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Abstract

It is known that operator splitting methods based on Forward Back-
ward Splitting (FBS), Douglas-Rachford Splitting (DRS), and Davis-Yin
Splitting (DYS) decompose a difficult optimization problems into simpler
subproblem under proper convexity and smoothness assumptions. In this
paper, we identify an envelope (an objective function) whose gradient de-
scent iteration under a variable metric coincides with DYS iteration. This
result generalizes the Moreau envelope for proximal-point iteration and
the envelopes for FBS and DRS iterations identified by Patrinos, Stella,
and Themelis.

Based on the new envelope and the Stable-Center Manifold Theorem,
we further show that, when FBS or DRS iterations start from random
points, they avoid all strict saddle points with probability one. This result
extends the similar results by Lee et al. from gradient descent to splitting
methods.

1 Introduction

The most general model considered in this paper minimizes the sum of three
functions, where two of them are Lipschitz differentiable and, out of these two,
one can involve a composition with a linear operator. The third function can
be non-differentiable, and all the three functions can be nonconvex. A mathe-
matical formulation is given in Section 3. The results of this paper, of course,
apply to simpler models where any one or two of these three functions vanish.
Problems that can be written in our general model are abundant. Examples in-
clude texture inpainting [16], matrix completion [6], and support vector machine
classification [8].

Our model can be solved by the splitting iterative methods based on Douglas-
Rachford Splitting (DRS) [15] and Forward-Backward Splitting (FBS) [17], as
well as their generalization, Davis-Yin Splitting (DYS) [9]. In these methods,
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the problem objective is split into different steps, one of each of the objective
functions. Their implementations are typically straightforward. By exploiting
additional sum and coordinate friendly structures, they give rise to parallel and
distributed algorithms that are highly scalable. The details of these methods
are reviewed in Section 3 below.

These splitting methods are traditionally analyzed assuming that the subd-
ifferentials of the objective functions are maximally monotone. Those of non-
convex functions are generally non-monotone. Therefore, the majority of the
existing results apply to only convex objective functions.

Recently, FBS and DRS are found to numerically converge for certain non-
convex problems, for example, FBS for image restoration [22], dictionary learn-
ing, and matrix decomposition [25], and DRS for nonconvex feasibility problem
[14], matrix completion [1], and phase retrieval [7]. Theoretically, their iterates
have been shown to converge to stationary points in some nonconvex settings
[2, 14, 26, 11]. In particular, any bounded sequence produced by FBS converges
to a stationary point when the objective satisfies the KL property [2]; By us-
ing the Douglas-Rachford Envelope (DRE), DRS iterates are shown to converge
to a stationary point when one of the two functions is Lipschitz differentiable,
both of them are semi-algebraic and bounded below, and one of them is co-
ercive [14, 26]; In [11], when one function is strongly convex and the other is
weakly convex, and their sum is strongly convex, DRS iterates are shown to be
Fejer monotone with respect to the set of fixed points of DRS operator, thus
convergent. Though unlikely, it is still possible that the limit of a convergent
sequence is a saddle point instead of a local minimum (except when all station-
ary points are local minima, which is the case studied in [11]). This depends on
the problem geometry and the selected start point.

Recently, some first-order methods have been shown to avoid so-called strict
saddle points, with probability one regarding random initialization [13, 12].
These results make skillful use of the Stable-Center Manifold Theorem [20]. So
far, their results apply to only relatively simple methods such as Gradient De-
scent, Coordinate Descent, and Proximal Point methods. We give an affirmative
answer (under smoothness assumptions) that splitting methods also have this
property. This result also matches the practical observations made in [24].

This paper makes the following contribution regarding the convergence and
saddle point avoidance of FBS, DRS, and DYS iterations for nonconvex prob-
lems. We first generalize the existing Forward-Backward Envelope (FBE) and
Douglas-Rachford Envelope (DRE) into a Davis-Yin Envelope (DYE) and es-
tablish relationships between the latter envelope and the original optimization
objective. Then, under smoothness conditions, we show that the probability for
DRS and FBS iterations with random initializations converge to strict saddle
points of their respective DRE and FBE is zero. Finally, by the connection
between the envelopes and the original objectives, we extend the above avoid-
ance results to the strict saddle points of the original objectives. That is, when
our problem has the strict saddle property, DRS and FBS with random ini-
tialization will almost surely converge to local minimizers. The strict saddle
property is satisfied in several applications including, but not limited to, dic-

2



tionary learning [24], simple neural networks [5], phase retrieval [23], tensor
decomposition [10], and low-rank matrix factorization [4].

The rest of this paper is organized as follows. In Section 2, we introduce
notation and review some useful results. In Section 3, we define the envelope
for DYS and rewrite DYS equivalently as gradient descent of this envelope.
In Section 4, we establish a strong relationship between the envelope and the
objective. Then, in Section 5, we analyze the avoidance of strict saddle points
of the objective. Finally, we conclude this paper in Section 6.

2 Preliminaries

In this section, we review some basic concepts, introduce our notation, and
state some known results. For the sake of brevity, we omit proofs and direct
references. We refer the reader to textbooks [19, 3].

We let 0 ∈ R
n denote the vector zero, 〈·, ·〉 the inner product, ‖ · ‖ the ℓ2

norm, and FixT the set of fixed points of operator T .
A function f : Rn → R∪{∞} is called β−weakly convex (or β−semiconvex)

if the function f̃ := f + β
2 ‖ · ‖

2 is convex. Clearly, f can be nonconvex.

Let y
f
−→ x denote y → x and f(y) → f(x). Then the subdifferential of f at

x ∈ dom f can be defined by

∂f(x) :=
{

v ∈ R
n
∣

∣ ∃xt f
−→ x, vt → v,with

lim inf
z→xt

f(z)− f(xt)− 〈vt, z − xt〉

‖z − xt‖
≥ 0 for each t

}

.

If f is differentiable at x, we have ∂f(x) = {∇f(x)}; If f is convex, we have

∂f(x) = {v ∈ R
n | f(z) ≥ f(x) + 〈v, z − x〉 for any z ∈ R

n},

which is the classic definition of subdifferential in convex analysis.
A point x∗ is a stationary point of a function f if 0 ∈ ∂f(x∗). x∗ is a critical

point of f if f is differentiable at x∗ and ∇f(x∗) = 0.
A point x∗ is a strict saddle point of f if f is twice differentiable at x∗, x∗ is

a critical point of f , and λmin[∇
2f(x∗)] < 0, where λmin[·] returns the smallest

eigenvalue of the input. Local minimizers of a function are always its stationary
points, but not strict saddle points.

For any γ > 0, the proximal mapping of a function f is defined by

Pγf (x) := argmin
y∈Rn

{f(y) +
1

2γ
‖y − x‖2},

assuming that the right-hand side exists. When f is convex, Pγf is single-valued
and satisfies Pγf (x) = (Id + γ∂f)−1(x), where Id is the identity map. For any
proper, closed, convex function f , it Moreau Identity is

Id = Pγf +γ P f∗

γ

◦
Id

γ
, (1)
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where f∗(u) := supx∈Rn{〈u, x〉 − f(x)} is the convex conjugate of f .
We also need the Inverse Function Theorem: for a C1 mapping F : Rn → R

n,
if the Jacobian JF (x) of F at x ∈ R

n is invertible, then there exists an inverse
function F−1 defined in a neighbourhood of F (x) such that F−1 is also C1 and

JF−1

(

F (x)
)

=
(

JF (x)
)−1

. (2)

3 Envelope for Davis-Yin Splitting

In this section, we will introduce a function, which we call an envelope, such
that DYS iteration can be written as the gradient descent of this function under
a variable metric. Since DYS generalizes FBS and DRS, the envelope of DYS
is also a generalization of FBE and DRE, the respective envelopes of FBS and
DRS, which were introduced in [21, 25].

3.1 Review of Davis-Yin splitting

DYS [9] can be applied to solve the following problem:

minimize
x∈Rn

ϕ(x) := f(x) + g(x) + h(Lx), (3)

where, for this subsection, f, g : Rn → R and h : Rm → R are proper, closed,
and convex, h is also Lh−Lipschitz differentiable, and L : Rn → R

m is a linear
operator.

DYS iteration produces a sequence (xk)k≥0 according to zk+1 = Tzk, where

Tzk := zk + α
(

Pγf

(

2Pγg(z
k)− zk − γLT∇h(Lzk)

)

− Pγg(z
k)
)

,

where γ and α are positive scalars. We rewrite this operator into successive
steps with designated letters as

qk := LT∇h(Lzk),

rk := 2Pγg(z
k)− zk,

pk := Pγf (r
k − γqk),

wk = pk − Pγg(z
k), (4)

zk+1 = Tzk = zk + αwk. (5)

Since f, g are closed, proper, and convex (in this subsection), Pγg and Pγf are
well defined and single valued. In [9], convergence is established for a range of
parameters

γ ∈
(

0,
2Lh

‖L‖2

)

and α ∈
(

0, 2−
γ‖L‖2

2Lh

)

.
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When h = 0, (5) simplifies to Douglas-Rachford Splitting iteration,

zk+1 = zk + α
(

Pγf(r
k)− Pγg(z

k)
)

.

When g = 0, Pγg reduces to Id and thus (5) simplifies to

zk+1 = zk + α(Pγf(z
k − γqk)− zk),

which is Forward-Backward Splitting iteration slightly generalized by including
the linear operator L.

When f = 0, Pγf reduces to Id and (5) simplifies to Backward-Forward
Splitting,

zk+1 = zk + α(Pγg(z
k)− γqk − zk).

When f = g = 0, (5) simplifies to gradient descent iteration

zk+1 = zk − αγqk.

3.2 Derivation of envelope

Now we show that, (5) can be written as gradient descent iteration of an envelope
function under the following assumption.

Assumption 1.

1. g : Rn → R is Lg−Lipschitz differentiable.

2. h : Rm → R is Lh−Lipschitz differentiable.

3. f : Rn → R∪{∞} is proper, lower semicontinuous and γ ∈ (0, 1
Lg+Lh‖L‖2 ).

In addition, f is prox-bounded in the sense that f(·) + 1
2γ ‖ · ‖2 is lower

bounded for any γ ∈ (0, 1
Lg+Lh‖L‖2 ).

Compared to the assumption in Section 3.1, a main restriction is that g is
Lipschitz differentiable. On the other hand, all f , g and h can be nonconvex.

We begin with two technical lemmas regarding the Moreau envelope of
weakly convex functions and its twice differentiability.

Lemma 1. Let ξ be proper, closed, β−weakly convex. Choose γ such that
γ ∈ (0, 1

β
). Let ξγ(z) = minu∈Rn{ξ(u) + 1

2γ ‖z − u‖2} be the Moreau envelope of

ξ. Define ξ̃ = ξ + β
2 ‖ · ‖

2, which is convex. Then, proximal mapping Pγξ(z) is
single-valued and satisfies

Pγξ(z) = P γ
1−γβ

ξ̃(
1

1− γβ
z),

∇ξγ(z) = γ−1
(

z − Pγξ(z)
)

.

Furthermore, Pγξ(z) is
1

1−γβ
−Lipschitz continuous.
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Proof. We have

ξγ(z) = min
u∈R

{ξ(u) +
β

2
‖u‖2 +

1

2γ
‖u− z‖2 −

β

2
‖u‖2}

= min
u∈R

{

ξ̃(u) +
1− γβ

2γ
‖u−

1

1− γβ
z‖2

}

−
β

2− 2γβ
‖z‖2

where the second equality follows from the definition of ξ̃.
As a result, for γ ∈ (0, 1

β
), Pγξ is single-valued and

Pγξ(z) = P γ
1−γβ

ξ̃(
1

1− γβ
z).

Since P γ
1−γβ

ξ̃(z) is 1−Lipschitz continuous, we know that Pγξ(z) is
1

1−γβ
−Lipschitz

continuous.
Finally, since ξ̃ is convex, [3, Prop.12.29] tells us that ξγ is differentiable and

∇ξγ(z) =
1

1− γβ
∇ξ̃

γ
1−γβ (

1

1− γβ
z)−

β

1− γβ
z

=
1

1− γβ

1− γβ

γ

( 1

1− γβ
z − P γ

1−γβ
ξ̃(

1

1− γβ
z)
)

−
β

1− γβ
z

=
1

γ

(

z − Pγξ(z)
)

.

Lemma 2. In addition to Assumption 1, if g is twice differentiable at Pγg(z
0),

then Pγg has a Jacobian at z0, gγ is twice differentiable at z0 with the Hessian

∇2gγ(z0) =
1

γ

(

I −
(

I + γ∇2g
(

Pγg(z
0)
)

)−1
)

.

In addition, the mapping

A(z) := I − 2γ∇2gγ(z)− γLT∇2h
(

(LPγg(z)
)

L
(

I − γ∇2gγ(z)
)

(6)

is invertible.

Proof. Since γ ∈ (0, 1
Lg

), Pγg is single-valued and

Pγg(z
0) = (Id + γ∇g)−1z0, (7)

where (Id+ γ∇g)−1 is the inverse mapping of Id+ γ∇g. Since ∇2g(Pγg

(

z0)
)

is

symmetric and its eigenvalues are bounded by Lg, we know that I+γ∇2g
(

Pγg(z
0)
)

is invertible, which is the Jacobian of Id + γ∇g at Pγg(z
0).

Applying the Inverse Function Theorem to (7) by setting F as Pγg and z0

as p in (2), we have

JPγg
(z0) =

(

I + γ∇2g
(

Pγg(z
0)
)

)−1

,

6



Hence, Lemma 1 yields

∇2gγ(z0) =
1

γ

(

I −
(

I + γ∇2g
(

Pγg(z
0)
)

)−1
)

.

According to (6),

A(z0) = A1 − γA2. (8)

where

A1 = 2
(

I + γ∇2g
(

Pγg(z
0)
)

)−1

− I,

A2 = LT∇2h
(

LPγg(z
0)
)

L
(

I + γ∇2g
(

Pγg(z
0)
)

)−1

.

Since γ ∈ (0, 1
Lg

), A1 is invertible, as a result,

det
(

A(z0)
)

= det(A1−γA2) = det(I−γA2A
−1
1 )det(A1) =

n
∏

i=1

(1−γλi

(

A2A
−1
1 )

)

det(A1),

where λi(A2A
−1
1 ), i = 1, ..., n are the eigenvalues of A2A

−1
1 .

Let us set
C = I + γ∇2g

(

Pγg(z
0)
)

= CT ≻ 0,

and rewrite A2A
−1
1 as

A2A
−1
1 = LT∇2h

(

Pγg(z
0)
)

LC−1(2C−1−I)−1 = LT∇2h
(

Pγg(z
0)
)

L(2I−C)−1.

Note that LT∇2h
(

Pγg(z
0)
)

L is symmetric and (2I − C)−1 is symmetric,

positive definite. Therefore, λi(A2A
−1
1 ) ∈ R, and we can set λ1(A2A

−1
1 ) ≥

λ2(A2A
−1
1 )... ≥ λn(A2A

−1
1 ).

In order to show det
(

A(z0)
)

6= 0, it suffices to show that 1− γλ1 > 0 when
γ ∈ (0, 1

Lg+Lh‖L‖2

2

).

We have

λ1(A2A
−1
1 )

(a)

≤ λ1

(

LT∇2h
(

Pγg(z
0)
)

L
)

· λ1

(

(2I − C)−1
)

≤ λ1

(

LT∇2h
(

Pγg(z
0)
)

L
)

·
1

2− (1 + γLg)

= ‖(LT∇2h
(

Pγg(z
0)
)

L‖2 ·
1

1− γLg

(b)

≤ ‖L‖22‖∇
2h

(

Pγg(z
0)
)

‖2
1

1− γLg

≤ ‖L‖22Lh

1

1− γLg

,
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where (a) is by [27, Corollary 11], and (b) is by Cauchy-Schwartz. Since γ ∈
(0, 1

Lg+Lh‖L‖2 ), we have

1− γλ1(A2A
−1
1 ) ≥ 1− ‖L‖22Lh

γ

1− γLg

> 0.

Therefore, det
(

A(z0)
)

6= 0.

We can now write DYS iteration (5) as gradient descent of an envelope under
the following additional assumption.

Assumption 2.

1. f is βf−weakly convex and γ ∈ (0, 1
βf

).

2. g, h are twice continuously differentiable.

Theorem 3. Under Assumptions 1 and 2, DYS iteration (5) can be written
equivalently as

zk+1 = T (zk) = zk − αγA−1(zk)∇ϕγ(zk), (9)

where the metric and envelope are, respectively,

A(z) := I − 2γ∇2gγ(z)− γLT∇2h
(

LPγg(z)
)

L
(

I − γ∇2gγ(z)
)

,

ϕγ(z) := gγ(z)− γ‖∇gγ(z)‖2 − γ〈q(z),∇gγ(z)〉+ h
(

LPγg(z)
)

−
γ

2
‖q(z)‖2 + fγ

(

z − 2γ∇gγ(z)− γq(z)
)

. (10)

Proof. In view of Lemma 1 and (4), we have

wk = p(zk)− Pγg(z
k) = Pγf(r

k − γqk)− Pγg(z
k), (11)

where

Pγf(r
k − γqk) = rk − γqk − γ∇fγ(rk − γqk).

Pγg(z
k) = zk − γ∇gγ(zk),

rk = 2Pγg(z
k)− zk = zk − 2γ∇gγ(zk),

qk = q(zk) = LT∇h
(

L
(

zk − γ∇gγ(zk)
)

)

.

By substitution,

wk = −γ∇gγ(zk)− γq(zk)− γ∇fγ
(

zk − 2γ∇gγ(zk)− γq(zk)
)

.

Let ∇z denote taking gradient to z; then

∇zf
γ
(

z − 2γ∇gγ(z)− γq(z)
)

= A(z)∇fγ
(

z − 2γ∇gγ(z)− γq(z)
)

,
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where A(z) is given in (6). After some computation, we can verify that

A(zk)wk =− γ
(

∇zg
γ(zk)− γ∇z‖∇gγ(zk)‖2

)

− γ
(

− γ∇z

(

〈q(z),∇gγ(zk)〉
)

)

− γ∇zh
(

LPγg(z)
)

− γ
(

−
γ

2
∇z‖q(z)‖

2
)

− γ∇zf
γ
(

zk − 2γ∇gγ(zk)− γq(z)
)

= −γ∇ϕγ(zk).

Since A(zk) is invertible, we can rewrite DYS iteration (5) as (9).

4 Properties of envelope

In this section, we show that the global minimizers, local minimizers, criti-
cal(stationary) points, and strict saddle points of the envelope ϕγ defined in
(10) correspond one on one to those of the objective function ϕ in (3).

First, we show lower and upper bounds of the envelope, which generalize
[25, Prop. 2.3], [21, Prop. 4.3], and [18, Prop. 1].

Lemma 4. Under Assumption 1, the following three inequalities hold for any
z ∈ R

n:

ϕγ(z) ≤ϕ
(

Pγg(z)
)

, (12)

ϕγ(z) ≥ϕ
(

p(z)
)

+ C1(γ)‖p(z)− Pγg(z)‖
2, (13)

ϕγ(z) ≤ϕ
(

p(z)
)

+ C2(γ)‖p(z)− Pγg(z)‖
2, (14)

where ϕγ(z) is defined in (10),

C1(γ) :=
1− γLh‖L‖

2 − γLg

2γ
> 0,

C2(γ) :=
1 + γLh‖L‖

2 + γLg

2γ
> 0,

and p(z) is any element of Pγf

(

2Pγg(z)− z − γq(z)
)

.

Proof of inequality (12). By applying Lemma 1 to g, ϕγ(z) can be written as

ϕγ(z) =min
u

{g(u) +
1

2γ
‖z − u‖2} − γ‖

1

γ

(

z − Pγg(z)
)

‖2

− γ〈q(z),
1

γ

(

z − Pγg(z)
)

〉

+ h
(

LPγg(z)
)

−
γ

2
‖q(z)‖2

+min
u

{f(u) +
1

2γ
‖ − z + 2Pγg(z)− γq(z)− u‖2}. (15)

9



Taking u = Pγg(z) in the two minimums of (15), we have

ϕγ(z) ≤ g
(

Pγg(z)
)

+
1

2γ
‖z − Pγg(z)‖

2 − γ‖
1

γ

(

z − Pγg(z)
)

‖2

− 〈q(z), z − Pγg(z)〉

+ h
(

LPγg(z)
)

−
γ

2
‖q(z)‖2

+ f
(

Pγg(z)
)

+
1

2γ
‖ − z + Pγg(z)− γq(z)‖2

=ϕ
(

Pγg(z)
)

.

Proof of inequality (13). According to [19, Thm. 1.25], we know that Pγf

(

2Pγg(z)−

z − γq(z)
)

6= ∅ for γ ∈ (0, 1
Lg+Lh‖L‖2 ).

By taking u = Pγg(z) in the first minimum of (15) and u = p(z) ∈ Pγf(2 Pγg(z)−
z − γq(z)) in the second, we have

ϕγ(z) = g
(

Pγg(z)
)

+
1

2γ
‖z − Pγg(z)‖

2

− γ〈q(z),
1

γ

(

z − Pγg(z)
)

〉

+ h
(

LPγg(z)
)

−
γ

2
‖q(z)‖2

+ f
(

p(z)
)

+
1

2γ
‖ − z + 2Pγg(z)− γq(z)− p(z)‖2. (16)

By making use of

h(y) ≥ h(x)− 〈∇h(y), x − y〉 −
Lh

2
‖x− y‖2 forany x, y ∈ R

m,

we arrive at

ϕγ(z) ≥ g
(

Pγg(z)
)

−
1

2γ
‖z − Pγg(z)‖

2

− 〈q(z), z − PPγg(z)〉

+ h
(

Lp(z)
)

− 〈∇h
(

LPγg(z)
)

, L(p(z)− Pγg(z))〉

−
Lh

2
‖L

(

p(z)− Pγg(z)
)

‖2 −
γ

2
‖q(z)‖2

+ f
(

p(z)
)

+
1

2γ
‖2Pγg(z)− z − γq(z)− p(z)‖2.

Next, by making use of ‖a+b+c‖2 = ‖a‖2+‖b2‖+‖c‖2+2〈a, b〉+2〈b, c〉+2〈a, c〉
for

a = Pγg(z)− p(z),

b = Pγg(z)− z,

c = −γq(z),
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we obtain

ϕγ(z) ≥g
(

Pγg(z)
)

+ h
(

Lp(z)
)

−
Lh

2
‖L

(

p(z)− Pγg(z)
)

‖2

+ f
(

p(z)
)

+
1

2γ
‖Pγg(z)− p(z)‖2 + 〈Pγg(z)− p(z),

1

γ
(Pγg(z)− z)〉.

Finally, by substituting

∇g
(

Pγg(z)
)

= −
1

γ
(Pγg(z)− z),

g(y) ≥ g(x)− 〈∇g(y), x− y〉 −
Lg

2
‖x− y‖2 forany x, y ∈ R

n,

we arrive at (13).

Proof of inequality (14). Similarly to the proof above, we can also start from
(16) and apply

h(y) ≤ h(x)− 〈∇h(y), x− y〉+
Lg

2
‖x− y‖2 forany x, y ∈ R

m,

g(y) ≤ g(x)− 〈∇g(y), x− y〉+
Lg

2
‖x− y‖2 forany x, y ∈ R

n,

which gives (14).

Now we can establish the direct connections between the global and local
minimizers of ϕγ and those of ϕ. These results generalize [25, Prop. 2.3] and
[21, Thm. 4.4].

Theorem 5. Under Assumption 1, we have

1. infx∈Rn ϕ(x) = infz∈Rn ϕγ(z),

2. argminx∈Rn ϕ(x) = Pγg

(

argminz∈Rn

(

ϕγ(z)
)

)

.

Proof of 1. From (12) we have

inf
z∈Rn

ϕγ(z) ≤ inf
x∈Rn

ϕ(x),

If infz∈Rn ϕγ(z) < infx∈Rn ϕ(x), then there exists z1 ∈ R
n such that ϕγ(z1) <

infx∈Rn ϕ(x). Then (13) gives

inf
x∈Rn

ϕ(x) > ϕγ(z1) ≥ ϕ
(

p(z1)
)

+ C(γ)‖Pγg(z1)− p(z1)‖
2 ≥ ϕ

(

p(z1)
)

,

which is a contradiction.

11



Proof of 2. Let us first show that

argmin
x∈Rn

ϕ(x) ⊆ Pγg

(

argmin
z∈Rn

(

ϕγ(z)
)

)

.

There is nothing to show if argminx∈Rn ϕ(x) = ∅; If argminx∈Rn ϕ(x) 6= ∅,
then, for any x∗ ∈ argminx∈Rn ϕ(x), we have x∗ = Pγg(z

∗) for z∗ = (I +
γ∇g)(x∗). As a result, (12) and (13) give us

inf
x∈Rn

ϕ(x) = ϕ(x∗) = ϕ
(

Pγg(z
∗)
)

≥ ϕγ(z∗) ≥ ϕ
(

p(z∗)
)

+C(γ)‖Pγg(z
∗)−p(z∗)‖2.

Which enforces Pγg(z
∗) = p(z∗) and ϕ

(

Pγg(z
∗)
)

= ϕγ(z∗). So for any z ∈ R
n

we have

ϕγ(z∗) = inf
x∈Rn

ϕ(x) ≤ ϕ
(

p(z)
)

≤ ϕγ(z)− C(γ)‖Pγg(z)− p(z)‖2 ≤ ϕγ(z),

which yields z∗ ∈ argminz∈Rn ϕγ(z), x∗ ∈ Pγg

(

argminz∈Rn

(

ϕγ(z)
)

)

.

Now let us show that

Pγg

(

argmin
z∈Rn

(

ϕγ(z)
)

)

⊆ argmin
x∈Rn

ϕ(x).

Again, we can assume that argminz∈Rn

(

ϕγ(z)
)

6= ∅. For any z∗ ∈ argminz∈Rn ϕγ(z),
we need to show Pγg(z

∗) ∈ argminx∈Rn ϕ(x).
Let z∗∗ = (I + γ∇g)p(z∗), then Pγg(z

∗∗) = p(z∗) and (12) and (13) give us

ϕγ(z∗∗) ≤ ϕ(Pγg

(

z∗∗)
)

= ϕ
(

p(z∗)
)

≤ ϕγ(z∗)− C(γ)‖Pγg(z
∗)− p(z∗)‖2.

Since z∗ ∈ argminz∈Rn ϕγ(z), we must have

Pγg(z
∗) = p(z∗) = Pγg(z

∗∗),

ϕγ(z∗) = ϕγ(z∗∗) = ϕ
(

Pγg(z
∗)
)

.

Consequently, for any z ∈ R
n we have

ϕ
(

Pγg(z
∗)
)

= ϕγ(z∗) ≤ ϕγ(z) ≤ ϕ
(

Pγg(z)
)

,

which concludes Pγg(z
∗) ∈ argminx∈Rn ϕ(x).

It turns out that the local minimizers of ϕ and ϕγ also have a one-to-one
correspondence.

Theorem 6. Under Assumptions 1 and 2, we have:

1. If Pγg(z
∗) ∈ argminx∈B(Pγg(z∗),δ) ϕ(x) for some δ > 0, then z∗ is a local

minimizer of ϕγ.

2. If z∗ ∈ argminz∈B(z∗,ε) ϕ
γ(z) for some ε > 0, then

ϕ
(

Pγg(z
∗)
)

≤ ϕ
(

Pγg(z)
)

for all z such that ‖z − z∗‖ ≤ ε.

That is, Pγg(z
∗) is a local minimizer of ϕ(x).

12



Proof of 1. Since Pγg(z
∗) is a local minimizer of ϕ, according to [19, Exercise

10.10], we have

0 ∈ ∂ϕ
(

Pγg(z
∗)
)

= ∂f
(

Pγg(z
∗)
)

+∇g
(

Pγg(z
∗)
)

+ q
(

z∗)
)

.

Since Pγg is single-valued, this is equivalent to

0 ∈ ∂f
(

Pγg(z
∗)
)

+
1

γ
(−Pγg(z

∗) + z∗ + γq
(

z∗)
)

,

Since f + 1
2γ ‖ · ‖

2 is convex and Pγf is single valued, this is further equivalent
to

Pγg(z
∗) = Pγf

(

2Pγg(z
∗)− z∗ − γq(z∗)

)

= p(z∗).

According to Lemma 1, Pγf is 1
1−γβf

−Lipschitz continuous, we can conclude

that there exists η > 0 such that when ‖z−z∗‖ ≤ η, we have ‖p(z)−p(z∗)‖ ≤ δ

and

ϕγ(z∗) = ϕ
(

Pγg(z
∗)
)

= ϕ
(

p(z∗)
)

≤ ϕ
(

p(z)
)

≤ ϕγ(z)−C(γ)‖Pγg(z)−p(z)‖2 ≤ ϕγ(z).

Proof of 2. According to Lemma 2, A(z) is invertible at z∗. Theorem 3 tells
us that ϕγ is differentiable at z∗, so ∇ϕγ(z∗) = 0 and Pγg(z

∗) = p(z∗). As a
result, for any z ∈ R

n with ‖z − z∗‖ ≤ ε we have

ϕ
(

Pγg(z
∗)
)

= ϕγ(z∗) ≤ ϕγ(z) ≤ ϕ
(

Pγg(z)
)

.

Furthermore, according to Lemma 2 we have

Pγg(z) = Pγg(z
∗) +

(

I + γ∇2g
(

Pγg(z
∗)
)

)−1

(z − z∗) + o(‖z − z∗‖).

Since
(

I+γ∇2g
(

Pγg(z
∗)
)

)−1

is positive definite, we can conclude that Pγg

(

B(z∗, ε)
)

contains a ball centered at Pγg(z
∗), as a result, Pγg(z

∗) is a local minimizer of
ϕ(x).

Now, let us show the one-to-one correspondence between the critical points
of the envelope ϕγ and the stationary points of the objective ϕ(x).

Theorem 7. Under Assumptions 1 and 2, z∗ is a critical point of ϕγ if and
only if Pγg(z

∗) is a stationary point of ϕ.

Proof. Since f is βf−weakly convex and γ ∈ (0, 1
βf

), by Lemma 1, we know

that Pγf is single-valued. And by Theorem 3, we have

∇ϕγ(z) = −A(z)
1

γ
(p(z)− Pγg(z)), (17)

13



where p(z) = Pγf

(

(2 Pγg(z)− z − γLT∇h
(

LPγg(z)
)

)

. So ∇ϕγ(z∗) = 0 if and

only if

Pγg(z
∗) = Pγf

(

2Pγg(z
∗)− z∗ − γLT∇h(LPγg(z

∗)
)

)

= argmin
z

{f(z) +
1

2γ
‖z −

(

2Pγg(z
∗)− z∗ − γLT∇h

(

LPγg(z
∗)
)

)

‖2}.

Since the objective in the argmin is convex, by [19, Exercise 10.10] we know
that this is equivalent to

0 ∈ ∂f
(

Pγg(z
∗)
)

+
1

γ

(

− Pγg(z
∗) + z∗ + γLT∇h(LPγg(z

∗)
)

)

.

By the definition of Pγg and γ ∈ (0, 1
Lg+Lh‖L‖2 ), this is further equivalent to

0 ∈ ∂f
(

Pγg(z
∗)
)

+∇g
(

Pγg(z
∗)
)

+ LT∇h
(

LPγg(z
∗)
)

= ∂ϕ
(

Pγg(z
∗)
)

.

In order to establish the correspondence between the strict saddles of ϕγ and
ϕ, we also need the following assumption.

Assumption 3. For any critical point z∗ of ϕγ , f is twice continuously differ-
entiable in a small neighbourhood of Pγg(z

∗), and there exits Lf > 0 such that
‖∇2f(Pγg(z

∗))‖ ≤ Lf . In addition, γ ∈ (0, 1
Lf

).

Lemma 8. Let z∗ be a critical point of ϕγ . Under Assumptions 1, 2 and 3, ϕγ

is twice differentiable at z∗ and

∇2ϕγ(z∗) = −A(z∗)
1

γ

(

Jp(z
∗)− JPγg

(z∗)
)

(18)

= −A(z∗)
1

γ

(

I + γ∇2f
(

p(z)
)

)−1

A(z∗) +
1

γ
A(z∗)

(

I + γ∇2g
(

Pγg(z
∗)
)

)−1

.

(19)

In case of h = 0 (DRS) and g = 0 (FBS), ∇2ϕγ(z∗) is symmetric.

Proof. (18) follows from (17), p(z∗) = Pγg(z
∗), and [21, Prop. 2.A.2], (19)

follows from Lemma 2 and chain rule.
When g = 0 or h = 0, (6) tells us that A(z∗) is symmetric, so the first part

on the right hand side of (19) is symmetric.
When h = 0, we have

A(z∗)
(

I+γ∇2g
(

Pγg(z
∗)
)

)−1

=
(

2
(

I+γ∇2g
(

Pγg(z
∗)
)

)−1

−I
)(

I+γ∇2g
(

Pγg(z
∗)
)

)−1

,

so the second part is also symmetric. When g = 0, the second part is 1
γ
A(z∗),

thus symmetric.
So we can conclude that when h = 0 or g = 0, ∇2ϕγ(z∗) is symmetric.
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Theorem 9. Let z∗ be a critical point of ϕγ . Under Assumptions 1, 2 and 3,
when h = 0 (DRS) or g = 0 (FBS), z∗ is a strict saddle point of ϕγ if and only
if Pγg(z

∗) is a strict saddle point of ϕ.

Proof. According to Lemma 8, we know that ∇2ϕγ(z∗) exists and it is symmet-
ric.

Let z∗ be a strict saddle point of ϕγ(z), then Taylor expansion gives

ϕγ(z) = ϕγ(z∗) +
1

2
(z − z∗)T∇2ϕγ(z∗)(z − z∗) + o(‖z − z∗‖2),

ϕ
(

p(z)
)

= ϕ
(

p(z∗)
)

+
1

2

(

p(z)− p(z∗)
)T

∇2ϕ
(

p(z∗)
)(

p(z)− p(z∗)
)

+ o(‖p(z)− p(z∗)‖2).

On the other hand, (13) gives

ϕγ(z) ≥ ϕ
(

p(z)
)

.

Let ∇2ϕγ(z∗)v = λv, where ‖v‖ = 1 and λ < 0. Setting z − z∗ = αv, we arrive
at

ϕγ(z∗) +
1

2
λα2 + o(α2)

≥ ϕ
(

p(z∗)
)

+
1

2

(

p(z)− p(z∗)
)T

∇2ϕ
(

p(z∗)
)(

p(z)− p(z∗)
)

+ o(‖p(z)− p(z∗)‖2).

(20)

Furthermore, (12), (13) together with p(z∗) = Pγg(z
∗) yield ϕγ(z∗) = ϕ

(

p(z∗)
)

,
combine this with (20) and p(z) − p(z∗) = O(‖z − z∗‖) = O(α), we conclude

that λmin

(

∇2ϕ
(

Pγg(z
∗)
)

)

< 0.

Similarly, let Pγg(z
∗) be a strict saddle of ϕ(z), then Taylor expansions gives

ϕγ(z) = ϕγ(z∗) +
1

2
(z − z∗)T∇2ϕγ(z∗)(z − z∗) + o(‖z − z∗‖2),

ϕ(Pγg

(

z)
)

= ϕ
(

Pγg(z
∗)
)

+
1

2

(

Pγg(z)− Pγg(z
∗)
)T

∇2ϕ
(

Pγg(z
∗)
)(

Pγg(z)− Pγg(z
∗)
)

+ o(‖Pγg(z)− Pγg(z
∗)‖2).

On the other hand, (12) gives

ϕγ(z) ≤ ϕ
(

Pγg(z)
)

,

Let ∇2ϕ
(

Pγg(z
∗)
)

v = λv where λ < 0 and ‖v‖ = 1. By setting z = (Id +
γ∇g)(Pγg(z

∗) + αv), we obtain Pγg(z) − Pγg(z
∗) = αv, taking α → 0 gives

λmin

(

∇2ϕγ(z∗)
)

< 0.

5 Avoidance of strict saddle points

In this section, we first show that under smoothness conditions, the probability
for DRS and FBS with random initializations to converge to strict saddle points
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of DRE and FBE is zero, respectively. Then, by combining this result with
the correspondence between the strict saddle points of the envelope and the
objective, as stated in Theorem 9, we can conclude that DRS and FBS, if
converge, will almost always avoid the strict saddle points of the objective.
Therefore, when the objective satisfies the “strict saddle property”, DRS and
FBS, if they converge, will almost always converge to local minimizers.

In order to prove the main result, Theorem 15, we need the following Stable-
Center Manifold Theorem, and its direct consequence, Theorem 11.

Theorem 10 states that, if T is a local diffeomorphism around one of its
fixed point z∗, then there is a local stable center manifold W cs

loc with dimension
equal to the number of eigenvalues of the Jacobian of T at z∗ that are less than
or equal to 1. Furthermore, there exists a neighbourhood B of z∗, such that a
point z must be in W cs

loc if its forward iterations T k(z), for all k ≥ 0, stay in B.

Theorem 10 (Theorem III.7, Shub [20]). Let z∗ be a fixed point for a Cr local
diffeomorphism T : U → R

n, where U is a neighbourhood of z∗ and r ≥ 1.
Suppose E = Es

⊕

Eu, where Es is the span of the eigenvectors that correspond
to eigenvalues of JT (z

∗) that have magnitude less than, or equal to, 1, and
Eu is the span of eigenvectors that correspond to eigenvalues of JT (z

∗) that
have magnitude greater than 1. Then there exists a Cr embedded disk W cs

loc

that is tangent to Es at z∗, which is called the local stable center manifold.
Moreover, there exists a neighbourhood B of z∗, such that T (W cs

loc) ∩B ⊆ W cs
loc,

∩∞
k=0T

−k(B) ⊆ W cs
loc, where T−k(B) = {z ∈ R

n |T k(z) ∈ B}.

The assumption of this following theorem is weaker than that of Theorem 2
of [12], as we do not assume that T is invertible in R

n but only around every
z∗ ∈ A∗

T .

Theorem 11. Assume that T (z) = z + α
(

p(z)− Pγg(z)
)

is a local diffeomor-

phism around every z∗ ∈ A∗
T , where A

∗
T = {z ∈ R

n | z = T (z),maxi λi

(

JT (z)
)

>

1} is the set of unstable fixed points of T . Then the set W = {z0 : lim zk ∈ A∗
T }

has Lebesgue measure µ(W ) = 0 in R
n.

Proof. Take any z0 ∈ W , we have zk = T k(z0) → z∗ ∈ A∗
T , there exists t0 > 0,

such that for any t ≥ t0 we have T t(z0) ∈ Bz∗ . So T t(z0) ∈ S , ∩∞
k=0T

−k(Bz∗)
for any t ≥ t0.

From Theorem 10 we know that S is a subset of the local center stable
manifold W cs

loc whose codimension is greater or equal to 1, so we have µ(S) = 0;
Finally, T t0(z0) ∈ S implies that z0 ∈ T−t0(S) ⊆ ∪∞

j=0T
−j(S), since

T−j(S) = T−j
(

∩∞
k=0 T

−k(Bz∗)
)

= ∩∞
k=jT

−k(Bz∗) ⊆ ∩∞
k=0T

−k(Bz∗) = S,

we can conclude that µ(W ) = 0.

Now let us show that T (z) in Theorem 11 is indeed a local diffeomorphism
around its fixed points.

Lemma 12. Let T (z) = z + α
(

p(z)− Pγg(z)
)

and z∗ ∈ FixT . Under Assump-
tions 1, 2 and 3, T is a local diffeomorphism around z∗ in the following two
cases.
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1. h = 0 and α ∈ (0, α1), where

α1 =
2

1−
1−γLg

1+γLg

1−γLf

1+γLf

.

2. g = 0 and α ∈ (0, α2), where

α2 =
1 + γLf

γ(Lh‖L‖2 + Lf)
.

Proof. By Assumption 1 and Lemma 1, p(z) is continuous, therefore when z

sufficiently close to z∗, p(z) is in the neighbourhood of Pγg(z
∗) guaranteed by

Assumption 3. Lemma 2 and chain rule tell us that

Jp(z) =
(

I + γ∇2f
(

p(z)
)

)−1

A(z),

JPγg
(z) =

(

I + γ∇2g
(

Pγg(z)
)

)−1

,

where A(z) is defined in (6), therefore JT (z) exists and JT (z) = I + α(Jp(z)−
JPγg

(z)).
For the local invertibility of T around z∗ , let us show that λmin(JT (z)) > 0

for z sufficiently close to z∗.

1. When h = 0 and α ∈ (0, α1), let

B1(z) =
(

I + γ∇2g
(

Pγg(z)
)

)−1

,

B2(z) =
(

I + γ∇2f
(

p(z)
)

)−1

.

Then from (6) we have

JT (z) = I + α
(

B2(z)A(z)−B1(z)
)

= I + α
(

B2(z)(2B1(z)− I)−B1(z)
)

= I −
1

2
αI + α

(

B2(z)−
1

2
I
)(

2B1(z)− I
)

.

Since 2B1(z)− I is positive definite, [27, Corollary 11] tells us that

λmin(JT (z)) ≥ 1−
1

2
α+ α(

1

1 + γLf

−
1

2
)(

2

1 + γLg

− 1).

As a result, λmin(JT (z)) > 0 when α ∈ (0, α1).

2. When g = 0 and α ∈ (0, α2), let

B3(z) = LT∇2h(LPγg(z))L,
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then

JT (z) = I + α
(

B2(z)A(z)−B1(z)
)

= I + α
(

B2(z)
(

I − γB3(z)
)

− I
)

= I − αI + αB2(z)
(

I − γB3(z)
)

.

By Assumption 1, I − γB3(z) is positive definite. [27, Corollary 11] gives

λmin(JT (z)) ≥ 1− α+ α(1 − γ‖L‖2Lh)
1

1 + γLf

.

As a result, λmin(JT (z)) > 0 when α ∈ (0, α2).

Now we are ready to show the main result of this section: when γ and α are
small enough, it is impossible for DRS and FBS to converge to any strict saddle
point of ϕγ , thus any strict saddle point of ϕ.

Lemma 13. Under Assumptions 1 and 2, z∗ ∈ FixT if and only if ∇ϕγ(z∗) =
0.

Proof. This follows directly from Theorem 3.

Theorem 14. Define Z∗ = {z∗ ∈ R
n | ∇ϕγ(z∗) = 0, λmin

(

∇2ϕγ(z∗)
)

< 0} as
the set of strict saddle points of ϕγ . Under Assumptions 1, 2, and 3, then in
each of the following cases,

1. h = 0 (DRS) and α ∈ (0, α1), where

α1 =
2

1−
1−γLg

1+γLg

1−γLf

1+γLf

.

2. g = 0 (FBS) and α ∈ (0, α2), where

α2 =
1 + γLf

γ(Lh‖L‖2 + Lf)
.

the set W = {z0 ∈ R
n | lim zk ∈ Z∗} satisfies µ(W ) = 0.

Proof. Take any z∗ ∈ Z∗, Lemma 2 states that A(z∗) is invertible, and A(z)
defined in (6) is symmetric when h = 0 or g = 0. Also, ∇2ϕ(z∗) is symmetric
when h = 0 or g = 0.

According to (18), we have

Jp(z
∗)− JPγg

(z∗) = −γA−1(z∗)∇2ϕγ(z∗),
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since A−1(z∗)∇2ϕγ(z∗) is similar to A− 1

2 (z∗)∇2ϕγ(z∗)A− 1

2 (z∗), we know that
Jp(z

∗)− JPγg
(z∗) has real eigenvalues and

λmax

(

Jp(z
∗)− JPγg

(z∗)
)

> 0.

Since
λmax

(

JT (z
∗)
)

= 1 + αλmax

(

Jp(z
∗)− JPγg

(z∗)
)

,

from Theorem 7, 9, and Lemma 13, we know that Z∗ = A∗
T .

Furthermore, from Lemma 12 we know that T is a local diffeomorphism
around every z∗ ∈ Z∗ = A∗

T , therefore Theorem 11 gives µ(W ) = 0.

Theorem 15. Define X∗ = {x∗ ∈ R
n | ∇ϕ(x∗) = 0, λmin(∇

2ϕ(x∗)) < 0}.
Under Assumptions 1, 2, and 3, the set V = {z0 ∈ R

n | limPγg(z
k) ∈ X∗}

satisfies µ(V ) = 0.

Proof. Combine Theorem 9 with Theorem 14.

By Theorem 15, under smoothness conditions, DRS and FBS iterates will
almost always avoid the strict saddle points of the objective. When the objective
satisfies the strict saddle property, i.e., the saddle points of the objective are
either local minimizers or strict saddle points, we can conclude that FBS and
DRS almost always converge to local minimizers of the objective whenever they
converge.

Many problems in practice satisfy the strict saddle property. Examples
include dictionary learning [24], simple neural networks [5], phase retrieval [23],
tensor decomposition [10], and low rank matrix factorization [4].

6 Conclusion

In this paper, we have constructed an envelope for DYS and established various
properties of this envelope. Specifically, there are one-to-one correspondences
between the global, local minimizers, critical (stationary) points and strict sad-
dle points of this envelope and those of the original objective. Then, by the
Stable-Center Manifold theorem, we have shown that the probability for FBS
or DRS to converge from random starting points to strict saddle points of the
envelope is zero. If the original objective also satisfies the strict saddle property,
we have concluded that, whenever FBS and DRS converge, their iterates will
almost always converge to local minimizers.

A limitation of this work lies in its smoothness assumptions. The construc-
tion of the envelope requires the Lipschitz differentiability of g(x). Furthermore,
twice differentiability of f(x) at specific points is needed for the strict saddle
avoidance property of FBS and DRS. It is undoubtedly interesting to investigate
the possibility of weakening these assumptions in the future.
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