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Abstract

In this work, we deal with the optimal control problem of maximizing biogas production
in a chemostat. The dilution rate is the controlled variable and we study the problem over a
fixed finite horizon, for positive initial conditions. We consider the single reaction model and
work with a broad class of growth rate functions. With the Pontryagin Maximum Principle,
we construct a one parameter family of extremal controls of type bang-singular arc. The
parameter of these extremal controls is the constant value of the Hamiltonian. Using the
Hamilton-Jacobi-Bellman equation, we identify the optimal control as the extremal associated
with the value of the Hamiltonian, which satisfies a fixed point equation. We then propose a
numerical algorithm to compute the optimal control by solving this fixed point equation. We
illustrate this method with the two major types of growth functions of Monod and Haldane.

Keywords : Optimal Control; Chemostat Model; Pontryagin Maximum Principle ; Hamilton-
Jacobi-Bellman Equations; Optimal Synthesis

1 Introduction

Biogas is a product of the anaerobic digestion process, in which several populations of microorgan-
isms break down organic matter in the absence of oxygen. This process is an interesting technology
for the treatment of liquid and solid waste since the collected biogas is mainly composed of methane
and therefore can be used as a renewable energy source [1]. In this context, it is relevant to de-
velop control strategies that maximize methane production, in order to increase the efficiency and
sustainability of waste treatment. As a matter of fact, a major reason that has been reported
for the closing of anaerobic digestion plants, is the insufficient profits associated with poor biogas
production [2].

Substantial expertise is needed to operate the anaerobic digestion process properly as it is a
complex non-linear and unstable process. Although it is possible to use various inputs for control,
such as pH or alkalinity [3], the dilution rate (also called feeding rate) is considered in general as the
variable input. It is important to note that most studies on the control of anaerobic digestion have
focused primarily on process stability [4]. However, recently, some works have incorporated the
aspect of optimizing performance and, among these, a wide range of control strategies have been
used: PID controllers [5], expert systems [6], fuzzy logic [7] and adaptive control [8], to mention a
few strategies.
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In this work, we address the problem of biogas production from an optimal control point of view.
We focus our attention on the one reaction model in a chemostat. We are particularly interested
in providing a practical method to determine an optimal control in feedback form for maximizing
the production of biogas. The numerical scheme we propose for such purpose (Algorithm 1) has
been obtained by combining the two major techniques in optimal control, namely, the Pontryagin
Maximum Principle (PMP) and the Hamilton-Jacobi-Bellman (HJB) equation. The PMP allows
us to describe the structure of the optimal synthesis and the singular curve in terms of a given
parameter, while the HJB equation gives a practical way to compute such a parameter.

As far as we are aware of, there are few works dealing with the dynamic optimization problem
of biogas production. Actually, due to the complexity of the problem, only models with one or two
bio-reactions have been considered [9, 10]. In addition, only problems on well-mixed continuously
stirred tanks have been studied, since the non-linearities and the high dimension of a more complex
bio-reactor model make the analysis of the associated optimal control problem hard to handle.
It is worth mentioning that models with only few dynamic variables are capable of describing
the qualitative behaviour of the anaerobic digestion process [11]. The tradeoff between practical
solvability and qualitative description justifies the use of these simplified models, and in particular
the one reaction model we study in this paper.

The problem for a one reaction model was first considered in [12] and later solved for a special
set of initial conditions for which the model reduces to a one dimensional problem [13]. More
recently, the general one reaction model has been revisited to propose a sub-optimal control for
which there is an estimation of sub-optimality [14]. Let us mention that the problem has also been
considered in the infinite horizon case [15]. To the best of our knowledge, a complete synthesis for
the problem of maximizing biogas production over a fixed finite horizon has not been addressed
before, even for the single reaction model. This work contributes in this direction, by proposing a
candidate to optimal synthesis and giving a practical way to compute it.

Notice that for general optimal control problems a wide range of algorithms have been studied
and implemented as open source software. Either based on Shooting methods, Dynamic Program-
ming or Discretize-then-optimize methods such as Nonlinear Model Predictive Control ; see for
example [16, 17, 18, 19]. The problem we study in this paper can in principle be solved numer-
ically with any of these methods, provided that one knows exactly the parameters of the model
(which are hard to estimate in practice). However, as pointed out earlier, the goal of studying
simplified models is to provide a good picture of how an optimal synthesis may look like (qualita-
tive description) rather than giving a specific solution for the maximization of biogas production
problem.

This paper is organized as follows. In Section 2 we describe the problem at hand. In Section 3
we analyze the optimality conditions and we identify a class of extremal controls. In Section 4, we
explain the algorithm we propose and we provide some numerical simulations in Section 5. Finally,
in the appendix, we give an analytic proof (based on the HJB approach) for the optimality of the
feedback law we found in Section 3 for a special set of initial conditions.

2 Problem Statement

In this work, we consider a single reaction model of the anaerobic digestion process where a
substrate of concentration s is transformed by a microbial population of concentration x into
biogas. The bioreactor is assumed to be continuously-fed and well-mixed, for which the mass
balance equations are the classical chemostat equations [20] :

ẋ = µ(s)x−Dx, ṡ = D(sin − s)− µ(s)x, (1)

where sin > 0 is the substrate inflow concentration and D is the dilution rate, which will be the
controlled variable (it is assumed to be a measurable function of time). We suppose here, without
loss of generality, that the units are chosen such that the yield coefficient of the reaction is equal
to 1.
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The specific growth rate of the microorganisms µ(·) is usually chosen of Monod type (µM ) or
of Haldane type (µH): given µmax,K,Ki > 0

µM (s) := µmax
s

K + s
, µH(s) := µmax

s

K + s+ s2/Ki
. (2)

However, at first we will study the optimal control problem for a rather general class of functions,
which in particular covers the Monod and Haldane cases.

Standing Assumptions: The growth rate of the microorganisms µ(·) is a twice continuously
differentiable function on [0,+∞[ such that

µ(0) = 0, µ(s) > 0 and
d

ds

(
µ′(s)

µ(s)2

)
6= 0, ∀s > 0.

In the Monod and Haldane cases we have that

µ′M (s)

µM (s)2
=

K

µmaxs2
and

µ′H(s)

µH(s)2
=

K

µmaxs2
− 1

µmaxKi

respectively. Thus in particular, they satisfy our Standing Assumptions.
The biogas flow-rate is assumed proportional to the growth rate of the microorganisms [21] and

therefore the biogas production during a time interval [t0, T ] for a given substrate concentration
s(·) and a given microbial population concentration x(·) is∫ T

t0

µ(s(t))x(t)dt.

The goal of the problem we deal with here is to maximize the biogas production over a finite
horizon [t0, T ] for a given initial condition x0, s0 > 0 by controlling the dilution rate t 7→ D(t) of
the bioreactor under the constraint that D(t) ∈ [0, Dmax], where Dmax > 0 is the maximal dilution
rate allowed.

In summary, the optimal control problem that we will study is the following

Maximize

∫ T

t0

µ(s(t))x(t)dt

over all D : [t0, T ]→ [0, Dmax] measurable

such that ẋ = µ(s)x−Dx, x(t0) = x0,

ṡ = D(sin − s)− µ(s)x, s(t0) = s0,

0 ≤ s(t) ≤ sin and 0 ≤ x(t), ∀t ∈ [t0, T ].

(Pbio)

With a slight abuse of notation, we may sometimes write

J(t0, x0, s0, ψ) :=

∫ T

t0

µ(s(t))x(t)dt

for the biogas production associated with a control ψ : R2 → [0, Dmax] in feedback form and some
initial conditions (x0, s0) = (x(t0), s(t0)). Under these circumstances, the functions s(·) and x(·)
denote a solution of control system (1) in closed-loop form associated with these data.

Remark 1. Since feedback controls ψ : R2 → [0, Dmax] are not necessarily continuous functions of
the state variables, the classical theory of ordinary differential equations (ODEs) cannot be evoked
for ensuring the existence and uniqueness of solutions to the ODEs system:

ẋ = µ(s)x− ψ(s, x)x, ṡ = ψ(s, x)(sin − s)− µ(s)x.

In our setting, the feedback controls are going to be regular enough to ensure the well-posedness
(existence and uniqueness) of the control system (1) in closed-loop form. This is due to the fact
that the feedback controls considered later on have an underlying stratified structure and so they
can be handled with a tailored ODEs theory; see for instance [22].
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2.1 About the State-Constraints

Let us point out that in the formulation of the problem we have included state-constraints over
the system, described by a set K := [0,+∞[×[0, sin]. In the rest of the paper this restriction will
be disregarded. The main reason for doing so is that the system (1) is invariant on K (see for
example [23, Theorem 4.3.8]). Indeed, the set-valued map

F (x, s) := {(µ(s)x−Dx,D(sin − s)− µ(s)x) : D ∈ [0, Dmax]}

is locally Lipschitz continuous, has linear growth, has nonempty compact and convex images and
satisfies the invariance condition F (x, s) ⊆ TK(x, s) for any (x, s) ∈ K; where TK stands for the
Contingent Cone. The last affirmation comes from the fact that F (0, s) ⊆ {0} × [0,+∞[ for any
s ∈ [0, sin] and

F (x, 0) ⊆]−∞, 0]× [0,+∞[, F (x, sin) ⊆ R×]−∞, 0[, ∀x > 0.

By similar arguments we can see that the set {0} × [0, sin] is also invariant, which means that
no trajectory of the system that starts from x(t0) = x0 > 0 and s(t0) = s0 ∈]0, sin[ will reach that
set. Moreover, the fact that F (x, sin) is contained in R×] −∞, 0[ for any x > 0 implies that no
trajectory can reach the level s = sin provided that s(t0) < sin. Also, note that for any x ≥ 0 we
can find sx > 0 small enough such that D(sin − sx)− µ(sx)x ≥ 0 for any D ∈]0, Dmax]. Moreover,
a trajectory of (1) associated with D = 0 cannot reach the level s = 0 in finite time, otherwise
there would be two backward solutions to the corresponding ODE starting from the same point.
In practice, this means that whenever the initial conditions are taken such that s0 ∈]0, sin[ and
x0 > 0, we will have that the condition over the states of the system holds, and is even stronger,
in the sense that we will also have that

0 < s(t) < sin and 0 < x(t), ∀t ∈ [t0, T ]. (3)

3 Optimality Conditions

The preceding discussion implies in particular that admissible trajectories exist for the optimal
control problem (Pbio). Furthermore, since the objective function to be maximized does not depend
explicitly on the control function D(·), standard assumptions that guarantee the existence of
optimal control can be evoked (for example [24, Theorem 23.11]). Thus in the rest of the paper we
might assume that optimal trajectories for the maximization of biogas production problem exists
and focus on optimality condition to understand and approximate such solutions. Also, since we
are mainly interested in the case that the initial conditions are such that s0 ∈]0, sin[ and x0 > 0,
we will assume, unless otherwise stated, that optimal trajectories satisfy (3).

3.1 Pontryagin Maximum Principle

We begin our study of problem (Pbio) by establishing necessary conditions of optimality with
the Pontryagin Maximum Principle (PMP) [24, Corollary 22.3]. For this we set the Hamiltonian
H : R2 × R2 × [0, Dmax]→ R as

H(x, s, px, ps, D) := µ(s)x+ ps(D(sin − s)− µ(s)x) + px(µ(s)x−Dx). (4)

We consider an optimal control D(·) of (Pbio) and its associated states x(·) and s(·), solution of
(1) with initial condition (x0, s0) = (x(t0), s(t0)). Then, the PMP states that there exist adjoint
states ps, px : [t0, T ]→ R satisfying, for almost every t ∈ [t0, T ], the adjoint equations

ṗx = Dpx − µ(s)(1 + px − ps), ṗs = Dps − µ′(s)x(1 + px − ps), (5)
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the transversality condition px(T ) = ps(T ) = 0 and the maximum condition, for almost every
t ∈ [t0, T ],

H(x(t), s(t), px(t), ps(t), D(t)) = max
d∈[0,Dmax]

H(x(t), s(t), px(t), ps(t), d). (6)

In addition, since the Hamiltonian does not depend explicitly on time, it is constant, which means
that for some c = c(t0, x0, s0) ∈ R we have

H(x(t), s(t), px(t), ps(t), D(t)) = c, a.e. on [t0, T ]. (7)

This, along with the transversality condition, yields c = µ(s(T ))x(T ) > 0.
Let us call extremal trajectory and extremal control to any trajectory (x(·), s(·), px(·), ps(·))

and control D(·) satisfying (1)-(5)-(6)-(7).
Since the Hamiltonian is affine in the control variable, an extremal control will depend on the

sign of the commutation function

φ(t) :=
∂

∂D
H(x(t), s(t), px(t), ps(t), D(t)) = ps(t)(sin − s(t))− px(t)x(t).

We then have that D(t) = 0 if φ(t) < 0 and D(t) = Dmax if φ(t) > 0, while no information can be
directly obtained from the PMP in the case φ(t) = 0.

We recall that a singular arc is a time interval during which we have φ(t) = 0 and since this
equation is valid along a singular arc, we also have d

dtφ(t) = 0. Therefore, during a singular arc
the state variables and the adjoint states satisfy the following equations

(sin − s)ps − xpx = 0, µ′(s)(sin − s)(1 + px − ps) = µ(s). (8)

With this, we can get an equation that the state variables satisfy during a singular arc, that
depends only on the constant value c of the Hamiltonian. Indeed, when the commutation function
vanishes, we have

c = µ(s)x(1 + px − ps)

and using (8) we get
cµ′(s)(sin − s) = µ(s)2x. (9)

We now define the following function, for h > 0 given

xh(s) := h
µ′(s)(sin − s)

µ(s)2
, 0 < s < sin.

Then, from (9), we have that the extremal state trajectories during the singular arc remain in the
graph of s 7→ xc(s). This means that if we knew the value of c then we would be able to construct
the singular arc and construct an admissible extremal control in feedback form for the optimal
control for problem (Pbio).

Remark 2. In the Monod and Haldane cases, we have that the curve described above has, re-
spectively, the form

xMh (s) :=
hK(sin − s)
µmaxs2

, xHh (s) :=
hK(sin − s)
µmaxs2

− h(sin − s)
µmaxKi

.

Remark 3. Note that in general the curve xh(s) → 0 when s → sin, and xh(s) → +∞ if s → 0

provided that µ′(s)
µ(s)2 → +∞ as s → 0; this is for instance the case of the Monod and Haldane

growth rate functions.
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3.2 Construction of Extremal Controls

To identify the extremal controls, we start by constructing explicitly a control that drives the
system to a singular arc associated with a given h > 0.

We first need to compute the controlDh that keeps the system on the singular curve {(xh(s), s) : 0 <
s < sin}. For this, we differentiate with respect to time the relation x(t) = xh(s(t)) to get

µ(s)xh −Dhxh =
(
Dh(sin − s)− µ(s)xh

)
∂sxh

and we then have the following expression for the control on the singular arc

Dh(s) =
µ(s)xh(s)(1 + ∂sxh(s))

xh(s) + (sin − s)∂sxh(s)
, (10)

with

∂sxh(s) = h

(
d

ds

(
µ′(s)

µ(s)2

)
(sin − s)−

µ′(s)

µ(s)2

)
, ∀s ∈]0, sin[. (11)

Our Standing assumptions, in particular the fact that d
ds

(
µ′(s)
µ(s)2

)
6= 0 implies that Dh(s) is well

defined (as a real valued function) for any s ∈]0, sin[.
The control Dh is not necessarily an admissible control for the problem at hand. For some

s ∈]0, sin[ it could happen that Dh(s) 6∈ [0, Dmax]. We assume that the singular control Dh(s) is
admissible only on a bounded interval Is where the bounds s0 and smax are defined as the solutions
of

Dh(s0) = 0 and Dh(smax) = Dmax. (12)

Remark 4. It is straightforward to see that the control on the singular curve associated with a
Monod growth rate function is given by

DM
h (s) =

hK(2sin − s)− µmaxs
3

2s(K + s)(sin − s)
, ∀s ∈]0, sin[.

It follows that DM
h (s)→ +∞ if s→ 0. However, the behavior of DM

h (s) when s→ sin depends on
the data of the problem. As a matter of fact

lim
s→sin

DM
h (s) =


+∞, if hK > µmaxs

2
in,

−∞, if hK < µmaxs
2
in,

2µmaxsin
K+sin

, if hK = µmaxs
2
in.

This means that, depending on the data of the problem, singular optimal trajectories may not
occur at all; for instance if DM

h (s) > Dmax for every s ∈]0, sin[. We plan to study this issue in
more details and for general growth rate functions elsewhere.

For (s, x) 6∈ Is×xh(Is), we extend the singular curve such that the control to stay on that curve
is equal to 0 or Dmax. For this we integrate the dynamics backwards with D = 0 (respectively
D = Dmax) starting from s0 (respectively smax). We therefore have the following singular curve :

Gh :=


(
xh(s), s

)
: s ∈ Is(

x(τ, xh(s0), 0), s(τ, s0, 0)
)

: τ 6 0(
x(τ, xh(smax), Dmax), s(τ, smax, Dmax)

)
: τ 6 0

 (13)

where we denote s(τ, smax, Dmax) the value at time τ of the solution with control Dmax starting
at smax at time τ = 0 and similarly for x(τ, xh(smax), Dmax), x(τ, xh(s0), 0) and x(τ, xh(s0), 0).

Note that withD = 0 we have ẋ+ṡ = 0 so that the corresponding trajectory {
(
x(τ, xh(s0), 0), s(τ, s0, 0)

)
:

τ 6 0} corresponds to the graph of the mapping s 7→ −s+ s0 + xh(s0). This is a decreasing func-
tion of s and with D = 0 the trajectories are such that s(t) is also decreasing and therefore
{
(
x(τ, xh(s0), 0), s(τ, s0, 0)

)
: τ 6 0} corresponds to the set{(

− s+ s0 + xh(s0), s
)

: s0 < s < sin,−s+ s0 + xh(s0) > 0
}
. (14)
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Figure 1: Example of trajectories obtained with feedback ψh with h = 2 and Monod growth
function (µmax = 1.2, K = 7.1), Dmax = 0.7 and sin = 10. The thicker lines correspond to the
singular curve Gh.

The singular curve Gh divides the state space in 2 sets on which the control must be either 0
or Dmax and we thus denote G0

h (respectively Gmax
h ) the set on which the control is 0 (respectively

Dmax).
To distinguish these sets we use again the fact with D = 0 the trajectories are such that

s(t) is decreasing and therefore either the trajectory reaches the singular curve or approaches
asymptotically the set {(x, 0) : x > 0}. This corresponds to determining whether there exists a
point (−s+x0 + s0, s) that belongs to Gh for s ∈]0, s0]. We then have the following expression for
G0
h

G0
h = {(x, s) : ∃ s̃ 6 s such that (−s̃+ x+ s, s̃) ∈ Gh}

and then Gmax
h := R2

+ \ (G0
h ∪Gh).

With this, we have the following family of feedback controls

ψh(x, s) =


0, if (x, s) ∈ G0

h,

Dmax, if (x, s) ∈ Gmax
h ,

Dh(s), if (x, s) ∈ Gh.
(15)

An example of the trajectoires obtained with this feedback is show in Figure 1. Note that,
because of the way the feedback control ψh has been constructed, solution of related the closed-
loop system do exist and are uniquely determined by the initial data.

3.3 Hamilton-Jacobi-Bellman Equation

In order to make the feedback law (15) a suitable candidate to optimal control, we now need to
identify the value of the Hamiltonian for a given initial condition and initial time, that is, we
need to calculate or approximate c. For this purpose, we use the Hamilton-Jacobi-Bellman (HJB)
equation, motivated by the fact that the cost associated with an optimal control, seen as a function
of the initial data, can be completely characterized by an appropriate HJB equation.

The value function for the production of biogas problem (without state constraints) is

V (t0, x0, s0) := sup
D(·)

{∫ T

t0

µ(s(t))x(t)dt :
ẋ = µ(s)x−Dx, x(t0) = x0,

ṡ = D(sin − s)− µ(s)x, s(t0) = s0

}

7



where the maximum is taken over all D : [t0, T ] → [0, Dmax] measurable. It is not difficult to see
that, thanks to the continuity of the trajectories of the control system (1) with respect the initial
data, the value function (t0, x0, s0) 7→ V (t0, x0, s0) is continuous. We have already discussed that
optimal controls do exist, and then the supremum is actually a maximum. Furthermore, because of
the invariance of the set [0,+∞[×[0, sin] with respect to the control system (1), this value function
agrees with the value function of the original problem (Pbio) with state constraints. Let us mention
that problems with state constraints are considerably harder to deal with and so the fact stated
above simplifies considerably the ensuing analysis (cf. [25]).

The HJB equation for the problem we are dealing with is

∂tu+ sup
D∈[0,Dmax]

H(x, s, ∂xu, ∂su,D) = 0, in ]−∞, T [×R2, (16)

where H is the Hamiltonian given in (4). Existence and uniqueness of solutions in the viscosity
sense for HJB equations is a well-known and studied fact, see for instance [26]. As a matter of fact,
the value function V is the unique viscosity solution to (16) that satisfies the terminal condition

u(T, x, s) = 0, ∀x, s ∈ R.

Furthermore, the HJB equation and the PMP are related via the following lemma, which links the
derivatives of the value function with the adjoint arcs.

Lemma 1 ([26, Theorem III.3.42]). Under the Standing Assumptions, a measurable functions
D : [t0, T ] → [0, Dmax] maximizes (Pbio), the production of biogas problem, if and only if the
maximum condition (6) holds and

(c, px(t), ps(t)) ∈ ∂+V (t, x(t), s(t)), a.e. on [t0, T ].

where c = H(x(t), s(t), px(t), ps(t), D(t)) for a.e. t ∈ [t0, T ] and

∂+u(z) :=

{
q ∈ Rn : lim sup

y→z

u(y)− u(z)− q>(y − z)
|y − z|

≤ 0

}
stands for the viscosity superdifferential of a function u : Rn → R.

The preceding lemma implies that whenever the value function is differentiable at (t0, x0, s0),
we should have that

(px(t0), ps(t0)) = ∇(x0,s0)V (t0, x0, s0) and c = −∂t0V (t0, x0, s0).

This fact is the key point we use for proposing an algorithm for solving the production of biogas
problem. Indeed, we have seen that the control that maximizes the Hamiltonian is ψh given by
(15), where h > 0 is the (constant) value of the Hamiltonian. The value of the Hamiltonian can
be obtained, for example, by evaluating at initial time:

h = H(x0, s0, px(t0), ps(t0), ψh(x0, s0))

From the previous section, we can deduce that ψc is the optimal control associated with optimal
singular trajectories (it is the unique candidate to be an extremal control in this case). Also, in
the appendix we show that ψc is the optimal control for a particular choice of initial conditions1.
If ψc is actually an optimal control, we can write the value function as the cost of the control ψc,
that is, V (t0, x0, s0) = J(t0, x0, s0, ψc). With Lemma 1 we then get

c = H(x0, s0,∇(x0,s0)J(t0, x0, s0, ψc), ψc(x0, s0))

1The approach we have taken provides a new proof for the optimality of the synthesis already known for the
reduced model, that is, the case where sin = x0 + s0. To show consistency of our approach, the details for this case
have been included in the appendix.
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Thus, using the HJB equation (16), we also have

c = −∂t0J(t0, x0, s0, ψc) (17)

In other words, c is a fixed point of the mapping h 7→ −∂t0J(t0, x0, s0, ψh). Hence, if we are able
to compute or approximate a fixed point of the mapping h 7→ −∂t0J(t0, x0, s0, ψh) we will be able
to reconstruct an optimal synthesis for the production of biogas problem. In the next section we
will present an algorithm, one of the main contribution of this work, based on a classical iterative
scheme for finding a fixed point of a function by repeatedly computing the image of the previous
iterate.

Let us point out that the HJB equation is valid regardless of the structure of the optimal
control. This means that this equation can be seen as a certificate of optimality for the feedback
control (15), in the sense that if the algorithm converges, then the proposed feedback control is a
good approximation of an optimal control, because the value function obtained with the feedback
ψc is an approximated solution to the HJB equation.

4 An algorithm for Maximizing the Production of Biogas

We present now a way to compute the extremal feedback control ψc by solving the fixed point
equation (17) numerically, in order to get the value of the Hamiltonian c for any initial condition
(x0, s0) ∈]0,+∞[×]0, sin[.

4.1 HJB Fixed Point Algorithm

The algorithm we propose is based on a classical iterative scheme for finding a fixed point of a
function by repeatedly computing the image of the previous iterate. More precisely, if the equation
to be solved is F (h) = h for some given mapping F : Rd → Rd, then starting from an initial guess
h0, the numerical scheme consists in computing hn+1 = F (hn) for n = 0, 1, 2, ... The algorithm is
then considered to have converged to a fixed point when the iterates stabilize to a given tolerance
ε, specifically when ||hn+1 − hn|| < ε.

In our case, the function for which we need to compute a fixed point, −∂t0J(t0, x0, s0, ψh), is
composed of a partial derivative and therefore to estimate it numericaly with a finite difference
approximation, we must work with a discrete range of initial times. For N ∈ N, we denote
{tk0}k=1,..,N a set of initial times with constant step ∆t0 = tk+1

0 − tk0 . We will therefore compute a
vector of fixed points c̃ = (ck) ∈ RN , where each ck will correspond to the value of the Hamiltonian
for the initial time tk0 .

To obtain hn+1 from the previous iterate hn = (hkn) we start by computing for each tk0 the tra-
jectories with the control ψhk

n
and the associated cost J(tk0 , x0, s0, ψhk

n
) with standard numerical

integration tools. For this the singular curve Ghk
n

must be first determined by solving equa-

tions (12) to establish the admissible range [smax, s0] and then integrating backwards to obtain(
x(·, xh(smax), Dmax), s(·, smax, Dmax)

)
.

We can then approximate the partial derivative of the cost as

∂t0J(tk0 , x0, s0, ψhk
n
) ≈

J(tk+1
0 , x0, s0, ψhk+1

n
)− J(tk0 , x0, s0, ψhk

n
)

∆t0

and if we set tN0 = T , we can use that J(T, x0, s0, ψh) = 0 to start the computations of these
partial derivatives, running through the range of initial times backwards beginning with tN−10 and
ending with t10.

In summary, for a fixed initial condition (x0, s0) ∈]0,+∞[×]0, sin[ and final time T , the algo-
rithm is shown below.

The main issue that can prevent the convergence of this algorithm is the accumulation of numer-
ical errors that can propagate through the finite difference approximation of ∂t0J(t0, x0, s0, ψh).
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Algorithm 1:

Input: N , MaxIterations, ε, h0

for n < MaxIterations do
for k = N − 1, ..., 1 do

Solve Dhk
n
(s0) = 0 and Dhk

max
(smax) = Dmax

Compute singular curve Ghk
n

Compute x(·, tk0 , x0, s0, ψhk
n
), s(·, tk0 , x0, s0, ψhk

n
) and J(tk0 , x0, s0, ψhk

n
)

hkn+1 ← −(J(tk+1
0 , x0, s0, ψhk+1

n
)− J(tk0 , x0, s0, ψhk

n
))/∆t0

if ||hn+1 − hn|| < ε then
return hn+1

Indeed, since we need J(tk+1
0 , x0, s0, ψhk+1

n
) to compute hkn+1, any errors made to get hk+1

n will

propagate to hkn+1 and all following values hjn+1 for j < k. Another consequence of this inter-
dependance is that to have hkn converge, hk+1

n must have already converged to a fixed point.
With these considerations in mind, it might seem unnecessary to compute the whole vector

hn+1 at every iteration and instead computing one fixed point at a time would appear to be
more efficient. An alternative algorithm would then consist in first iterating only on hN−1n until
convergence, which is possible because we only need J(T, x0, s0, ψh). Then using the obtained fixed
point to get J(tN−10 , x0, s0, ψcK−1) we could move on to computing cK−2. Repeating this process,
we can thus find all the fixed points ck until reaching the desired initial time. However, due to
the accumulation of errors, to get the convergence of hjn with a certain tolerance it is necessary to
get the convergence of hkn for j < k with a smaller tolerance. It is then complicated in practice to
determine an efficient stoping condition that guarantees the convergence of the last fixed point to
the desired tolerance.

On the other hand, by computing the whole vector hn+1 at every iteration, we can stop the
algorithm when the vector has converged for the maximum norm, that is, when maxk |hkn+1−hkn| <
ε. This guarantees that all components of the vector have converged to a desired tolerance. In
addition, the algorithm will keep iterating on the first components (hN−1n , hN−2n , ...), which converge
to the desired tolerance first, but as such it will keep on reducing the errors automatically to achieve
convergence of the last components (h1n, h

2
n, ...).

4.2 Initial Guess

Concerning the initial guess h0, recall that with the optimal control we have c = µ(s(T ))x(T ). In
most cases, we can broadly approximate this by taking hk0 = µ(s0)x0, for all k, and Algorithm 1
will converge.

However, in the most difficult cases, this is not sufficient and the accumulation of errors that
were previously mentioned can cause the algorithm to diverge. In fact, the only problems we
encountered were when the solution has a bang-bang-singular arc control with a switch from
D = 0 to D = Dmax before reaching the singular arc. To deal with these cases, we propose to first
to identify an extremal candidate by solving the fixed point equation

c = µ
(
s(T, t0, x0, s0, ψc)

)
x(T, t0, x0, s0, ψc)

Then using the obtained fixed point as an initial guess for Algorithm 1, we can check the optimality
of the associated extremal candidate.

In this case, as we do not need to compute the partial derivative of the cost with respect to
initial time we do not need to compute the fixed points for a range of initial times simultaneously.
Other than this, the algorithm to solve this equation is similar to the previous and is shown below
as Algorithm 2.
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Algorithm 2:

Input: MaxIterations, ε
h0 ← µ(s0)x0
for n < MaxIterations do

Solve Dhn
(s0) = 0 and Dhmax

(smax) = Dmax

Compute singular curve Ghn

Compute x(·, t0, x0, s0, ψhn), s(·, t0, x0, s0, ψhn)
hn+1 ← µ(s(T, t0, x0, s0, ψhn))x(T, t0, x0, s0, ψhn)
if |hn+1 − hn| < ε then

return hn+1
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Figure 2: Optimal trajectories in state space, for the Monod growth function (µmax = 1.2, K = 7.1)
with t0 = 0, T = 2.5, Dmax = 0.7 and sin = 10. The initial conditions are on the left (x0, s0) =
{(1, 3), (5, 1), (11, 2), (15.5, 4.5)} and on the right, (x0, s0) = {(1, 5.5), (2, 6.5), (5, 7), (10, 7)}.

5 Numerical Simulations

In this section, we illustrate the fixed point algorithm with the growth functions of Monod and
Haldane (2) with parameter values from [27].

In Figures 2 and 3, we show examples of optimal trajectories in state space for various initial
conditions but with the same initial and final times for each growth function. The solutions are
similar for both growth functions and there is both bang-singular arc and bang-bang-singular
arc optimal solutions. Note that, the singular curve varies for each initial condition but that all
trajectories that reach a singular arc finish with

s(T ) = s∗ = arg max
s∈[0,sin]

µ(s)(sin − s).

This is expected since c = µ(s(T ))x(T ) and using the expression for the singular curve (9) evaluated
at final time we get µ′(s(T ))(sin − s(T )) = µ(s(T )) and we recognize this as a necessary condition
for maximizing s 7→ µ(s)(sin − s).

Next, Figures 4, 5 and 6 each show optimal trajectories in state space for various initial times
but for fixed initial conditions and final time. We can see that the singular curve varies for
different initial times and the strategy can also change. For instance, in Figure 5, we can see that
for t0 = 1.875 the optimal trajectory corresponds to the control D = 0 and as the initial time
decreases, the optimal control switchs to a bang-bang-singular arc with first D = Dmax and then
D = 0 before reaching the singular arc.

Alongside each set of trajectories is also shown the corresponding values of the Hamiltonian
as a function of the initial time. Although the function t0 7→ c(t0) appears to be continuous it

11



0 50 100 150 200 250

x

0

10

20

30

40

50

60

70

80

90

100

s

x+ s = sin
s = s∗

D = 0
D = Dmax

D = Dh(s, x)

0 50 100 150 200

x

0

10

20

30

40

50

60

70

80

90

100

s

Figure 3: Optimal trajectories in state space, for the Haldane growth function (µmax = 0.74,
K = 9.28, Ki = 256) with t0 = 0, T = 2, Dmax = 1 and sin = 100. The initial condi-
tions are on the left (x0, s0) = {(5, 10), (40, 5), (110, 1), (230, 23)} and on the right, (x0, s0) =
{(15, 40), (20, 60), (50, 70), (140, 70)}.

Table 1: Performance comparaison with Bocop
(x0, s0) Biogas (ψc) Biogas (Bocop) Relative Difference
(3, 2) 3.2232 3.2235 9 · 10−5

(3, 6) 5.3285 5.3290 9 · 10−5

(1, 4.5) 1.8725 1.8729 2 · 10−4

(7, 8) 4.7904 4.7933 6 · 10−4

is clearly not continuously differentiable everywhere and the points at which this function is not
smooth correspond to initial times when there is a change in the type of control. For example, in
Figure 4 we can see on the state space trajectories graph that the optimal control for t0 = 0.5 is a
single bang D = 0 whereas for t0 = 0.25 it is bang-bang with a switch from D = 0 to D = Dmax

and on the graph of t0 7→ c(t0) there is indeed a point of irregularity near t0 = 0.4.
We illustrate the performance and convergence of Algorithm 1 and 2 in Figure 7 with graphs

of error as function of iterations : n 7→ |hkn+1 − hkn|. For Algorithm 1, we can see that for initial
times close to the final time, the convergence is very fast. However, as the horizon increases, not
only is convergence slower but there is a limit for the errors and eventually they stop decreasing.
This is likely due to the numerical errors when computing the finite difference approximation
of ∂t0J(t0, x0, s0, ψh) since this behaviour is not seen for Algorithm 2 which does not need the
computation of ∂t0J(t0, x0, s0, ψh). Notice however, that Algorithm 2 requires more iterations but
that the convergence accelerates at the end and reaches machine precision.

5.1 Comparison with Bocop

Finally, we compare our feedback to the control obtained with the open source toolbox for optimal
control Bocop [16, 28]. This package implements a direct method that approximates the optimal
control problem by a finite dimensional optimization problem using a time discretization.

Table 1 presents a performance comparison by looking at the biogas production of each control
and the relative difference. We can see that our feedback achieves nearly as much as Bocop and
that the difference is greater for the last 2 rows which correspond to trajectories that are bang-
bang-singular arc as in Figures 4 and 5.

Next, in Table 2 we show some computational times associated with our feedback (for various
error tolerances ε) and Bocop. We can see that the time necessary to compute our feedback is
similar to the time reported by Bocop, although it is important to note that Bocop only computes
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Table 2: Computation time (in seconds) comparison with Bocop
(x0, s0) CPU time (ψc) ε = 10−4 CPU time (ψc) ε = 10−6 CPU time (Bocop)
(3, 2) 2.32 3.60 2.06
(3, 6) 1.37 1.74 1.74
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Figure 4: Initial condition (x0, s0) = (7, 8), on the left, optimal trajectories in state space and on
the right, t0 7→ c(t0) value of the Hamiltonian as a function of initial time. Monod growth function
(µmax = 1.2, K = 7.1) with T = 1, Dmax = 0.7 and sin = 10.

the control for a single initial time, where as our algorithm for a range of initial times.

6 Conclusions

In this work, we have given an algorithm to compute an extremal control for the problem of
maximizing biogas production for the classical model of the chemostat for a fixed finite horizon.
The extremal control is obtained in state feedback form which has advantages in terms of robust-
ness with respect to pertubations on the initial data. In order to achieve this we first studied
necessary optimality conditions thereby obtaining an analytical expression of a family of extremal
feedbacks. Then we use a sufficient optimality condition (the HJB equation) to single out one
of the extremal feedbacks as a candidate to optimal control. The resulting algorithm is fast and
converges rapidly in practice. As pointed out before, the HJB equation can be seen as a test of
optimality for the proposed feedback control (15), in the sense that if the algorithm converges,
then the proposed feedback control is a good approximation of an optimal control. This fact has
also been corroborated with the numerical examples we have exhibited and the comparison done
with Bocop.

Let us finally mention that the technique we have introduced in this paper is well suited for the
one reaction model. Some extensions to more general cases, such as two reactions models, should
be possible. This is work in progress.
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Figure 7: Error as a function of iterations : n 7→ |hkn+1 − hkn| of Algorithm 1 on the left and of
Algorithm 2 on the right. Monod growth function (µmax = 1.2, K = 7.1) with T = 1, Dmax = 0.7
and sin = 10. On the left initial condition (x0, s0) = (2, 2) and on the left (x0, s0) = (7, 8)

Appendix: Reduced Model

In this final, part we provide a HJB proof for the optimal synthesis for the reduced model, that
is, the case where the initial data satisfy sin = x0 + s0. In particular, we show how the fixed
point characterization of the optimal control can be used analytically in a special case when the
dynamics reduces to a single equation. A well known property of the chemostat model is that the
set I := {(x, s) ∈ R : x+ s = sin} is invariant for the dynamics (1) and thus, for initial conditions
in I, the dynamics reduce to ṡ =

(
D−µ(s)

)
(sin− s). This special case was solved in [13], with the

following assumptions

(H1) The function s 7→ µ(s)(sin − s) has a unique maximizer s∗ on [0, sin].

(H2) The upper bound on the controls is such that Dmax > µ(s∗).

The optimal control is then D∗(s) = 0 if s > s∗, D∗(s) = Dmax if s < s∗ and D∗(s) = µ(s∗)
if s = s∗. Here, we will give another proof of the optimality of this control, by using the fixed
point characterization. First, we can identify the control D∗ as a control of the type (15) where
the singular arc is reduced to s = s∗. In other words, it corresponds to the control ψh∗ where h∗

satisfies equation (9) for the singular arc with s = s∗, which in this case is h∗µ′(s∗) = µ(s∗)2. Next,
since s∗ is a maximizer we have µ′(s∗)(sin − s∗)− µ(s∗) = 0 and therefore h∗ = µ(s∗)(sin − s∗).

To prove the optimality of ψh∗ , we must now show that h∗ is a fixed point of the mapping
h 7→ −∂t0J(t0, x0, s0, ψh). For this we first study the trajectories obtained with the feedback
control ψh∗ . We denote in the remainder of the section the right-hand side of the differential
equation for s(·) with control ψh∗ as f(s) := (ψh∗(s)− µ(s))(sin − s).

Notice that for s > s∗ we have f(s) = −µ(s)(sin − s) < 0 and for s < s∗ we have f(s) =
(Dmax−µ(s))(sin− s) > 0 from assumption (H2). Thus, s∗ is reachable from any initial condition
in I with control ψh∗ . We define the time t∗ when s∗ is reached, from a given initial condition
s0 ∈ [0, sin] and initial time t0 with control ψh∗ , that is, t∗ := inf {t > t0 : s(t, t0, s0, ψh∗) = s∗} .
Finally, note that with control D = µ(s∗) the point s = s∗ becomes a steady state. Therefore the
trajectories with control ψh∗ are

s(t) =

{
s(t, t0, s0, ψh∗), for t0 6 t 6 min(t∗, T ),

s∗, for min(t∗, T ) 6 t 6 T.

We can now compute ∂t0J(t0, x0, s0, ψh∗) and for this we need the following.

15



Lemma 2. For any initial condition (x0, s0) ∈ I, for the trajectories with control ψh∗ we have
∂t0s(t) = −f(s(t)) at time t ∈ [t0, t

∗].

Proof. We can write the differential equation satisfied by s(·) as s(t) = s0 +

∫ t

t0

f(s(τ)) dτ and

differentiating we get ∂t0s(t) = −f(s0)+

∫ t

t0

f ′(s(τ))∂t0s(τ) dτ. This is a linear differential equation

and the solution is ∂t0s(t) = −f(s0) exp

(∫ t

t0

f ′(s(τ)) dτ

)
. Now, as f(s(t)) does not change sign

for t ∈ [t0, t
∗) and since f(s(t)) is the derivative of s(t) we have

∫ t

t0

f ′(s(τ)) dτ =

∫ s(t)

s0

f ′(s)

f(s)
ds =

ln

(
f(s(t))

f(s0)

)
.

We are now in a position to prove the optimality of the feedback control proposed earlier.

Proposition 1. For any initial condition (x0, s0) ∈ I and for any initial time t0 such that s∗ is
reachable, that is when t∗ 6 T , we have ∂t0J(t0, x0, s0, ψh∗) = −µ(s∗)(sin − s∗), so that ψh∗ is the
optimal control.

Proof. We start by writing the cost as

J(t0, x0, s0, ψh∗) =

∫ t∗

t0

µ(s(t))(sin − s(t)) dt+ (T − t∗)µ(s∗)(sin − s∗)

differentiating with respect to t0 we get

∂t0J(t0, x0, s0, ψh∗) = −µ(s0)(sin − s0) +

∫ t∗

t0

∂s
(
µ(s(t))(sin − s(t))

)
∂t0s(t) dt.

Note that the terms with ∂t0t
∗ cancel out because s(t∗) = s∗. Now, using Lemma 2 we get

∂t0J(t0, x0, s0, ψh∗) = −µ(s0)(sin − s0)−
∫ t∗

t0

∂s
(
µ(s(t))(sin − s(t))

)
ṡ(t) dt

= −µ(s0)(sin − s0)−
∫ t∗

t0

d

dt

(
µ(s(t))(sin − s(t))

)
dt

= −µ(s∗)(sin − s∗).

We conclude by recalling that h∗ = µ(s∗)(sin − s∗) and therefore h∗ is a fixed point of h 7→
−∂t0J(t0, x0, s0, ψh).
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