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Abstract

The necessary conditions for an optimal control of a stochastic control problem with recursive utilities is investigated. The

first order condition is the the well-known Pontryagin type maximum principle. When the optimal control satisfying such

first-order necessary condition is singular in some sense, certain type of the second-order necessary condition will come in

naturally. The aim of this paper is to explore such kind of conditions for our optimal control problem.
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1 Introduction

Consider a finite time horizon T . Let (Ω,F , P ) be a complete probability space and W a d-dimensional standard Brownian

motion defined on this space. The filtration {Ft}0≤t≤T is the natural filtraion generated by W (augmented by all the P -null sets)

that satisfies the usual condition. In this paper, we consider the controlled system satisfying the following stochastic differential

equation (SDE for short) driven by Brownian motion {W (t), 0 ≤ t ≤ T }.:

x(t) = x0 +

∫ t

0

b(s, x(s), u(s))ds +

∫ t

0

σ(s, x(s))dWs. (1)

The associated cost functional is defined via the sulotion of a backward differential stochastic equation (BSDE for short):

y(t) = h(x(T )) +

∫ T

t

f(s, x(s), y(s), z(s), u(s))ds −

∫ T

t

z(s)dWs (2)

and given as

J(u(·)) := y(0). (3)

In the context of mathematical finance, such functionals are sometimes called recursive utilities. We also call the solution

(y(·), z(·)) of (2) the cost process associated with u(·). In the above system, b : [0, T ]×R
n × Ū → R

n, σ : [0, T ]×R
n → R

n×d, f :

[0, T ]×R
n×R×R

d× Ū → R, h : Rn → R are given fucntions with U being the control domain, that is assumed to be a nonempty

subset of Rm and not necessarily to be convex, and Ū its closure. An admissible control is defined as follows.

Definition 1. A control process u(·) is said to be admissible if it is an U -valued predictable process and satisfies

||u(·)||Uad
, sup

0≤t≤T

{

E
[

|u(t)|
8 ]}

1

8 < ∞.

Denote by Uad the set of all admissible control processes.
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The optimal control problem is to minimize the cost over Uad, i.e.,

Problem 1. Find an admissible control ū(·) ∈ Uad such that

J(ū(·)) = inf
u(·)∈Uad

J(u(·)) (4)

subject to the state equation (1), (2) and the cost functional (3).

The process ū(·) is called an optimal control. The state and cost processes associated with ū(·), denoted by (x̄(·), ȳ(·), z̄(·)), are

called the optimal state and cost processes.

One tool for the study of optimal control problems is the Pontryagin maximum principle which is to derive necessary conditions

for the optimal pair. Before analyzing this issue in details, let us make some rough observations. Suppose (x̄(·), ȳ(·), z̄(·)) is an

optimal pair of Problem 1. For any given u(·) ∈ Uad, let u
δ(·) ∈ Uad be a suitable perturbation of u(·) determined by u(·) with

a parameter δ (for examples, a convex type perturbation, or a spike type variation), so that ρ(uδ(·), ū(·)) = O(δ) with ρ being a

suitable metric on the set Uad, and the following holds:

J(uρ(·)) = J(ū(·)) + δJ1(ū(·), u(·)) + o(δ). (5)

Here J1(ū(·), u(·)) is some functional of u(·) and ū(·). The above can be called the first-order Taylor expansion of J(·) at ū(·),

and J1(ū(·), u(·)) can be regarded as the ”directional derivative” of J(·) at ū(·) in the ”direction” u(·). Hence, the minimality of

ū(·) implies

J1(ū(·), u(·)) ≥ 0, ∀u(·) ∈ U. (6)

Such a condition can be tranformed into the condition on the Hamiltonian (see (12) for the definition). It is called the first-order

necessary condition for ū(·), which is essentially the Pontryagin’s maximum principle. Sometimes, such a condition is sufficient

to find the optimal control, for example, when there is only one control satisfies the condition. In other cases, the first order

condition is insufficient especially when the optimal control is singular. More precisely, suppose that there is a set U0 ⊂ Uad,

which is different from the singleton, such that the following holds:

J1(ū(·), u(·)) = 0, ∀u(·) ∈ U0. (7)

Then ū(·) is said to be singular on the set U0. For convenience, we call U0 a singular set of ū(·). Let

U0(ū(·)) =

{

u(·) ∈ Uad|J1(ū(·), u(·)) = 0

}

,

which is called the maximum singular set of ū(·). When U0 = Uad, we say that ū(·) is fully singular (or simply singular); When

U0(ū(·)) = {ū(·)}, we say that ū(·) is nonsingular; And, more interestingly, when Uad 6= U0(ū(·)) 6= {ū(·)}, we say that ū(·) is

partially singular. The notion of singular control was introduced by Gabasov-Kirillova in [7], where partial singularity was called

”the singularity in the sense of Pontryagin’s maximum principle”, and full singularity was called ”the singularity in the classical

sense”. We prefer to use the shorter names introduced by [15]. Now, suppose ū(·) is partially singular. Then one should expect

that the following (comparing with (5))

J(uρ(·)) = J(ū(·)) + δ2J2(ū(·), u(·)) + o(δ), ∀u(·) ∈ U0, (8)

for some functional J2(ū(·), u(·)) of (u(·), ū(·)). The above can be called the second-order Taylor expansion of J(·) at u(·) in the

direction of ū(·), and J2(ū(·), u(·)) can be regarded as the second order directional derivative at ū(·) in the direction u(·). Then

the minimality of ū(·) leads to the following:

J2(ū(·), u(·)) ≥ 0, ∀u(·) ∈ U0, (9)

The purpose of this paper is to establish first and second order necessary optimality conditions for Problem 1 with recursive

utilities. We shall calculate J2 and transform the above condition into conditions on the Hamiltonian. It turns out to be a
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second order condition in some sense.

Before we introduce the main results, let us first review the history on this topic. When f is independent of (y, z), it is easy to

check that y(0) = E

[

h(x(T )) +
∫ T

t f(s, x(s), u(s))ds

]

and then Problem 1 becomes the classical optimal control problem. We

refer to [14] for an early study on the first-order necessary condition for stochastic optimal controls. After that, many authors

contributed on this topic, see [2, 3, 9] and references cited therein. Compared to the deterministic setting, new phenomenon and

difficulties appear when the diffusion term of the stochastic control system contains the control variable and the control region

is nonconvex. The corresponding first-order necessary condition for this general case was established in [16]. For the recursive

stochastic optimal control problem, when the control domain U is convex, the local first-order maximum principle was studied

in [5, 11, 17] (see also [19, 21, 23] and the references therein). But for the general setting, it remained to be an open problem

proposed by Peng [18] in a long time. By regarding z(·) as a control process and the terminal condition y(T ) = h(x(T )) as

a constraint and then using the Ekeland variational principle, Wu [22] and Yong [24] established the corresponding first-order

maximum principles, but contained unknown parameters in the formulation for the maximum principle. Recently, different from

their methods, Hu [10] completely solved this problem by establishing the variation equation for backward stochastic differential

equations.

As we see in the previous, for the singular control, it may happen that the first-order necessary conditions turn out to be trivial.

Either the gradient and the Hessian of the corresponding Hamiltonian with respect to the control variable vanish/degenerate or

the Hamiltonian is equal to a constant in the control region. In these cases, the first-order necessary condition cannot provide

enough information for the theoretical analysis and numerical computing, and therefore one needs to study the second-order

necessary conditions. Along the line of necessary conditions for singular optimal control problems, the deterministic case was

considered by many authors. The reader is referred to Bell and Jacobson [1], the review paper by Gabasov and Kirillova [7]

(and the references therein) for relevant results, Kazemi-Dehkordi [12] and Krener [13]. Compared to the deterministic control

systems, second-order necessary condition for stochastic optimal controls was first investigated by Tang [20]. In [20], a pointwise

second-order maximum principle for stochastic singular optimal controls in the sense of Pontryagin-type maximum principle

was established which involves second-order adjoint processes, for the case that the diffusion term σ(t, x, u) is independent of

the control u, via a generalized spike variation technique together with the vector-valued measure theory and the second-order

expansions of both the system and the cost functional. Recently, this direction has drawn great attention, see [4, 6, 25, 26].

In [4], an integral-type second-order necessary condition for stochastic optimal controls was derived under the assumption that

the control region U is convex. While in [25], a pointwise second-order necessary condition for stochastic optimal controls is

established in the case that both drift and diffusion terms may contain the control variable u, and the control region U is still

assumed to be convex. The method was further developed in [25] to obtain a pointwise second-order necessary condition in

general cases where the control region is allowed to be nonconvex, but the analysis there is much more complicated, see also [6]

and [26] for details.

This paper is first to investigate the second-order maximum principle for the recursive optimal control problem. We established

a pointwise second-order condition in the sense of Pontryagin-type maximum principle with a nonconvex control region when

the diffusion term is independent of the control u. Via a generalized spike variation technique together with the vector-valued

measure theory, we gave the second-order expansions of both the system and the cost functional and the second-order dual

process which are of interest themselves. Finally, the analysis leads to the main results that contains the result of [20]. The rest

of this paper is organized as follows. In Section 2, we introduce the formulation of the optimal control problem and give the

main results of this paper. Section 3 includes a quantitative analysis for the variations of the system and the cost between two

different control actions. Section 4 contains the proof for the necassary condtions both of the first and second order. Section 5

provides some examples.
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2 Formulation of the Problem and the Main Results

2.1 Notations

We consider a finite time horizon T and a complete probability space (Ω,F ,P) carrying a d-dimensional standard Brownian

motion W (·) := {W (t)|t ∈ [0, T ]}. Without loss of generality, we assume that d = 1 for simplicity of the presentation. Let

F := {Ft|t ∈ [0, T ]} be a filtration generated by W (·) and satisfying the usual conditions of right-continuity and P-completeness.

We denote by P the predictable σ-field on [0, T ] × Ω, and B(Λ) the Borel σ-algebra of any topological space Λ. Let H be an

Euclidean space, in which the inner product and the norm is denoted by 〈·, ·〉 and | · |, respectively. We denote the points in H as

a column vector. Given a matrix A ∈ R
n×n and x ∈ R

n, we denote by A(x)2 := 〈Ax, x〉. For a function φ : Rn → R, we use φx

to denote its gradient and φxx its Hessian (a symmetric matrix). If φ : Rn → R
k, where k ≥ 2, then φx = [ ∂φi

∂xj
]i=1,2,··· ,k;j=1,2,··· ,n

is the corresponding (k × n)-Jacobian matrix. Furthermore, we denote by A∗ the transpose of any vector or matrix A, and C

and K two generic positive constants, which may be different from line to line.

Several spaces of random variables and stochastic processes on (Ω,F ,P) will be used throughout the paper. For any α, β ∈ [1,∞),

we define

• Lβ
F
(0, T ;H): the space of all H-valued and F-adapted processes f(·) = {f(t, ω)|(t, ω) ∈ [0, T ]×Ω} such that ‖f(·)‖Lβ

F
(0,T ;H) ,

{

E

[

∫ T

0
|f(t)|βdt

]}
1

β

< ∞;

• Sβ
F
(0, T ;H): the space of allH-valued, F-adapted, càdlàg processes f(·) = {f(t, ω)|(t, ω) ∈ [0, T ]×Ω} such that ‖f(·)‖Sβ

F
(0,T ;H) ,

{

E

[

supt∈[0,T ] |f(t)|
β
]}

1

β

< ∞;

• Lβ
FT

(Ω;H): the space of allH-valued, FT -measurable random variables ξ on (Ω,F ,P) such that ‖ξ‖Lβ

FT
(Ω;H) ,

{

E
[

|ξ|β
]}

1

β <

∞;

• Lβ
F
(0, T ;Lα(0, T ;H)): the space of all Lα(0, T ;H)-valued, F-adapted processes f(·) = {f(t, ω)|(t, ω) ∈ [0, T ]×Ω} such that

‖f(·)‖Lβ

F
(0,T ;Lα(0,T ;H)) ,

{

E

[

(

∫ T

0
|f(t)|αdt

)

β
α

]}

1

β

< ∞.

In addition, we write Mp
F
[0, T ] , Sp

F
(0, T ;Rn) × Sp

F
(0, T ;R) × Lp

F
(0, T ;L2(0, T ;Rd)). Clearly, Mp

F
[0, T ] is a Banach space. For

any triplet of processes Θ(·) , (x(·), y(·), z(·)) in Mp
F
[0, T ], the corresponding norm is defined as

‖Θ(·)‖Mp

F
[0,T ] ,







E



 sup
t∈[0,T ]

|x(t)|p + sup
t∈[0,T ]

|y(t)|p +

(

∫ T

0

|z(t)|2dt

)

p
2











1

p

.

2.2 Basic Assumptions

In this subsection, we introduce some basic assumptions on the coefficients of our control problem. Let K0 be some positive

constant.

Assumption 1. The functions b, σ, h, f are Borel measurable with respect to their respective arguments, continuous in u, con-

tinuously differentiable in (x, y, z) for each fixed (t, u), and

|bx(t, x, u)|, |σx(t, x)|, |hx(x)|, |fx(t, x, y, z, u)|, |fy(t, x, y, z, u)|, |fz(t, x, y, z, u)| ≤ K0,

|b(t, x, u)| ≤ K0(1 + |x|+ |u|), |σ(x, u)| ≤ K0(1 + |x|+ |u|), |h(x)| ≤ K0(1 + |x|),

|f(t, x, y, z, u)| ≤ K0(1 + |x|+ |y|+ |z|+ |u|).

(10)

Moreover, all the derivatives involved above are Borel measurable, and are continuous in x.

Assumption 2. The first-order derivatives involved above are continuous in u on Ū . The functions b, σ, f and h have continuous

second-order derivatives in x. The second-order derivatives are Borel measurable with respect to (t, x, y, z, u), and are bounded

by the constant K0, that is

|bxx(t, x, u)|, |σxx(t, x)|, |fxx(t, x, y, z, u)|, |fxx(t, x, y, z, u)|, |fxy(t, x, y, z, u)|, |hyy(x)| ≤ K0. (11)
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For each u(·) ∈ Uad, the SDE (1) and BSDE (2), under the Assumption 1, have a unique strong solution, which will be denoted

by (x(·;u(·)), y(·;u(·)), z(·;u(·))) ∈ M8
F
[0, T ] , S8

F
(0, T ;Rn)× S8

F
(0, T ;R)× L8

F
(0, T ;L2(0, T ;Rd)), or simply (x(·), y(·), z(·)) if its

dependence on the admissible control u(·) is clear from the context.

For future purposes, we recall the standard estmates of BSDEs (see [10] and the refereneces therein).

Lemma 1. Let (Yi, Zi), i = 1, 2, be the solutions of the following BSDEs:

Yi(t) = ξi +

∫ T

t

fi(s, Yi(s), Zi(s))ds−

∫ T

t

Zi(s)dWs,

where E[|ξi|
β ] < ∞, fi = fi(s, ω, y, z) : [0, T ] × Ω × R × R

d → R is progressively measurable for each fixed (y, z), Lipschitz in

(y, z), and E[(
∫ T

0
|fi(s, 0, 0)|ds)

β] < ∞ for some β > 1. Then there exists a constant Cβ depending on β, T and the Lipschitz

constant such that

E

[

sup
t∈[0,T ]

|Y1(t)− Y2(t)|
β +

(
∫ T

0

|Z1(s)− Z2(s)|
2ds

)β/2]

≤CβE

[

|ξ1 − ξ2|
β +

(
∫ T

0

|f1(s, Y1(s), Z1(s))− f2(s, Y1(s), Z1(s))|ds

)β]

.

In particular, taking ξ1 = 0 and f1 = 0, we have

E

[

sup
t∈[0,T ]

|Y2(t)|
β + (

∫ T

0

|Z2(s)|
2ds)β/2] ≤ CβE

[

|ξ2|
β + (

∫ T

0

|f2(s, 0, 0)|ds)
β

]

.

2.3 the Main Results

The object of this paper is to establish a general maximum principle for Problem 1. When the convexity assumption is not made

on the control domain U , the basic idea of deriving necessary conditions is to apply the spike variation to the control process

and derive a Taylor-type expansion for the state process and the cost functional with respect to the spike variation of the control

process. Then using some suitable duality relations, one can obtain a maximum principle of Pontryagin’s type.

Define the Hamiltonian:

H(t, x, y, z, u, p, q) := 〈p, b(t, x, u)〉+ 〈q, σ(t, x)〉 + f(t, x, y, z, u). (12)

Let ū(·) be an optimal control and (x̄(·), ȳ(·), z̄(·)) the associated state and cost process. To simplify the notations, we introduce

the following abbreviations:

b̄(t) := b(t, x̄(t), ū(t)), b(t;u) := b(t, x̄(t), u), δb(t;u) := b(t, x̄(t), u)− b̄(t) (13)

and define similarly for b̄x(t), b̄xx(t), δbx(t;u), σ̄(t), σ̄x(t), σ̄xx(t), f̄(t), f̄x(t), f̄y(t)f̄z(t), δf(t;u) and so on. We introduce respec-

tively the following two adjoint equations:

{

dp(t) = −
{[

f̄y(t) + f̄z(t)σ
∗
x(t) + b̄∗x(t)

]

p(t) +
[

f̄z(t) + σ∗
x(t)

]

q(t) + f̄∗
x(t)

}

dt+ q(t)dWt,

p(T ) = h∗
x(x̄T ),

(14)

and


























dPt = −
{

f̄y(t)P (t) +
[

f̄z(t)σ̄x(t) + b̄x(t)
]∗
P (t) + P (t)

[

f̄z(t)σ̄x(t) + b̄x(t)
]

+ σ̄∗
x(t)P (t)σ̄x(t)

+ f̄z(t)Q(t) + σ∗
x(t)Q(t) +Q(t)σx(t) + p∗(t)b̄xx(t) +

[

f̄z(t)p(t) + q(t)
]∗
σ̄xx(t)

+ [I, p(t), σ̄∗
x(t)p(t) + q(t)]D2f̄(t)[I, p(t), σ̄∗

x(t)p(t) + q(t)]T
}

dt+Q(t)dWt,

P (T ) = hxx(x̄T ),

(15)

where D2f is the Hessian matrix of f with respect to (x, y, z).

Under Assumptions 1 and 2, from Lemma 1, it is easy to see that for any admissible pair (ū(·), x̄(·), ȳ(·), z̄(·)), BSDEs (14)

and (15) admit unique solutions (p(·), q(·)) ∈ S8
F
(0, T ;Rn) × L8

F
(0, T ;L2(0, T ;Rn×d)) and (P (·), Q(·)) ∈ S8

F
(0, T ;Rn×n) ×
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L8
F
(0, T ;L2(0, T ; (Rn×n)d)), respectively. We call (14) and (15) the first-order and the second-order adjoint equations of the

control system (1)-(2), respectively, where the unique adapted solutions (p(·), q(·)) and (P (·), Q(·)) are referred as the first-order

and the second-order adjoint processes. We also use the abbreviations:

H(t) = H(t, x̄(t), ȳ(t), z̄(t), ū(t), p(t), q(t)),

Hx(t) = Hx(t, x̄(t), ȳ(t), z̄(t), ū(t), p(t), q(t)),

Hxx(t) = Hxx(t, x̄(t), ȳ(t), z̄(t), ū(t), p(t), q(t)),

δH(t, v) = H(t, x̄(t), ȳ(t), z̄(t), v, p(t), q(t)) −H(t, x̄(t), ȳ(t), z̄(t), ū(t), p(t), q(t)).

(16)

In the following, we state the main results of our paper. The first is the first-order maximum principle.

Theorem 1. Let Assumption 1 be satisfied. Let (ū(·); x̄(·), ȳ(·), z̄(·)) be an optimal pair. Then there is a subset I0 ⊂ [0, 1] which

is of full measure, such that at each t ∈ I0 the minimum condition

H(t, x̄(t), ȳ(t), z̄(t), ū(t), p(t), q(t)) = min
v∈U

H(t, x̄(t), ȳ(t), z̄(t), v, p(t), q(t)), a.s. (17)

holds.

The maximum principle is a powerful tool for the study of optimal stochastic control problems. However, it is not always

effective. For example, if the optimal admissible pair (ū(·); x̄(·), ȳ(·), z̄(·)) is such that hx(x̄(T )) = 0, fx(t, x̄(·), ȳ(·), z̄(·), ū(·)) = 0,

a.e. a.s.. In this case, the adjoint process (p(·), q(·)), defined by BSDE (14), is identically zero, and the maximum condition (17)

is trivial, giving no information about the optimal control u(·). Such a control u(·) is a singular one. There are other kinds of

singular controls, for which the above maximum principle is ineffective. In this paper, we discuss singular optimal stochastic

controls in the following sense of maximum principle.

Definition 2. An admissible control ũ is called singular on control region V if V ⊂ U is nonempty and for a.e. t ∈ [0, T ], we

have

H(t, x̃(t), ỹ(t), z̃(t), ũ(t), p̃(t), q̃(t)) = H(t, x̃(t), ỹ(t), z̃(t), v, p̃(t), q̃(t)), ∀v ∈ V.

The main result of this paper is the following second-order maximum principle which involves the second-order adjoint processes

(P (·), Q(·)) given in (15).

Theorem 2. Let Assumption 1 and 2 be satisfied. Let (ū(·); x̄(·), ȳ(·), z̄(·)) be an optimal pair and be singular on the control

region V . Then there exists I0 ⊂ [0, 1] which is of full measure, such that at each t ∈ I0, ū(·) satisfies, in addition to the first

order maximum condtion, the following second order maximum condition:

(δG(t; v) + δb∗(t; v)P (t))δb(t; v) ≥ 0, ∀v ∈ V, a.s., (18)

where we have used the following short-hand notation:

G(t;u) := Hx(t;u) + f̄y(t;u)p
∗(t) + f̄z(t;u)(p

∗(t)σ̄x(t) + q∗(t)).

3 First and Second Order Taylor Expansion

In this section, we introduce the first and the second order variation equation for the optimal pair (ū(·); x̄(t), ȳ(t), z̄(t)) by spike

variation methods and establish the dependence of the system state on control actions.

Let u(·) ∈ Uad, ε > 0 and Eε ⊂ [0, T ] be a Borel set with Borel measure |Eε| = ε. Define the spike variation uε of the optimal

control ū as

uε(t) = ū(t)IEc
ε
(t) + u(t)IEε

(t).

Let xi(·), i = 1, 2, be the solution for the following SDEs which is regarded as the corresponding first and second order variation

equations for the optimal state process x̄(·): :
{

dx1(t) = {b̄x(t)x1(t) + δb(t;uε(t))}dt+ σ̄x(t)x1(t)dWt,

x1(0) = 0
(19)
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and






















dx2(t) = {b̄x(t)x2(t) + δbx(t;u
ε(t))x1(t) +

1

2
b̄xx(t)(x1(t))

2}dt

+ {σ̄x(t)x2(t) +
1

2
σ̄xx(t)(x1(t))

2}dWt,

x2(0) = 0,

(20)

where bxx(t)(x1(t))
2 = (b1xx(t)(x1(t))

2, ..., bnxx(t)(x1(t))
2)T and similarly for σxx(t)(x1(t))

2.

The following lemma is a standard result and has been proved in [20].

Lemma 2. Assume that Assumption 1 and Assumption 2 are satisfied. Then we have

E

[

sup
0≤t≤T

|x(t;uε)− x̄(t)|8
]

= O(ε8),

E

[

sup
0≤t≤T

|x1(t)|
8

]

= O(ε8),

E

[

sup
0≤t≤T

|x(t;uε)− x̄(t)− x1(t)|
2

]

= O(ε4),

E

[

sup
0≤t≤T

|x2(t)|
2

]

= O(ε4),

E

[

sup
0≤t≤T

|x(t;uε)− x̄(t)− x1(t)− x2(t)|
2

]

= o(ε4).

Let (y1, z1) be the solution of the following BSDE:

{

dy1(t) = −{f̄y(t)y1(t) + f̄z(t)z1(t) + p∗(t)δb(t;uε(t)) + δf(t;uε(t))}dt+ z1(t)dWt

y1(T ) = 0.
(21)

Lemma 3. Assume Assumption 1 to be satisfied. Then the following estimation holds:

E

[

sup
0≤t≤T

|yε(t)− ȳ(t)− p∗(t)x1(t)− y1(t)|
4

]

= o(ε4).

Proof. Define

ỹε(t) := yε(t)− ȳ(t)− p∗(t)x1(t)− y1(t)

and

z̃ε(t) := zε(t)− z̄(t)− p∗(t)σ̄x(t)x1(t)− q∗(t)x1(t)− z1(t).

Applying Itô’s formular to ỹε, we have

dỹε(t) = −I(t)dt+ z̃ε(t)dWt

with

I(t) :=f(t, xε(t), yε(t), zε(t), uε(t))− f̄(t)− f̄x(t)x1(t)− f̄y(t)(p
∗(t)x1(t) + y1(t))

− f̄z(t)
[

p∗(t)σ̄x(t)x1(t) + q∗(t)x1(t) + z1(t)
]

− δf(t;uε
t ).

Thus, we see that

f(t, xε(t), yε(t), zε(t), uε(t))− f̄(t)− δf(t;uε(t))

=f(t, xε(t), yε(t), zε(t), uε(t))− f(t, x̄(t), ȳ(t), z̄(t), uε(t))

=f̄x(t)(x
ε(t)− x̄(t)) + f̄y(t)(y

ε(t)− ȳ(t)) + f̄z(t)(z
ε(t)− z̄(t)) + i(t),

where the residual term i(t) satisfies

E

[(
∫ T

0

|i(t)|dt

)4]

= o(ε4).
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Hence

I(t) = f̄x(t)(x
ε(t)− x̄(t)− x1(t)) + f̄y(t)ỹ

ε(t) + f̄z(t)z̃
ε(t) + i(t).

The starndard estimate of BSDEs yields that

E

[

sup
0≤t≤T

|ỹε(t)|4
]

≤ CE

[(
∫ T

0

|xε(t)− x̄(t)− x1(t)|+ |i(t)|dt

)4]

= o(ε4).

To derive the second order condition in the next section, we also need to expand the value function to the second order. Let

(y2, z2) be the solution of the following:



























dy2(t) = −

{

f̄y(t)y2(t) + f̄z(t)z2(t) + 〈P (t)δb(t;uε
t ), x1(t)〉+ p∗(t)δbx(t;u

ε
t )x1(t)

+

[

δfx(t;u
ε(t)) + δfy(t;u

ε(t))p∗(t) + δfz(t;u
ε(t))(p∗(t)σ̄x(t) + q∗(t))

]

x1(t)

}

dt+ z2(t)dWt,

y2(T ) = 0.

(22)

We now establish the following lemma.

Lemma 4. Assume that Assumption 1 and Assumption 2 are satisfied. Let ū(·) be a optimal control singular on the control

region V and u(·) any V -valued admissible control. For any r > 1, we have

E

[

sup
0≤t≤T

|yε(t)− ȳ(t)− p∗(t)(x1(t) + x2(t))−
1

2
P (t)(x1(t))

2 − y2(t)|
2

]

= o(ε4). (23)

Proof. Note that for any V -valued admissible control u, the corresponding process y1 satisfies y1(t) ≡ 0. Hence, from Lemma 3,

we have

E

[

sup
0≤t≤T

|yε(t)− ȳ(t)− p∗(t)x1(t)|
4

]

= o(ε4) (24)

and

E

[(
∫ T

0

|zε(t)− z̄(t)− (p∗(t)σ̄x(t) + q∗(t))x1(t)|
2dt

)2]

= o(ε4). (25)

Applying Itô’s formula, we have

d

[

p∗(t)(x1(t) + x2(t))

]

=

{

p∗(t)δb(t;uε(t)) + p∗(t)δbx(t)x1(t)− f̄y(t)

[

p∗(t)(x1(t) + x2(t))

]

− f̄z(t)

[

p∗(t)σ̄x(t)(x1(t) + x2(t)) + q∗(t)

]

− f̄x(t)

[

x1(t) + x2(t)

]

+
1

2

[

p∗(t)b̄xx(t) + q∗(t)σ̄xx(t)

]

(x1(t))
2

}

dt+

{

q∗(t)

[

x1(t) + x2(t)

]

+ p∗(t)

[

σ̄x(t)(x1(t) + x2(t)) +
1

2
σ̄xx(t)x1(t)⊗ x1(t)

]}

dWt

(26)

and

d

[

1

2
P (t)(x1(t))

2

]

=

{

〈P (t)δb(t;uε(t)), x1(t)〉 −
1

2
f̄y(t)P (t)(x1(t))

2 −
1

2
f̄z(t)

[

σ̄∗
x(t)P (t) + P (t)σx(t) +Q(t)

]

(x1(t))
2

−
1

2

[

p∗(t)b̄xx(t) +
[

f̄z(t)p(t) + q(t)
]∗
σ̄xx(t) + [I, p(t), σ̄x(t)p(t)

+ q(t)]D2f̄(t)[I, p(t), σ̄x(t)p(t) + q(t)]T
]

(x1(t))
2

}

dt+

{

1

2
f̄z(t)

[

σ̄∗
x(t)P (t) + P (t)σx(t) +Q(t)

]

(x1(t))
2

}

dWt.

(27)
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Define

ŷε(t) := yε(t)− ȳ(t)− p(t)(x1(t) + x2(t))−
1

2
P (t)(x1(t))

2 − y2(t)

and

ẑε(t) :=zε(t)− z̄(t)−

{

q∗(t)

[

x1(t) + x2(t)

]

+ p∗(t)

[

σ̄x(t)(x1(t) + x2(t)) +
1

2
σ̄xx(t)x1(t)⊗ x1(t)

]}

−
1

2
f̄z(t)

[

σ̄∗
x(t)P (t) + P (t)σx(t) +Q(t)

]

(x1(t))
2.

Moreover, using Taylor expansion of f , we have

f(t, xε(t), yε(t), zε(t), uε(t)) − f(t, x̄(t), ȳ(t), z̄(t), uε(t))

=fx(t;u
ε(t))(xε(t)− x̄(t)) + fy(t;u

ε(t))(yε(t)− ȳ(t)) + fz(t;u
ε(t))(zε(t)− z̄(t))

+
1

2
[xε(t)− x̄(t), yε(t)− ȳ(t), zε(t)− z̄(t)]D2f(t;uε(t))[xε(t)− x̄(t), yε(t)− ȳ(t), zε(t)− z̄(t)]T

+ i1(t),

(28)

where i1(t) is the residual term of Taylor expansion, one can easily obtain that

E

[(
∫ T

0

|i1(t)|dt

)2]

= o(ε4)

. Also, we see that

fx(t;u
ε(t))(xε(t)− x̄(t)) = f̄x(t)(x

ε(t)− x̄(t)) + δfx(t;u
ε(t))x1(t) + i2(t),

where i2(t) also satisfies

E

[(
∫ T

0

|i2(t)|dt

)2]

= o(ε4).

We can get similar approaximations for the terms of y and z and the quadratic term. Thus, finally we rewrite (28) as

f(t, xε(t), yε(t), zε(t), uε(t))− f(t, x̄(t), ȳ(t), z̄(t), uε(t))

=f̄x(t)(x
ε(t)− x̄(t)) + f̄y(t)(y

ε(t)− ȳ(t)) + f̄z(t)(z
ε(t)− z̄(t)) + δfx(t;u

ε(t))x1(t)

+ δfy(t;u
ε(t))p∗(t)x1(t) + δfz(t;u

ε(t))(p∗(t)σ̄x(t) + q∗(t))x1(t)

+
1

2
[I, p∗(t), p(t)σ̄x(t) + q(t)]D2f̄(t)[I, p(t), p(t)σ̄x(t) + q(t)]T (x1(t))2

+ i3(t),

(29)

with i3(t) satisfying

E

[(
∫ T

0

|i3(t)|dt

)2]

= o(ε4).

Combining (26), (27) and (29) we obtain that

dŷε(t) = −{f̄y(t)ŷ
ε(t) + f̄z(t)ẑ

ε(t) + i(t)}dt+ ẑε(t)dWt,

with the residual term i(t) satisfying

E

[(
∫ T

0

|i(t)|dt

)2]

= o(ε4).

4 Proof for the Main Results

4.1 First Order Condition

The solution of the linear BSDE (21) can be represented via the adjoint SDE. Let γ(t) satisfy:
{

dγ(t) = f̄y(t)γ(t)dt + f̄z(t)γ(t)dWt,

γ(0) = 1.
(30)
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Applying Itô’s formula to γ(t)y1(t), we shall have

y1(0) = E

[
∫ T

0

{

γ(t)(p(t)δb(t;ut) + δf(t : ut))1Eε(t)
}

dt

]

.

Choosing Eε carefully such that |Eε| = ε and

E

[
∫ T

0

{

γ(t)(p(t)δb(t;ut) + δf(t : ut))1Eε(t)
}

dt

]

= εE

[
∫ T

0

{

γ(t)(p(t)δb(t;ut) + δf(t : ut))
}

dt

]

.

We have

J(uε) = yε(0) = ȳ(0) + εE

[
∫ T

0

{

γ(t)(p(t)δb(t;ut) + δf(t : ut))
}

dt

]

+ o(ε).

Since ȳ(0) is optimal, we shall have

lim sup
ε

yε(0)− ȳ(0)

ε
≥ 0,

which implies that

E

[
∫ T

0

{

γ(t)(p(t)δb(t;ut) + δf(t : ut))
}

dt

]

≥ 0,

for any u ∈ Uad. Finally, due to the abitrariness of u(·), we see that (17) holds. Thus the proof of Theorem 1 is completed.

4.2 Second Order Condition

In this subsection, we are going to prove Theorem 2. Denote by

G(t;u) := Hx(t;u) + f̄y(t;u)p
∗(t) + f̄z(t;u)(p

∗(t)σ̄x(t) + q∗(t))

. Similarly, one can deduce that

E

[
∫ t2

t1

γ(t)
{

δG(t, v(t)) + δb∗(t, v(t))P (t)
}

x1(t; v(·))dt

]

≥ 0, (31)

for any v ∈ Vad(t1, t2). Here

Vad(t1, t2) := {v ∈ Uad|v(t) ∈ V, a.s., a.e. t ∈ [t1, t2]; v(t) = ū(t), t ∈ [0, 1]/[t1, t2]}.

Note that one can solve (19) explicitly:

x1(t) =

∫ t

t1

Φ(s; t)δb(t; v(t))ds,

where Φ(·; t) satisfies

dΦ(s; t) = −{Φ(s; t)b̄x(s) + Ψ(s; t)σ̄x(t)}ds+Ψ(s; t)dWs,Φ(t; t) = I.

Moreover, for any t, Φ(s; t) is continuous in s almost surely. Thus, we can rewrite the left hand side of (31) asb

E

[
∫ t2

t1

∫ t

t1

γ(t)
{

δG(t, v(t)) + δb∗(t, v(t))P (t)
}

Φ(s; t)δb(s; v(s))dsdt

]

.

Denote by {ri}
∞
i=1 the totality of rarional numbers in [0, 1], and by {ui}

∞
i=1 a dense subset of V . Since Ft is countable generated

for t ∈ [0, 1], we can assume that {Aij}
∞
j=1 generates Fri , i = 1, 2, 3, .... Set

Zv
ij(t) := ū(t)χAc

ij
(ω)χ[0,ri)(t) + vχAij

(ω)χ[ri,1)(t),

for t ∈ [0, 1], v ∈ V, i, j = 1, 2, .... For each triplet (i, j, k), since

E

[

γ(t)(δG(t, Zuk

ij (t)) + δb∗(t, Zuk

ij (t))P (t))δb(t, Zk
ij(t))

]
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is Lebesgue integrable, there is a null subset T k
ij ⊂ [0, 1] such that for t ∈ [0, 1]/T k

ij,

lim
r→0+

1

r

∫ t+rα

t−rβ

E[γ(s)(δG(s, Zuk

ij (s)) + δb∗(s, Zuk

ij )P (s))δb(t, Zus

ij )(s)]ds

=(α+ β)E

[

γ(t)(δG(t, Zuk

ij (t)) + δb∗(t, Zuk

ij )P (t))δb(t, Zuk

ij )(t)

]

and

lim
r→0+

1

r

∫ t+rα

t−rβ

E

[

(δb(s;Zuk

ij (s))− δb(t;Zuk

ij (t)))2
]

ds = 0.

Set

T0 := ∪1≤i,j,k≤∞T k
ij .

Then T0 is a null subset of [0, 1]. For t ∈ [0, 1]/T0 and the integers i such that ri < t, consider the perturbed control v as

v(s) = u(s)χ[0,1]/[t−rβ,t+rα](s) + Zk
ij(s)χ[t−rβ,t+rα](s). We have

1

r
E

[
∫ t+rα

t−rβ

∫ u

t−rβ

γ(u)
{

δG(u, Zk
ij(u)) + δb∗(t, Zk

ij(u))P (u)
}

Φ(s;u)δb(s;Zk
ij(s))dsdu

]

≥ 0.

Letting r tend to 0, we finally get that

E

[

γ(t)(δG(t;uk) + δb∗(t;uk)P (t))δb(t;uk)χAij

]

≥ 0.

Since Aij generates Fri , we have

E

[

γ(t)(δG(t;uk) + P (t)δb(t;uk))δb(t;uk)|Fri

]

≥ 0, a.s..

Since the filtration is generated by the Brownian motion, Ft is quasi-left-continuous which implies that all martingales are

continuous. Then it holds that

γ(t)(δG(t;uk) + δb∗(t;uk)P (t))δb(t;uk) ≥ 0, a.s..

Since γ(t) is positive, it is equivalent to

(δG(t;uk) + δb∗(t;uk)P (t))δb(t;uk) ≥ 0, a.s.

From the continuity of the coefficients and the density of {uk}
∞
k=1, we have

(δG(t;u) + δb∗(t;u)P (t))δb(t;u) ≥ 0, ∀u ∈ V, a.s..

holds. Therefore we finish the proof of Theorem 2.

5 Examples

In this section, we give two examples to illustrate the applications of our second-order maximum principle. Example 1. The

state process of the controlled system is























dx(t) =

(

− 1
2a

2 −u

u − 1
2a

2

)

x(t)dt +

(

0 −a

a 0

)

x(t)dW (t), 0 < t < 1,

x(0) =

(

1

0

)

(32)

with the cost process






dy(t) = −{βy(t) + γz(t)}dt+ z(t)dW (t),

y(T ) =
1

2
|x(T )|2,

(33)
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where the valued set U of admissible controls is:

U = [−1, 1].

and a, β, γ are deterministic. For each constant control u, equation (32) can be solved explicitly as

x(t;u) =

(

cos(ut+ aW (t))

sin(ut+ aW (t))

)

. (34)

One can check that any admissible control u(·) is optimal in this example. For the admissible reference pair (x(·), u) with u ∈ U⊣⌈

being constant, the associated first-order adjoint equation (p(·;u), q(·;u)) satisfying the following BSDE:















dp(t) = −

[(

β − 1
2a

2 γa+ u

−γa− u β − 1
2a

2

)

p(t) +

(

γ a

−a γ

)

q(t)

]

dt+ q(t)dWt,

p(1) = x(1).

(35)

It is solved as






















p(t;u) = exp(β(T − t))

(

cos(ut+ aWt)

sin(ut+ aWt)

)

q(t;u) = exp(β(T − t))

(

−a sin(ut+ aWt)

a cos(ut+ aWt)

)

.

Thus the Hamiltonian can be calculated which shows that H(t, x(t;u), y(t;u), z(t;u), v, p(t;u), q(t;u)) is independent of v. Hence

any constant control u is singalar on U . Consider the second order adjoint equation:

{

dP (t) = −[βP (t) + (fx + γσx)
∗P (t) + P (t)(fx + γσx) + σ∗

xP (t)σx + γQ(t) + σ∗
xQ(t) +Q(t)σx]dt+Q(t)dWt,

P (1) = I
(36)

with

fx =

(

− 1
2a

2 −u

u − 1
2a

2

)

, σx =

(

0 −a

a 0

)

.

Obviously, P (t) = exp(β(T − t))I,Q(t) ≡ 0. Then we have

δG(t; v) = − exp(β(T − t))(v − u)2, δb∗(t; v)P (t)δb(t; v) = exp(β(T − t))(v − u)2.

It implies that any constant control u satisfies our second-order maximum principle. This show that the second term in can not

be crossed out in (18).

Example 2. The control system is

{

dx(t) = u(t)dt+ (x − 1)dWt, ut ∈ U := {−1, 0, 1}

x(0) = 1
(37)

and the cost process is defined as






dy(t) = −f(y(t), z(t))dt+ z(t)dW (t),

y(1) = ±
1

2
(x(1)− 1)2,

with f be any deterministic function. For both cost functionals, the constant control u ≡ 0 is singular on U since the corrsponding

first-order adjoint processes are identically zero. The second adjoint processes are (P (t), Q(t) ≡ 0) with P (t) solves the following

ODE:

dP (t) = −[f̄y(t) + 2f̄z(t) + 1]P (t)dt, P (1) = ±
1

2
.

From Thoerem 2, we see that u ≡ 0 is a candidate for optimal controls at the case y(1) = 1
2 (x(1) − 1)2, and necessarily not an

optimal control at the other case.
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