Skip to main content
Log in

Optimality Conditions and Constraint Qualifications for Quasiconvex Programming

  • Regular Paper
  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In mathematical programming, various kinds of optimality conditions have been introduced. In the research of optimality conditions, some types of subdifferentials play an important role. Recently, by using Greenberg–Pierskalla subdifferential and Martínez-Legaz subdifferential, necessary and sufficient optimality conditions for quasiconvex programming have been introduced. On the other hand, constraint qualifications are essential elements for duality theory in mathematical programming. Over the last decade, necessary and sufficient constraint qualifications for duality theorems have been investigated extensively. Recently, by using the notion of generator, necessary and sufficient constraint qualifications for Lagrange-type duality theorems have been investigated. However, constraint qualifications for optimality conditions in terms of Greenberg–Pierskalla subdifferential and Martínez-Legaz subdifferential have not been investigated yet. In this paper, we study optimality conditions and constraint qualifications for quasiconvex programming. We introduce necessary and sufficient optimality conditions in terms of Greenberg–Pierskalla subdifferential, Martínez-Legaz subdifferential and generators. We investigate necessary and/or sufficient constraint qualifications for these optimality conditions. Additionally, we show some equivalence relations between duality results for convex and quasiconvex programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin, (2010)

  2. Burke, J.V., Ferris, M.C.: Characterization of solution sets of convex programs. Oper. Res. Lett. 10, 57–60 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J. Optim. 19, 163–187 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Mangasarian, O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21–26 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  6. Wu, Z.L., Wu, S.Y.: Characterizations of the solution sets of convex programs and variational inequality problems. J. Optim. Theory Appl. 130, 339–358 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Ivanov, V.I.: Characterizations of the solution sets of generalized convex minimization problems. Serdica Math. J. 29, 1–10 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Ivanov, V.I.: Characterizations of pseudoconvex functions and semistrictly quasiconvex ones. J. Global Optim. 57, 677–693 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Ivanov, V.I.: Optimality conditions and characterizations of the solution sets in generalized convex problems and variational inequalities. J. Optim. Theory Appl. 158, 65–84 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Son, T.Q., Kim, D.S.: A new approach to characterize the solution set of a pseudoconvex programming problem. J. Comput. Appl. Math. 261, 333–340 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Yang, X.M.: On characterizing the solution sets of pseudoinvex extremum problems. J. Optim. Theory Appl. 140, 537–542 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Zhao, K.Q., Yang, X.M.: Characterizations of the solution set for a class of nonsmooth optimization problems. Optim. Lett. 7, 685–694 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized concavity. Math. Concepts Methods Sci. Engrg. Plenum Press, New York (1988)

    MATH  Google Scholar 

  14. Ivanov, V.I.: Characterizations of solution sets of differentiable quasiconvex programming problems. J. Optim. Theory Appl. https://doi.org/10.1007/s10957-018-1379-1

    MathSciNet  MATH  Google Scholar 

  15. Linh, N.T.H., Penot, J.P.: Optimality conditions for quasiconvex programs. SIAM J. Optim. 17, 500–510 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Penot, J.P.: Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117, 627–636 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Suzuki, S., Kuroiwa, D.: Optimality conditions and the basic constraint qualification for quasiconvex programming. Nonlinear Anal. 74, 1279–1285 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Suzuki, S., Kuroiwa, D.: Subdifferential calculus for a quasiconvex function with generator. J. Math. Anal. Appl. 384, 677–682 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Suzuki, S., Kuroiwa, D.: Some constraint qualifications for quasiconvex vector-valued systems. J. Global Optim. 55, 539–548 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Suzuki, S., Kuroiwa, D.: Characterizations of the solution set for quasiconvex programming in terms of Greenberg-Pierskalla subdifferential. J. Global Optim. 62, 431–441 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Suzuki, S., Kuroiwa, D.: Characterizations of the solution set for non-essentially quasiconvex programming. Optim. Lett. 11, 1699–1712 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Suzuki, S.: Duality theorems for quasiconvex programming with a reverse quasiconvex constraint. Taiwanese J. Math. 21, 489–503 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Goberna, M.A., Jeyakumar, V., López, M.A.: Necessary and sufficient constraint qualifications for solvability of systems of infinite convex inequalities. Nonlinear Anal. 68, 1184–1194 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Jeyakumar, V.: Constraint qualifications characterizing Lagrangian duality in convex optimization. J. Optim. Theory Appl. 136, 31–41 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Jeyakumar, V., Dinh, N., Lee, G. M.: A new closed cone constraint qualification for convex optimization. Research Report AMR 04/8, Department of Applied Mathematics, University of New South Wales, (2004)

  26. Suzuki, S., Kuroiwa, D.: On set containment characterization and constraint qualification for quasiconvex programming. J. Optim. Theory Appl. 149, 554–563 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Suzuki, S., Kuroiwa, D.: Necessary and sufficient conditions for some constraint qualifications in quasiconvex programming. Nonlinear Anal. 75, 2851–2858 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Suzuki, S., Kuroiwa, D.: Necessary and sufficient constraint qualification for surrogate duality. J. Optim. Theory Appl. 152, 366–367 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Suzuki, S., Kuroiwa, D.: Generators and constraint qualifications for quasiconvex inequality systems. J. Nonlinear Convex Anal. 18, 2101–2121 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Suzuki, S., Kuroiwa, D.: Duality Theorems for Separable Convex Programming without Qualifications. J. Optim. Theory Appl. 172, 669–683 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Martínez-Legaz, J.E.: Quasiconvex duality theory by generalized conjugation methods. Optimization. 19, 603–652 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Penot, J.P., Volle, M.: On quasi-convex duality. Math. Oper. Res. 15, 597–625 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Crouzeix, J.P., Ferland, J.A.: Criteria for quasiconvexity and pseudoconvexity: relationships and comparisons. Math. Programming. 23, 193–205 (1982)

    MathSciNet  MATH  Google Scholar 

  34. Ivanov, V.I.: First order characterizations of pseudoconvex functions. Serdica Math. J. 27, 203–218 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Al-Homidan, S., Hadjisavvas, N., Shaalan, L.: Transformation of quasiconvex functions to eliminate local minima. J. Optim. Theory Appl. 177, 93–105 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Greenberg, H.J., Pierskalla, W.P.: Quasi-conjugate functions and surrogate duality. Cah. Cent. Étud. Rech. Opér. 15, 437–448 (1973)

    MathSciNet  MATH  Google Scholar 

  37. Daniilidis, A., Hadjisavvas, N., Martínez-Legaz, J.E.: An appropriate subdifferential for quasiconvex functions. SIAM J. Optim. 12, 407–420 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Gutiérrez Díez, J.M.: Infragradientes \(y\) Direcciones de Decrecimiento. Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid. 78, 523–532 (1984)

    MathSciNet  Google Scholar 

  39. Hu, Y., Yang, X., Sim, C.K.: Inexact subgradient methods for quasi-convex optimization problems. European J. Oper. Res. 240, 315–327 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Martínez-Legaz, J.E.: A generalized concept of conjugation. Lecture Notes in Pure and Appl. Math. 86, 45–59 (1983)

  41. Martínez-Legaz, J.E.: A new approach to symmetric quasiconvex conjugacy. Lecture Notes in Econom. and Math. Systems. 226, 42–48 (1984)

  42. Martínez-Legaz, J.E., Sach, P.H.: A new subdifferential in quasiconvex analysis. J. Convex Anal. 6, 1–11 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl. 49, 109–154 (1970)

    MathSciNet  MATH  Google Scholar 

  44. Penot, J.P.: What is quasiconvex analysis? Optimization. 47, 35–110 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Plastria, F.: Lower subdifferentiable functions and their minimization by cutting planes. J. Optim. Theory Appl. 46, 37–53 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to anonymous referees for many comments and suggestions which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Suzuki.

Additional information

Communicated by Fabián Flores-Bàzan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, S. Optimality Conditions and Constraint Qualifications for Quasiconvex Programming. J Optim Theory Appl 183, 963–976 (2019). https://doi.org/10.1007/s10957-019-01534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01534-7

Keywords

Mathematics Subject Classification

Navigation