k)}{\epsilon }=-\gamma (t-\tau _k). \end{aligned}$$
(50)

Let \(k\in \{1,\ldots ,m\}\) and \(\tau \in \mathfrak {T}\) be arbitrary but fixed. The vector \(x^\epsilon (t)\) denotes \(x(t|\tau +\epsilon ^k)\), and x(t) represents \(x(t|\tau )\). For each \(\epsilon \in I\backslash \{0\}\) , we define

$$\begin{aligned} \rho (\epsilon )=\int _{0}^{T}|\epsilon ^{-1} \theta ^{\epsilon ,k}(s)-\epsilon ^{-1}\varphi ^\epsilon (s-\tau _k)+\gamma (s-\tau _k)|\hbox {d}s. \end{aligned}$$
(51)

It follows from (47), (48), and (49) that for each \(\epsilon \in I\backslash \{0\}\),

$$\begin{aligned}&|\epsilon ^{-1} \theta ^{\epsilon ,k}(s)-\epsilon ^{-1} \varphi ^\epsilon (s-\tau _k)+\gamma (s-\tau _k)| \\&\le |\epsilon ^{-1}|| \theta ^{\epsilon ,k}(s)|+|\epsilon ^{-1}| |\varphi ^\epsilon (s-\tau _k)|+|\gamma (s-\tau _k)| \le 3L_2, \quad s\in [0,T]. \end{aligned}$$

Hence, the right-hand side of the equation (51) is bounded on \(\epsilon \in I\backslash \{0\}\). Furthermore, it follows from (50) that \(\rho (\epsilon )\) in (51) converges to zero almost everywhere on [0, T] as \(\epsilon \rightarrow 0\). Therefore, the Lebesgue dominated convergence theorem [39] leads to,

$$\begin{aligned} \lim _{\epsilon \rightarrow 0} \rho (\epsilon ) =\lim _{\epsilon \rightarrow 0}\int _{0}^{T}|\epsilon ^{-1} \theta ^{\epsilon ,k}(s)-\epsilon ^{-1} \varphi ^\epsilon (s-\tau _k)+\gamma (s-\tau _k)|\hbox {d}s=0. \end{aligned}$$

For a fixed value \(\epsilon \in I\backslash \{0\}\), we define

$$\begin{aligned} \bar{f}(s,\alpha ) =f(s,x(s)+\alpha \varphi ^\epsilon (s),\tilde{x}(s)+\alpha \theta ^\epsilon (s)) \quad (s,\alpha )\in [0,T]\times [0,1]. \end{aligned}$$

Applying chain rule yields

$$\begin{aligned} \frac{\partial \bar{f}(s,\alpha )}{\partial \alpha } = \frac{\partial \bar{f}(s,\alpha )}{\partial x}\varphi ^\epsilon (s)+\sum _{i=1}^{m} \frac{\partial \bar{f}(s,\alpha )}{\partial \tilde{x}^i} \theta ^{\epsilon ,i}(s), \end{aligned}$$
(52)

where

$$\begin{aligned} \frac{\partial \bar{f}(s,\alpha )}{\partial x}= & {} \frac{\partial f (s,x(s)+\alpha \varphi ^ \epsilon (s),\tilde{x}(s)+ \alpha \theta ^ \epsilon (s))}{\partial x}, \end{aligned}$$
(53)
$$\begin{aligned} \frac{\partial \bar{f}(s,\alpha )}{\partial x}= & {} \frac{\partial f(s,x(s)+\alpha \varphi ^\epsilon (s),\tilde{x}(s)+\alpha \theta ^ \epsilon (s))}{\partial \tilde{x}^i}. \end{aligned}$$
(54)

Now, the auxiliary system (8) can be rewritten by using (53) and (54) as follows:

$$\begin{aligned} \dot{\psi }^k (s)= & {} \frac{\partial \bar{f}(s,0)}{\partial x}\psi _k (s)+\sum _{i=1}^{m}\frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i}\psi _k (s-\tau _i) \\&-\frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^k}\gamma ^k (s-\tau _k). \end{aligned}$$

Thus,

$$\begin{aligned} \psi _k (t)= & {} \int _{0}^{t}\frac{\partial \bar{f}(s,0)}{\partial x}\psi _k (s)\hbox {d}s + \sum _{i=1}^{m}\int _{0}^{t}\frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i}\psi _k (s-\tau _i)\hbox {d}s \nonumber \\&\quad -\int _{0}^{t}\frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^k}\gamma ^k (s-\tau _k)\hbox {d}s. \end{aligned}$$
(55)

The Eq. (52) can be rewritten as:

$$\begin{aligned} \frac{\partial \bar{f}(s,\alpha )}{\partial \alpha }= & {} \triangle _1 (s,\alpha )+\triangle _2 (s,\alpha )+ \frac{\partial \bar{f}(s,0)}{\partial x}\varphi ^ \epsilon (s) \\&+ \sum _{i=1}^{m} \frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i} \varphi ^{\epsilon }(s-\tau _i)+\sum _{i=1}^{m} \frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i} \{\theta ^{\epsilon ,i}(s)-\varphi ^\epsilon (s-\tau _i)\}, \end{aligned}$$

where

$$\begin{aligned} \triangle _1 (s,\alpha )= & {} \left\{ \frac{\partial \bar{f}(s,\alpha )}{\partial x}- \frac{\partial \bar{f}(s,0)}{\partial x}\right\} \varphi ^\epsilon (s), \end{aligned}$$
(56)
$$\begin{aligned} \triangle _2 (s,\alpha )= & {} \left\{ \frac{\partial \bar{f}(s,\alpha )}{\partial \tilde{x}^i}- \frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i}\right\} \theta ^{\epsilon ,i}(s). \end{aligned}$$
(57)

Thus, by using (46), we deduce

$$\begin{aligned} \frac{\partial \bar{f}(s,\alpha )}{\partial \alpha }= & {} \triangle _1 (s,\alpha )+\triangle _2 (s,\alpha )+ \frac{\partial \bar{f}(s,0)}{\partial x}\varphi ^\epsilon (s) \nonumber \\&+\sum _{i=1}^{m} \frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i} \varphi ^{\epsilon }(s-\tau _i)+\frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^k} \{\theta ^{\epsilon ,k}(s)-\varphi ^\epsilon (s-\tau _k)\}, \end{aligned}$$
(58)

so

$$\begin{aligned} \varphi ^\epsilon (t)=x^\epsilon (t)-x(t)=\int _{0}^{t}\{\bar{f}(s,1)-\bar{f}(s,0)\}\hbox {d}s. \end{aligned}$$

Therefore, from the fundamental theorem of calculus, one can conclude

$$\begin{aligned} \varphi ^\epsilon (t)=\int _{0}^{t}\{\bar{f}(s,1)-\bar{f}(s,0)\}\hbox {d}s \nonumber \\ =\int _{0}^{t} \int _{0}^{1}\frac{\partial {\bar{f}(s,0)}}{\partial \alpha }d\alpha \hbox {d}s, \end{aligned}$$
(59)

and merging (58) and (59) gives

$$\begin{aligned} \varphi ^\epsilon (t)= & {} \int _{0}^{t} \int _{0}^{1}\{\triangle _1 (s,\alpha )+\triangle _2 (s,\alpha )\} d \alpha \hbox {d}s \nonumber \\&+ \int _{0}^{t}\frac{\partial \bar{f}(s,0)}{\partial x}\varphi ^\epsilon (s)\hbox {d}s+\sum _{i=1}^{m} \int _{0}^{t} \frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i} \varphi ^{\epsilon }(s-\tau _i)\hbox {d}s \nonumber \\&+ \int _{0}^{t}\frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^k} \{\theta ^{\epsilon ,k}(s)-\varphi ^\epsilon (s-\tau _k)\}\hbox {d}s \end{aligned}$$
(60)

Clearly, there exists a compact set \(\Gamma \subset \mathbb {R}^n\) such that

$$\begin{aligned} x(s) \in \Gamma \quad s\in [-\bar{\tau },T], \end{aligned}$$

where \(x(s)=x(s|\tau )\). While f is continuously differentiable (Assumption 3.1), some constants \(K_1>0\) and \(K_2>0\) exist such that satisfy following equation,

$$\begin{aligned} |\frac{\partial \bar{f}(s,0)}{\partial x}|\le K_1, \qquad |\frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i}|\le K_2, \quad s\in [0,T], \end{aligned}$$

Using (60) and (55), it can be deduced that

$$\begin{aligned}&|\epsilon ^{-1} \varphi ^\epsilon (t)-\psi _k (t)|\le K_2\rho (\epsilon )+\int _{0}^{t} K_1|\epsilon ^{-1} \varphi ^\epsilon (s)-\psi _k (s)|\hbox {d}s \nonumber \\&+ \sum _{i=1}^{m}\int _{0}^{t} K_2|\epsilon ^{-1} \varphi ^\epsilon (s-\tau _i)-\psi _k (s-\tau _i)|\hbox {d}s + |\epsilon |^{-1} \nonumber \\&\int _{0}^{t} \int _{0}^{1} \{|\triangle _1(s,\alpha )|+|\triangle _2(s,\alpha )|\}d\alpha \hbox {d}s, \end{aligned}$$
(61)

we try to simplify the second term on the right-hand side of (61) as

$$\begin{aligned} \sum _{i=1}^{m}\int _{0}^{t} K_2|\epsilon ^{-1} \varphi ^\epsilon (s-\tau _i)-\psi _k (s-\tau _i)|\hbox {d}s= & {} \sum _{i=1}^{m}\int _{-\tau _i}^{t-\tau _i} K_2|\epsilon ^{-1} \varphi ^\epsilon (s)-\psi _k (s)|\hbox {d}s \\\le & {} \sum _{i=1}^{m}\int _{0}^{t} K_2|\epsilon ^{-1} \varphi ^\epsilon (s)-\psi _k (s)|\hbox {d}s \\= & {} \int _{0}^{t} k K_2|\epsilon ^{-1} \varphi ^\epsilon (s)-\psi _k (s)|\hbox {d}s. \end{aligned}$$

Then, (61) changes to

$$\begin{aligned}&|\epsilon ^{-1} \varphi ^\epsilon (t)-\psi _k (t)|\le K_2\rho (\epsilon )+\int _{0}^{t} \bar{K}|\epsilon ^{-1} \varphi ^\epsilon (s)-\psi _k (s)|\hbox {d}s \nonumber \\&+ |\epsilon |^{-1} \int _{0}^{t} \int _{0}^{1} \{|\triangle _1(s,\alpha )|+|\triangle _2(s,\alpha )|\}d\alpha \hbox {d}s, \end{aligned}$$
(62)

where \(\bar{K}=K_1+kK_2\). Since f is continuously differentiable and \(x^\epsilon \) is uniformly bounded with respect to \(\epsilon \), \(\frac{\partial \bar{f}}{\partial x}\) and \( \frac{\partial \bar{f}}{\partial \tilde{x}^i}\) are uniformly continuous on \([0,T]\times [0,1]\). Furthermore, by (49), \(x(s)+\alpha \varphi ^\epsilon (s)\rightarrow x(s)\) and \( \tilde{x}(s)+\alpha \theta ^\epsilon (s)\rightarrow \tilde{x}(s)\) uniformly on \([0,T]\times [0,1]\) as \(\epsilon \rightarrow 0\) [40]. Thus, for each \(\delta >0\), there exists an \({\varepsilon }>0\) such that for all \(\epsilon \) satisfying \(|\epsilon |<{\varepsilon }\),

$$\begin{aligned}&|\frac{\partial \bar{f}(s,\alpha )}{\partial x}-\frac{\partial \bar{f}(s,0)}{\partial x}|<\delta , \quad (s,\alpha )\in [0,T]\times [0,1], \\&|\frac{\partial \bar{f}(s,\alpha )}{\partial \tilde{x}^i}-\frac{\partial \bar{f}(s,0)}{\partial \tilde{x}^i}|<\delta , \quad (s,\alpha )\in [0,T]\times [0,1]. \end{aligned}$$

Computing the norm of (56) and (57), and then using the above inequalities together with (49), gives

$$\begin{aligned} |\triangle _1(s,\alpha )| \le \delta L_2 |\epsilon |, \qquad |\triangle _2(s,\alpha )| \le \delta k L_2 |\epsilon |, \end{aligned}$$
(63)

where \(|\epsilon |<{\varepsilon }\). Substituting these inequalities into (62) gives,

$$\begin{aligned} |\epsilon ^{-1} \varphi ^\epsilon (t)-\psi _k (t)| \le K_2\rho (\epsilon )+(L_2T+kL_2T)\delta +\int _{0}^{t} \bar{K}|\epsilon ^{-1} \varphi ^\epsilon (s)-\psi _k (s)|\hbox {d}s. \end{aligned}$$

We know that \(\rho (\epsilon ) \rightarrow 0\) as \(\epsilon \rightarrow 0\), so there exists a constant \({\acute{\varepsilon }}>0\) that \(\rho (\epsilon )<\delta \) whenever \(|\epsilon |<\acute{\varepsilon }\). Hence, for all \(\epsilon \) that \(|\epsilon |<\min \{\varepsilon ,\acute{\varepsilon }\}\),

$$\begin{aligned} |\epsilon ^{-1} \varphi ^\epsilon (t)-\psi _k (t)| \le K_2\delta +(L_2T+kL_2T)\delta +\int _{0}^{t} \bar{K}|\epsilon ^{-1}\varphi ^\epsilon (s)-\psi _k (s)|\hbox {d}s. \end{aligned}$$

Applying the Bellman–Grönwall Lemma [31] yields

$$\begin{aligned} |\epsilon ^{-1} \varphi ^\epsilon (t)-\psi _k (t)|\le \delta (K_2+L_2T+kL_2T)\exp \{\bar{M}T\}, \end{aligned}$$

where \(|\epsilon |<\min \{\varepsilon ,\acute{\varepsilon }\}\). While \(\delta \) is an arbitrary value, we can conclude that \(\epsilon ^{-1} \varphi ^\epsilon (t) \rightarrow \psi _k (t)\) as \(\epsilon \rightarrow 0\), and we have

$$\begin{aligned} \frac{\partial x(t|\tau )}{\partial \tau _k}=\lim _{\epsilon \rightarrow 0}\frac{x^\epsilon (t)-x(t)}{\epsilon }= \lim _{\epsilon \rightarrow 0} \epsilon ^{-1} \varphi ^\epsilon (t)=\psi _k (t) \end{aligned}$$
(64)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abooshahab, M.A., Ekramian, M., Ataei, M. et al. Time-Delay Estimation in State and Output Equations of Nonlinear Systems Using Optimal Computational Approach. J Optim Theory Appl 180, 1036–1064 (2019). https://doi.org/10.1007/s10957-018-1410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-018-1410-6

Keywords

Mathematics Subject Classification

Navigation