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Abstract. As a complement to two recent papers by An and Yen [2],

and by An and Yao [1] on subdifferentials of the optimal value function of

infinite-dimensional convex optimization problems, this paper studies the

differential stability of convex optimization problems, where the solution

set may be empty. By using a suitable sum rule for ε-subdifferentials, we

obtain exact formulas for computing the ε-subdifferential of the optimal

value function. Several illustrative examples are also given.
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1 Introduction

Studying differential stability of optimization problems usually means to study dif-

ferentiability properties of the optimal value function in parametric mathematical
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programming. We refer to [1, 2, 12–14, 16, 17, 21] and the references therein for some

old and new results in this direction.

According to Penot [16, Chapter 3], the class of convex functions is an important

class that enjoys striking and useful properties. The consideration of directional

derivative makes it possible to reduce this class to the subclass of sublinear functions.

This subclass is next to the family of linear functions in terms of simplicity: the

epigraph of a sublinear function is a convex cone, a notion almost as simple and

useful as the notion of linear subspace.

Differential properties of convex functions have been studied intensively in the last

five decades. The fundamental contributions of J.-J. Moreau and R.T. Rockafellar

have been widely recognized. Their results led to the beautiful theory of convex

analysis [17]. The derivative-like structure for convex functions, called subdifferentials,

is one of the main concepts in this theory. Subdifferentials generalize the derivatives

to nonsmooth functions, which make them one of the most useful instruments in

nonsmooth optimization.

The concept of the ε-subdifferential or approximate subdifferential was first in-

troduced by Brøndsted and Rockafellar in [5]. It has become an essential tool in

convex analysis. For example, approximate minima and approximate subdifferentials

are linked together by Legendre -Fenchel transforms (see, e.g., [20]). Like for the sub-

differential, calculus rules on the ε-subdifferential are of importance and attract the

attention of many researchers; see, e.g., [6–10,15,18–21] and the references therein.

In [2], An and Yen presented formulas for computing the subdifferential of the op-

timal value function of convex optimization problems under inclusion constraints in a

Hausdorff locally convex topological vector space setting. Afterwards, An and Yao [1]

obtained new results on subdifferential of the just mentioned function for problems

under geometrical and functional constraints in Banach spaces. In both papers, the

authors assumed that the original convex program has a nonempty solution set. A

natural question arises: Is there any analogous version of the formulas given in [1,2]

for the case where the solution set can be empty?
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By using sum rules of the ε-subdifferentials from [6] and appropriate regularity

conditions, this paper presents formulas for the ε-subdifferential of the optimal value

function of convex optimization problems under inclusion constraints in Hausdorff

locally convex topological vector spaces.

The contents of the paper are as follows. Section 2 recalls several definitions

and elementary results related to ε-subdifferentials of convex functions. Section 3 is

devoted to a detailed analysis of several sum rules for ε-subdifferentials. Differen-

tial stability results of unconstrained and constrained convex optimization problems

are established in Section 4. Several illustrative examples are also presented in this

section.

2 Preliminaries

Let X and Y be Hausdorff locally convex topological vector spaces whose topo-

logical duals are denoted, respectively, by X∗ and Y ∗. Let f : X → R, where

R := [−∞,+∞] = R∪{+∞}∪{−∞} is an extended real-valued function. One says

that f is proper if the domain

dom f := {x ∈ X | f(x) < +∞}

is nonempty, and if f(x) > −∞ for all x ∈ X. It is well known that if epi f of f is

convex, then f is said to be a convex function, where

epi f := {(x, α) ∈ X × R | α ≥ f(x)}.

If epi f is a closed subset of X × R, f is said to be a closed function. Denoting the

set of all the neighborhoods of x by N (x), one says that f is lower semicontinuous

(l.s.c.) at x ∈ X if for every ε > 0 there exists U ∈ N (x) such that f(x′) ≥ f(x)− ε
for any x′ ∈ U. If f is l.s.c. at every x ∈ X, f is said to be l.s.c. on X. It is easy to

show that: f is l.s.c. on X if and only if f is closed and dom f is closed too.

It is convenient to denote the set of all proper lower semicontinuous convex func-

tions on X by Γ0(X).
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Definition 2.1. Let f be a convex function defined on X, x̄ ∈ dom f , and ε ≥ 0.

The ε-subdifferential of f at x̄ is the set

∂εf(x̄) = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ f(x)− f(x̄) + ε, ∀x ∈ X}.

The set ∂εf(x̄) reduces to the subdifferential ∂f(x̄) when ε = 0. From the def-

inition it follows that ∂εf(x̄) is a weakly∗-closed, convex set. In addition, for any

nonnegative values ε1, ε2 with ε1 ≤ ε2, one has ∂ε1f(x̄) ⊂ ∂ε2f(x̄). Moreover,

∂f(x̄) = ∂0f(x̄) =
⋂
ε>0

∂εf(x̄).

If f ∈ Γ0(X), then ∂εf(x̄) is nonempty for every x̄ ∈ dom f and ε > 0 (see [6]).

The following example shows that the traditional subdifferential ∂f(x̄) may be empty,

while ∂εf(x̄) 6= ∅ for all ε > 0.

Example 2.1. Let X = R and x̄ = 0. Clearly, the function f : X → R given by

f(x) =

−
√
x if x ≥ 0,

+∞ otherwise

belongs to Γ0(X) and x̄ ∈ dom f . For every ε > 0, one has

∂εf(x̄) = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ f(x)− f(x̄) + ε, ∀x ∈ X}

=
{
x∗ ∈ R | x∗x ≤ −√x+ ε, ∀x ≥ 0

}
=

(
−∞, − 1

4ε

]
.

Meanwhile, it is easy to verify that ∂f(x̄) = ∅.

In the sequel, we will also need the notion of conjugate function. By definition,

the function f ∗ : X∗ → R given by

f ∗(x∗) = sup
x∈X

[〈x∗, x〉 − f(x)] , x∗ ∈ X∗,

is said to be the conjugate function (also called the Young–Fenchel transform, the

Legendre–Fenchel conjugate) of f : X → R. The conjugate function of f ∗, denoted

by f ∗∗, is a function defined on X and has values in R:

f ∗∗(x) = sup
x∗∈X∗

[〈x∗, x〉 − f ∗(x∗)] (x ∈ X).
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Clearly, the function f ∗∗ is convex and closed (in the sense that epi f ∗∗ is closed in

the weak topology of X×R or, in other words, f ∗∗ is lower semicontinuous w.r.t. the

weak topology of X). According to the Fenchel–Moreau theorem (see [11, Theorem 1,

p. 175]), if f is a function on X everywhere greater than −∞, then f = f ∗∗ if and

only if f is closed and convex.

According to [6], there are two basic ways to describe ∂εf(x̄):

(a) Via the conjugate function f ∗ of f ;

(b) Via the support function δ∗(x; ∂εf(x̄)) := sup{〈x∗, x〉 | x∗ ∈ ∂εf(x̄)} of ∂εf(x̄).

Proposition 2.1. (See [6, Propositions 1.1 and 1.2]) The following holds:

(i) If x̄ ∈ dom f and ε ≥ 0, then

x∗ ∈ ∂εf(x̄) ⇐⇒ f ∗(x∗) + f(x̄) ≤ 〈x∗, x̄〉+ ε.

(ii) If f ∈ Γ0(X), x̄ ∈ dom f and ε ≥ 0, then

δ∗(v; ∂εf(x̄)) = inf
t>0

f(x̄+ tv)− f(x̄) + ε

t
(v ∈ X).

To deal with constrained optimization problems, we will need some results on

ε-normal directions from [7]. Let C be a nonempty convex set in a Hausdorff locally

convex topological vector space X.

Definition 2.2. The set Nε(x̄;C) of ε-normal directions to C at x̄ ∈ C is defined by

Nε(x̄;C) = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ ε, ∀x ∈ C}.

As usual, the indicator function δ(·;C) of C is defined by setting δ(x;C) = 0 if

x ∈ C and δ(x;C) = +∞ if x /∈ C. It is easy to see that Nε(x̄;C) = ∂εδ(x̄;C) for

every ε ≥ 0. Moreover, when ε = 0, Nε(x̄;C) reduces to the normal cone of C at

x̄, which is denoted by N(x̄;C). However, as a general rule, Nε(x̄;C) is not a cone

when ε > 0.

The polar set of A ⊂ X is defined by

A0 = {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 1, ∀x ∈ A}.
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Proposition 2.2. (See [7, p. 222]) The following properties of ε-normal directions

are valid:

(i) Nε(x;C) = ε(C − x)0 for any x ∈ C and ε > 0;

(ii) N(x;C) =
⋂
η>0

ηNε(x;C) for any x ∈ C and ε ≥ 0.

The first assertion of Proposition 2.2 shows that the set of the ε-normal directions

Nε(x;C) can be computed via the polar set of a set containing 0. Provided that the

set Nε(x;C) has been found, by using the second assertion of Proposition 2.2, one

can compute the normal cone N(x;C). Due to the importance of the polar sets of

sets containing the origin, it is reasonable to consider an illustrative example. Let

X = R2 and BR2 be the unit closed ball in R2.

Example 2.2. Consider the set A = B((0, 1); 1) = {(x1, x2) ∈ R2 | x2
1+(x2−1)2 ≤ 1},

we have A0 = {x∗ = (x∗1, x
∗
2) ∈ R2 | x∗1 + ||x∗|| ≤ 1}, where ||x∗|| =

√
x∗21 + x∗22 .

Indeed, since A = (1, 0) +BR2 , we have

A0 = {x∗ = (x∗1, x
∗
2) ∈ R2 | 〈(x∗1, x∗2), (1, 0) + v〉 ≤ 1, ∀v ∈ BR2}

= {x∗ ∈ R2 | x∗1 + ||x∗|| ≤ 1}.

x1

x2

A

A0

10

1

-1

0.5

Figure 1: The polar set of A.

Now, consider a proper convex function f : X → R and suppose that x̄ ∈ dom f .

The relationship between ∂εf(x̄) and Nε((x̄, f(x̄)); epi f) is described [7, p. 224] as
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follows:

∂εf(x̄) =
{
x∗ ∈ X∗ | (x∗,−1) ∈ Nε((x̄, f(x̄)); epi f)

}
(ε ≥ 0). (2.1)

Taking ε = 0, from (2.1) we recover the following fundamental formula in convex

analysis, which relates subdifferentials of a given convex function to the normal cones

of its epigraph:

∂f(x) =
{
x∗ ∈ X∗ | (x∗,−1) ∈ N((x, f(x)); epi f)

}
(∀x ∈ dom f).

3 Sum rules for ε-subdifferentials

In convex analysis and optimization, summing two functions is a key operation. The

Moreau–Rockafellar Theorem can be viewed as a well-known result, which describes

the subdifferential of the sum of two subdifferentiable functions. Invoking a result on

the infimal convolution of two functions, one gets a sum rule for ε-subdifferentials. In

the sequel, we will need next fundamental sum rule for ε-subdifferentials.

Theorem 3.1. (See [6, Theorem 2.1]) Suppose that f1, f2 : X → R are two proper

convex functions on a Hausdorff locally convex topological vector space X and the

qualification condition

(f1+f2)∗(x∗)=min
{
f ∗1 (x∗1)+f ∗2 (x∗2) | x∗1, x∗2 ∈ X∗, x∗1 + x∗2 = x∗} (∀x∗ ∈ X∗) (3.2)

holds. Then, for every x̄ ∈ dom f1 ∩ dom f2 and ε > 0, one has

∂ε(f1 + f2)(x̄) =
⋃

ε1≥0, ε2≥0,
ε1+ε2=ε

{
∂ε1f1(x̄) + ∂ε2f2(x̄)

}
. (3.3)

Condition (3.2) means that, for every x∗ ∈ X∗, one has

(f1 + f2)∗(x∗) = inf
{
f ∗1 (x∗1) + f ∗2 (x∗2) | x∗1, x∗2 ∈ X∗, x∗1 + x∗2 = x∗}, (3.4)

and the infimum is attained, i.e., there exist x̄∗1, x̄
∗
2 from X∗ with x̄∗1 + x̄∗2 = x∗ such

that

f ∗1 (x̄∗1) + f ∗2 (x̄∗2) = inf
{
f ∗1 (x∗1) + f ∗2 (x∗2) | x∗1 + x∗2 = x∗}. (3.5)
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A deeper understanding of condition (3.2) is achieved via the notion of infimal

convolution [11, p. 168] of convex functions.

The infimal convolution f1 ⊕ f2 of proper convex functions f1 : X → R and

f2 : X → R is defined by

(f1 ⊕ f2)(x) := inf
{
f1(x1) + f2(x2) | x1 + x2 = x} (x ∈ X).

Applying this construction to the functions f ∗1 : X∗ → R and f ∗2 : X∗ → R, we have

(f ∗1 ⊕ f ∗2 )(x∗) = inf
{
f ∗1 (x∗1) + f ∗2 (x∗2) | x∗1 + x∗2 = x∗}. (3.6)

The attainment of the infimum on the right-hand-side of (3.6) at a point x∗ is a

kind of qualification on the functions f1, f2 in a dual space setting. The writing

(f ∗1 ⊕ f ∗2 )(x∗) = min
{
f ∗1 (x∗1) + f ∗2 (x∗2) | x∗1 + x∗2 = x∗} means that there exist x̄∗1, x̄

∗
2

from X∗ with x∗ = x̄∗1 + x̄∗2 and (f ∗1 ⊕ f ∗2 )(x∗) = f ∗1 (x̄∗1) + f ∗2 (x̄∗2).

According to [11, p. 168], the infimal convolution of proper convex functions is a

convex function. However, the latter can fail to be proper. For example, if f1 and

f2 are linear functions not equal to one another, then their infimal convolution is

identically −∞.

By the definition of conjugate function, we have

(f1 + f2)∗(x∗) = sup
x∈X

{
〈x∗, x〉 − (f1 + f2)(x)

}
.

So, substituting x∗ = x∗1 + x∗2 with x∗1 ∈ X∗ and x∗2 ∈ X∗ yields

(f1 + f2)∗(x∗) = sup
x∈X

{
〈x∗1 + x∗2, x〉 − f1(x)− f2(x)

}
= sup

x∈X

{
〈x∗1, x〉 − f1(x) + 〈x∗2, x〉 − f2(x)

}
≤ sup

x∈X

{
〈x∗1, x〉 − f1(x)

}
+ sup

x∈X

{
〈x∗2, x〉 − f2(x)

}
.

Thus, the inequality

(f1 + f2)∗(x∗) ≤ f ∗1 (x∗1) + f ∗2 (x∗2) (3.7)
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holds for all x∗, x∗1, x
∗
2 ∈ X∗ satisfying x∗ = x∗1 +x∗2. For any x∗ ∈ X∗, taking infimum

of both sides of (3.7) on the set of all (x∗1, x
∗
2) with x∗1 + x∗2 = x∗, we get

(f1 + f2)∗(x∗) ≤ (f ∗1 ⊕ f ∗2 )(x∗); (3.8)

see [11, p. 181]. Since (3.4) can be rewritten as

(f1 + f2)∗(x∗) = (f ∗1 ⊕ f ∗2 )(x∗), (3.9)

condition (3.2) requires that, for the functions f1 and f2 in question, the inequality

in (3.8) holds as equality for all x∗ ∈ X∗. Luckily, this requirement is satisfied under

some verifiable regularity conditions. The following theorem describes a condition of

this type.

Theorem 3.2. (See [11, Theorem 1, p. 178]) Suppose that f1, f2 are proper convex

functions. Ifone of the functions f1, f2 is continuous at a point belonging

to the effective domain of the other,

(3.10)

then the equality (f1 + f2)∗(x∗) = (f ∗1 ⊕ f ∗2 )(x∗) holds for every x∗ ∈ X∗. Moreover,

for every x∗ ∈ dom (f1 + f2)∗, there exist points x̄∗i ∈ dom f ∗i , i = 1, 2, such that

x̄∗1 + x̄∗2 = x∗ and

f ∗1 (x̄∗1) + f ∗2 (x̄∗2) = (f1 + f2)∗(x∗).

Remark 3.1. Under the assumptions of Theorem 3.2, condition (3.2) is satisfied.

Indeed, suppose that one of the proper convex functions f1, f2 is continuous at a point

x0 belonging to the effective domain of the other. Then, one has x0 ∈ dom (f1 + f2).

It follows that (f1 + f2)∗(x∗) is everywhere greater than −∞ for all x∗ ∈ X∗. If

x∗ /∈ dom (f1 + f2)∗, then (f1 + f2)∗(x∗) = +∞. Choose x̄∗1, x̄
∗
2 ∈ X∗ such that

x∗ = x̄∗1 + x̄∗2. By (3.7), +∞ = (f1 + f2)∗(x∗) ≤ f ∗1 (x̄∗1) + f ∗2 (x̄∗2). Noting that

f ∗1 (x̄∗1) > −∞ and f ∗2 (x̄∗2) > −∞ because f1, f2 are proper functions, from this we

infer that at least one of the values f ∗1 (x̄∗1) and f ∗2 (x̄∗2) must be +∞. Combining this

with (3.7) yields (3.5). Since (3.4) is equivalent to (3.9), and the latter is fulfilled.
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Thanks to Theorem 3.2, we have thus proved that the equality in (3.2) is satisfied for

every x∗ /∈ dom (f1 + f2)∗. If x∗ ∈ dom (f1 + f2)∗, then the equality in (3.2) follows

immediately from Theorem 3.2.

In a Banach space setting, one has the following analogue of Theorem 3.2, where

f1 and f2 must be assumed closed. Recall that R+(A) := {ta ∈ X | t ∈ R+, a ∈ A}
and int A, respectively, are the cone generated by the set A and the interior of A.

Theorem 3.3. (See [3, Theorem 1.1], [13, Theorem 4.2 (ii)]) Let f1, f2 : X → R be

proper closed convex functions defined on a Banach space X. Suppose that

R+(dom f1 − dom f2) is a nonempty closed subspace of X. (3.11)

Then, for every x∗ ∈ X∗, one has (f1 + f2)∗(x∗) = (f ∗1 ⊕ f ∗2 )(x∗). Moreover, for any

x∗ ∈ dom (f1 + f2)∗ there are x∗1, x
∗
2 ∈ X∗ such that x∗ = x∗1 + x∗2 and

(f1 + f2)∗(x∗) = f ∗1 (x∗1) + f ∗2 (x∗2).

Later we will also need another version of Theorem 3.2, where a geometrical

regularity condition is employed.

Theorem 3.4. (See [4, Theorem 2.171]) Let f1, f2 : X → R be proper closed convex

functions defined on a Banach space X. If the regularity condition

0 ∈ int (dom f1 − dom f2) (3.12)

is satisfied, then the equality (f1 + f2)∗(x∗) = (f ∗1 ⊕ f ∗2 )(x∗) holds for every x∗ ∈ X∗.
Moreover, if x∗ is such that the value (f1 + f2)∗(x∗) is finite, then the set of x∗1

satisfying (f ∗1 ⊕ f ∗2 )(x∗) = f ∗1 (x∗1) + f ∗2 (x∗ − x∗1) is nonempty and weakly∗-compact.

Remark 3.2. Under the assumptions of Theorem 3.3 (resp., of Theorem 3.4), condi-

tion (3.2) is satisfied. Indeed, suppose that f1, f2 : X → R are proper closed convex

functions defined on a Banach space X, and (3.11) (resp., (3.12)) is fulfilled. We

have 0 ∈ dom f1 − dom f2. So, there is x0 ∈ X with x0 ∈ dom f1 ∩ dom f2. Then

x0 ∈ dom (f1 + f2). Applying Theorem 3.3 (resp., Theorem 3.4) and the arguments

already used in Remark 3.1, we obtain (3.2).
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We now show that assumption (3.2) is essential for Theorem 3.1.

Example 3.1. Let X = R, f1(x) = 0 for x = 0, and f1(x) = +∞ for x 6= 0. Define

f2 by setting f2(x) = −√x for x ≥ 0, and f2(x) = +∞ for x < 0. By a simple

computation we obtain f ∗1 (x∗) = 0 for all x∗ ∈ R, and

f ∗2 (x∗) =


− 1

4x∗
if x∗ < 0,

+∞ if x∗ ≥ 0.

Since (f1 + f2)(x) = 0 for x = 0 and (f1 + f2)(x) = +∞ for x 6= 0, the equality

(f1 + f2)∗(x∗) = 0 holds for every x∗ ∈ R. So, for x∗ = 0, (3.4) holds, but the

infimum on the right-hand side is not attained. This means that condition (3.2) is

not satisfied. For x̄ = 0 and ε > 0, the equality (3.3) holds because ∂ε(f1+f2)(x̄) = R,

∂ε1f1(x̄) = R for every ε1 ≥ 0, ∂f2(x̄) = ∅, and ∂ε2f2(x̄) =
(
−∞, − 1

4ε2

]
for every

ε2 > 0 (see Example 2.1). Nevertheless, for x̄ = 0 and ε = 0, the equality (3.3) is

violated because the left-hand side is R, while the right-hand side is the empty set.

The sum rule (3.3) requires the fulfillment of condition (3.2), which is implied by

the regularity conditions (3.10), (3.11), and (3.12) and the corresponding assumptions

of Theorems 3.2, 3.3, and 3.4. We now clarify the relationships between the regularity

conditions (3.10), (3.11), and (3.12).

Proposition 3.1. (See also [2, Subsection 6.1]) Let f1, f2 : X → R be proper closed

convex functions defined on a Hausdorff locally convex topological vector space X.

Then, (3.10) implies (3.11) and (3.12).

Proof. Without loss of generality, suppose that f1 is continuous at a point x̄ ∈ dom f2.

Then, there exists a neighborhood U of 0 ∈ X such that x̄ + U ⊂ dom f1. So,

U = (x̄+ U)− x̄ ⊂ dom f1 − dom f2. This yields (3.12) and the equality

R+(dom f1 − dom f2) = X,

which justifies (3.11).

The implication (3.12) ⇒ (3.11) is obvious. Let us present two simple examples

to show that the converse implication and the assertion (3.12) ⇒ (3.10) are not true.
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Example 3.2. Let X = R2, f1(x) = x2
1 for all x = (x1, 0), f1(x) = +∞ for all

x = (x1, x2) with x1 6= 0, and f2 ≡ f1. Then,

R+(dom f1 − dom f2) = dom f1 − dom f2 = R× {0}

is a closed subspace of X. However, both conditions (3.10) and (3.12) are violated.

Example 3.3. Let X and f1 be the same as in Example 3.2. Put f2(x) = x2
2 for all

x = (0, x2), f2(x) = +∞ for all x = (x1, x2) with x2 6= 0. Then (3.12) is satisfied,

but (3.10) fails to hold.

4 Main results

Differential stability of convex optimization problems with possibly empty solution

sets in infinite-dimensional spaces is studied in this section. To make the presentation

as clear as possible, we distinguish two cases:

a) unconstrained problems;

b) constrained problems.

Let X, Y be Hausdorff locally convex topological vector spaces and ϕ : X×Y → R

an extended real-valued function.

4.1 Unconstrained convex optimization problems

Consider the parametric unconstrained convex optimization problem

min{ϕ(x, y) | y ∈ Y } (4.1)

depending on the parameter x. The function ϕ is called the objective function of (4.1).

The optimal value function µ : X → R of (4.1) is

µ(x) := inf {ϕ(x, y) | y ∈ Y } . (4.2)

The solution set of (4.1) is defined by M(x̄) := {y ∈ Y | µ(x̄) = ϕ(x̄, y)}. For η > 0,

one calls Mη(x̄) := {y ∈ Y | ϕ(x̄, y) ≤ µ(x̄)+η} the approximate solution set of (4.1).
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We now obtain formulas for the ε-subdifferential of µ(.). Since the following

result was given in [15, Corollary 5] as a consequence of a more general result and

in [21, Theorem 2.6.2] with a brief proof, we will present a detailed, direct proof

to make the presentation as clear as possible. Our arguments are based on a proof

scheme of [15].

Theorem 4.1. (See [15, Corollary 5] and [21, Theorem 2.6.2, p. 109]) Suppose that

ϕ : X × Y → R is a proper convex function and µ(·) is finite at x̄ ∈ X. Then, for

every ε ≥ 0, one has

∂εµ(x̄) =
⋂
η > 0

⋂
y ∈Mη(x̄)

{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

}
=

⋂
η > 0

⋃
y ∈Y

{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

}
.

(4.3)

In particular,

∂µ(x̄) =
⋂
η > 0

⋂
y ∈Mη(x̄)

{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂ηϕ(x̄, y)

}
=

⋂
η > 0

⋃
y ∈Y

{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂ηϕ(x̄, y)

}
.

(4.4)

Moreover, if M(x̄) 6= ∅, then for every ε ≥ 0, one has

∂εµ(x̄) =
{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂εϕ(x̄, y)

}
, (4.5)

for all y ∈M(x̄).

Proof. We put

Mη(x̄) =
⋂

y ∈Mη(x̄)

{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

}
,

Nη(x̄) =
⋃
y ∈Y

{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂ε+ηϕ(x̄, y)

}
.

Since µ(x̄) = inf
y ∈Y

ϕ(x̄, y) by (4.2), the set Mη(x̄) is nonempty for every η > 0. Thus,

one has Mη(x̄) ⊂ Nη(x̄) for all η > 0. Hence
⋂
η>0

Mη(x̄) ⊂ ⋂
η>0

Nη(x̄). So, the

equalities in (4.3) will be proved, if we can show that

∂εµ(x̄) ⊂
⋂
η > 0

Mη(x̄) (4.6)
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and ⋂
η > 0

Nη(x̄) ⊂ ∂εµ(x̄). (4.7)

To prove (4.6), take any x∗ ∈ ∂εµ(x̄), η > 0, and y ∈ Mη(x̄). Thanks to the first

assertion of Proposition 2.1, we know that x∗ ∈ ∂εµ(x̄) if and only if

µ(x̄) + µ∗(x∗) ≤ 〈x∗, x̄〉+ ε. (4.8)

Adding η > 0 to both sides of (4.8) yields

µ(x̄) + µ∗(x∗) + η ≤ 〈x∗, x̄〉+ ε+ η. (4.9)

Since y ∈Mη(x̄), one has ϕ(x̄, y) ≤ µ(x̄) + η. So, (4.9) gives

ϕ(x̄, y) + µ∗(x∗) ≤ 〈x∗, x̄〉+ ε+ η. (4.10)

For every v∗ ∈ X∗, we have µ∗(v∗) = ϕ∗(v∗, 0). Indeed, by the definition of conjugate

function,

µ∗(v∗) = sup
x∈X

{
〈v∗, x〉 − µ(x)

}
= sup

x∈X

{
〈v∗, x〉 − inf

y ∈Y
ϕ(x, y)

}
= sup

(x,y)∈X×Y

{
〈v∗, x〉 − ϕ(x, y)

}
= sup

(x,y)∈X×Y

{
〈(v∗, 0), (x, y)〉 − ϕ(x, y)

}
= ϕ∗(v∗, 0).

Substituting µ∗(x∗) = ϕ∗(x∗, 0) into (4.10), one obtains

ϕ(x̄, y) + ϕ∗(x∗, 0) ≤ 〈x∗, x̄〉+ ε+ η. (4.11)

According to Proposition 2.1, inequality (4.11) yields (x∗, 0) ∈ ∂ε+ηϕ(x̄, y) for all

η > 0 and y ∈Mη(x̄). This means that x∗ ∈ ⋂
η > 0

Mη(x̄), so (4.6) is valid.

Next, to prove (4.7), take any x∗ ∈ ⋂
η>0

Nη(x̄). Then, for every η > 0, there

exists y ∈ Y such that (x∗, 0) ∈ ∂ε+ηϕ(x̄, y). By Proposition 2.1, this means that

ϕ∗(x∗, 0) + ϕ(x̄, y)− 〈(x∗, 0), (x̄, y)〉 ≤ ε+ η. The latter yields

ϕ∗(x∗, 0) + ϕ(x̄, y)− 〈x∗, x̄〉 ≤ ε+ η. (4.12)
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Since ϕ∗(x∗, 0) = µ∗(x∗) and µ(x̄) ≤ ϕ(x̄, y), (4.12) implies

µ∗(x∗) + µ(x̄)− 〈x∗, x̄〉 ≤ ε+ η. (4.13)

As (4.13) holds for every η > 0, letting η → 0+ yields µ∗(x∗) + µ(x̄) − 〈x∗, x̄〉 ≤ ε.

The last inequality shows that x∗ ∈ ∂εµ(x̄). Therefore, (4.7) is fulfilled.

Combining (4.6) and (4.7) gives (4.3). For ε = 0, from (4.3) one obtains (4.4).

Next elementary property of the ε-subdifferential will be used latter on.

Proposition 4.1. Let ϕ : X×Y → R be a convex function. If ϕ(x, y) = ϕ1(x)+ϕ2(y),

where ϕ1 : X → R and ϕ2 : Y → R are convex functions then, for any ε ≥ 0 and

(x̄, ȳ) ∈ X × Y , one has

∂εϕ(x̄, ȳ) ⊂ ∂εϕ1(x̄)× ∂εϕ2(ȳ) ⊂ ∂2εϕ(x̄, ȳ). (4.14)

Proof. Suppose that (x∗, y∗) ∈ ∂εϕ(x̄, ȳ) for some ε ≥ 0. Then, we have

〈(x∗, y∗), (x, y)− (x̄, ȳ)〉 ≤ ϕ(x, y)− ϕ(x̄, ȳ) + ε, ∀(x, y) ∈ X × Y. (4.15)

By our assumption, (4.15) is equivalent to

〈x∗, x− x̄〉+ 〈y∗, y − ȳ〉 ≤ ϕ1(x)− ϕ1(x̄) + ϕ2(y)− ϕ2(ȳ) + ε, ∀(x, y) ∈ X × Y.
(4.16)

On one hand, substituting y = ȳ into (4.16), we get x∗ ∈ ∂ϕ1(x̄). On the other hand,

taking x = x̄, from (4.16) we have y∗ ∈ ∂ϕ2(ȳ). Therefore, for any ε ≥ 0,

∂εϕ(x̄, ȳ) ⊂ ∂εϕ1(x̄)× ∂εϕ2(ȳ).

The second inclusion in (4.14) can be obtained easily by the definition of ε-subdifferential.

Thus (4.14) is valid.

The following example is taken from [9, pp. 93–94].

Example 4.1. Let f(x) = |x| for all x ∈ R and ε ≥ 0. We have

∂εf(x) =



[
−1, −1− ε

x

]
if x <

−ε
2
,

[−1, 1] if
−ε
2
≤ x ≤ ε

2
,[

1− ε

x
, 1
]

if x >
ε

2
.
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We now give an illustration for Theorem 4.1.

Example 4.2. Choose X = Y = R, ϕ(x, y) = x2 + |y|, and x̄ = 0. Then the optimal

value function (4.2) of the parametric problem (4.1) is µ(x) = x2. For any ε ≥ 0, we

have

∂εµ(x̄) ={x∗ ∈ R | x∗x ≤ x2 + ε, ∀x ∈ R}

={x∗ ∈ R | −x2 + x∗x− ε ≤ 0, ∀x ∈ R}

=
[
−2
√
ε, 2
√
ε
]
.

In this case, ȳ = 0 ∈ M(x̄), so we will clarify equality (4.5). By Proposition 4.1 one

has ∂εϕ(x̄, y) ⊂ ∂εϕ1(x̄)× ∂εϕ2(y), where ϕ1(x) = x2 and ϕ2(y) = |y|. On one hand,

∂εϕ1(x̄) = [−2
√
ε, 2
√
ε]. On the other hand, according to Example 4.1,

∂εϕ2(y) =



[
−1, −1− ε

y

]
if y < −ε

2
,

[−1, 1] if − ε

2
≤ y ≤ ε

2
,[

1− ε

y
, 1

]
if y >

ε

2
.

Then, the right-hand side of (4.5) can be computed as follows

RHS(4.5) =

{
x∗ ∈ R | (x∗, 0) ∈

[
−2
√
ε, 2
√
ε
]
× [−1, 1]

}
=
[
−2
√
ε, 2
√
ε
]
.

Therefore, the conclusion of Theorem 4.1 is justified.

4.2 Constrained convex optimization problems

Let ϕ : X × Y → R be an extended real-valued funtion, G : X ⇒ Y a multifunction

between Hausdorff locally convex topological vector spaces. Consider the parametric

optimization problem under an inclusion constraint

min{ϕ(x, y) | y ∈ G(x)} (4.17)
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depending on the parameter x. The function ϕ (resp., the multifunction G) is called

the objective function (resp., the constraint multifunction) of (4.17). The optimal

value function µ : X → R of (4.17) is

µ(x) := inf {ϕ(x, y) | y ∈ G(x)} . (4.18)

The usual convention inf ∅ = +∞ forces µ(x) = +∞ for every x /∈ domG. The

solution map M : domG⇒ Y of (4.17) is defined by

M(x) = {y ∈ G(x) | µ(x) = ϕ(x, y)}.

The approximate solution set of (4.17) is given by

Mη(x̄) = {y ∈ G(x̄) | ϕ(x̄, y) ≤ µ(x̄) + η}, ∀η > 0. (4.19)

We are now in a position to formulate the first main result of this subsection. For

any ε ≥ 0 and η ≥ 0, define by Γ (η + ε) the set

Γ (η + ε) = {(γ1, γ2) | γ1 ≥ 0, γ2 ≥ 0, γ1 + γ2 = η + ε}.

Theorem 4.2. Let ϕ : X × Y → R be a proper convex function, G : X ⇒ Y a

convex multifunction. Suppose that the optimal value function µ(·) in (4.18) is finite

at x̄ ∈ X. If at least one of the following regularity conditions is satisfied:

(a) int(gph G) ∩ dom ϕ 6= ∅,
(b) ϕ is continuous at a point (x0, y0) ∈ gphG,

then, for every ε ≥ 0, we have

∂εµ(x̄)

=
⋂
η>0

⋂
y ∈Mη(x̄)

⋃
(γ1,γ2)∈Γ (η+ε)

{
x∗ | (x∗, 0) ∈ ∂γ1ϕ(x̄, y)+Nγ2

(
(x̄, y); gphG

)}

=
⋂
η>0

⋃
y ∈Y

⋃
(γ1,γ2)∈Γ (η+ε)

{
x∗ | (x∗, 0) ∈ ∂γ1ϕ(x̄, y) +Nγ2

(
(x̄, y); gphG

)}
,

(4.20)

where Mη(x̄) is given in (4.19).
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Proof. (This proof is based on Theorems 3.1 and 4.1.) We apply Theorem 4.1 to the

case where ϕ(x, y) plays the role of
(
ϕ+ δ(·; gph G)

)
(x, y). Hence

∂εµ(x̄) =
⋂
η>0

⋂
y ∈Mη(x̄)

{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂ε+η

(
ϕ+ δ(·; gph G)

)
(x̄, y)

}

=
⋂
η>0

⋃
y ∈Y

{
x∗ ∈ X∗ | (x∗, 0) ∈ ∂ε+η

(
ϕ+ δ(·; gph G)

)
(x̄, y)

}
.

(4.21)

We will show that

∂ε+η
(
ϕ+ δ(·; gph G)

)
(x̄, y)=

⋃
(γ1,γ2)∈Γ (η+ε)

{
∂γ1ϕ(x̄, y)+Nγ2((x̄, y); gphG)

}
, (4.22)

where Γ (η + ε) = {(γ1, γ2) | γ1 ≥ 0, γ2 ≥ 0, γ1 + γ2 = ε + η}. Indeed, suppose that

at least one of the regularity conditions (a) or (b) is fulfilled. Since gph G is convex,

δ(·; gph G) : X × Y → R is convex. Obviously, δ(·; gph G) is continuous at every

point belonging to int(gph G). Hence, if the regularity condition (a) is satisfied, then

δ(·; gph G) is continuous at a point in dom ϕ. Consider the case where the regularity

condition (b) is fulfilled. Since dom δ(·; gph G) = gph G. From (b), it follows that ϕ

is continuous at a point in dom δ(·; gph G). So, in both cases, thanks to Theorem 3.2

and Remark 3.1, the qualification condition(
ϕ+ δ(·; gph G)

)∗
(x∗, y∗)

= min

{
ϕ∗(x∗1, y

∗
1) + δ∗((x∗2, y

∗
2); gph G) | (x∗, y∗) = (x∗1, y

∗
1) + (x∗2, y

∗
2)

}
(4.23)

holds for all (x∗, y∗) ∈ X∗ × Y ∗. So, all assumptions of Theorem 3.1 are satisfied.

Therefore,

∂ε+η
(
ϕ+ δ(·; gph G)

)
(x̄, y) =

⋃
(γ1,γ2)∈Γ (η+ε)

{
∂γ1ϕ(x̄, y) + ∂γ2δ((x̄, y); gph G)

}
,

for any (x̄, y) ∈ domϕ∩ gph G. Moreover, ∂γ2δ
(
(x̄, y); gph G

)
= Nγ2

(
(x̄, y); gphG

)
.

Combining (4.21) with (4.22), we obtain the statement of the theorem.

The second main result of this section reads as follows.

Theorem 4.3. Let G : X ⇒ Y be a convex multifunction between Banach spaces,

whose graph is closed, and ϕ : X × Y → R a proper closed convex function. Suppose
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that the optimal value function µ(·) in (4.18) is finite at x̄ ∈ X. Assume that either

(i) R+(dom ϕ− gph G) is a closed subspace of X × Y ,

or

(ii) (0, 0) ∈ int(dom ϕ− gph G),

then (4.20) is valid.

Proof. The proof is similar to that of Theorem 4.2. Having in hands the subdifferential

representation for the optimal value function in Theorem 4.1, we apply therein the

subdifferential sum rule from Theorem 3.1 under the corresponding conditions (i)

and (ii). Namely, if the condition (i) (resp. (ii)) is satisfied, using Theorem 3.3

(resp. Theorem 3.4) and remembering Remark 3.2, then we obtain (4.23). In other

words, all assumptions of Theorem 3.1 are satisfied. Thus, by the same manner as in

Theorem 4.2, we can obtain the conclusion of the theorem.

4.3 An application

In this section, we will present an illustrative example for the result in Subsection 4.2.

This example is designed for the case graph of the constraint mapping is a convex

cone.

We have the following property about ε-normal directions of a convex cone.

Proposition 4.2. (See [7, Example 2.1]) Let C be a convex cone with apex 0. Then

one has for all x̄ ∈ C and all ε ≥ 0 the equality

Nε(x̄;C) = {x∗ ∈ C0 | 〈x∗, x̄〉 ≥ −ε}.

In particular, Nε(x̄;C) = N(x̄;C) for x̄ = 0.

Proof. For all ε ≥ 0, take any x∗ ∈ Nε(x̄;C). By the definition of ε-normal directions,

we have

〈x∗, x− x̄〉 ≤ ε, ∀x ∈ C. (4.24)
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Substituting x = 0, we get 〈x∗, x̄〉 ≥ −ε. Moreover, since C is a convex cone,

x̄+ ty ∈ C, for all t > 0, y ∈ C. Now taking x = x̄+ ty, (4.24) yields

t〈x∗, y〉 ≤ ε, ∀y ∈ C. (4.25)

Dividing two sides of (4.25) by t > 0 and letting t→ +∞, we obtain 〈x∗, y〉 ≤ 0, for

all y ∈ C. The latter means that x∗ ∈ C0.

Now suppose that x∗ ∈ C0 and 〈x∗, x̄〉 ≥ −ε for every ε ≥ 0. Given any x ∈ C,

we have 〈x∗, x〉 ≤ 0. Combining this with 〈x∗, x̄〉 ≥ −ε, we obtain x∗ ∈ Nε(x̄;C).

We can easily get the following property of ε-subdifferentials.

Proposition 4.3. Let f : X → R be a proper convex function. Then, for any ε ≥ 0

and x̄ ∈ dom f we have ∂ε(λf)(x̄) = λ∂ε/λf(x̄) for every λ > 0.

Let us consider an illustrative example for Theorem 4.2.

Example 4.3. Let X = Y = R and x̄ = 0. Consider the optimal value function µ(x)

in (4.18) with ϕ(x, y) = |y| and G(x) =
{
y | y ≥ 1

2
|x|
}

for all x ∈ R. Then we have

µ(x) = 1
2
|x| for all x ∈ R. From Example 4.1 and Proposition 4.3, for any ε ≥ 0 one

has ∂εµ(x̄) = [−1
2
, 1

2
]. On one hand, for all η > 0, γ1 ≥ 0, we get

Mη(x̄) = {y ∈ G(x̄) | ϕ(x̄, y) ≤ µ(x̄) + η} = {0},

and

∂γ1ϕ(x̄, y) ⊂



{0} ×
[
−1, −1− γ1

y

]
if y < −γ1

2
,

{0} × [−1, 1] if − γ1

2
≤ y ≤ γ1

2
,

{0} ×
[
1− γ1

y
, 1

]
if y >

γ1

2
.

On the other hand, by Proposition 4.2, we have

Nγ2((x̄, y); gphG) =


{(0, 0)} if y > 0,

{(x∗, y∗) ∈ R2 | y∗ ≤ −2|x∗|} if y = 0,

∅ if y < 0.
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y

x
0

gph G

y = 0.5|x|
0.5x0

−x0 x0

Nγ2((x̄, y); gphG)

Figure 2: The γ2-normal directions of gphG.

So, the right-hand-side of (4.20) can be computed as follows

RHS(4.20) =
⋂
η > 0

⋃
y≥ 0

⋃
(γ1,γ2)∈Γ(η+ε)

{
x∗ ∈ X∗ | (x∗, 0)∈∂γ1ϕ(x̄, y)+Nγ2

(
(x̄, y); gphG)

)}
=
⋂
η > 0

⋃
(γ1,γ2)∈Γ(η+ε)

{
x∗ ∈ X∗ | (x∗, 0)∈∂γ1ϕ(x̄, ȳ)+Nγ2

(
(x̄, ȳ); gphG)

)}
=

{
x∗ ∈ R | (x∗, 0) ∈ {0} × [−1, 1] +

{
(x∗, y∗) ∈ R2 | y∗ ≤ −2|x∗|

}}
=

{
x∗ ∈ R | {x∗} × [−1, 1] ∈

{
(x∗, y∗) ∈ R2 | y∗ ≤ −2|x∗|

}}
=

[
−1

2
,
1

2

]
.

This justifies the conclusion of Theorem 4.2.
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