Skip to main content
Log in

Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we aim at applying improvement sets and image space analysis to investigate scalarizations and optimality conditions of the constrained set-valued optimization problem. Firstly, we use the improvement set to introduce a new class of generalized convex set-valued maps. Secondly, under suitable assumptions, some scalarization results of the constrained set-valued optimization problem are obtained in the sense of (weak) optimal solution characterized by the improvement set. Finally, by considering two classes of nonlinear separation functions, we present the separation between two suitable sets in image space and derive some optimality conditions for the constrained set-valued optimization problem. It shows that the existence of a nonlinear separation is equivalent to a saddle point condition of the generalized Lagrangian set-valued functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chicco, M., Mignanego, F., Pusillo, L., Tijs, S.: Vector optimization problems via improvement sets. J. Optim. Theory Appl. 150, 516–529 (2011)

    Article  MathSciNet  Google Scholar 

  2. Gutiérrez, C., Jiménez, B., Novo, V.: Improvement sets and vector optimization. Eur. J. Oper. Res. 223, 304–311 (2012)

    Article  MathSciNet  Google Scholar 

  3. Gutiérrez, C., Huerga, L., Jiménez, B., Novo, V.: Approximate solutions of vector optimization problems via improvement sets in real linear spaces. J. Global Optim. 70, 875–901 (2018)

    Article  MathSciNet  Google Scholar 

  4. Zhao, K.Q., Yang, X.M.: \(E\)-Benson proper efficiency in vector optimization. Optimization 64, 739–752 (2015)

    Article  MathSciNet  Google Scholar 

  5. Zhao, K.Q., Yang, X.M., Peng, J.W.: Weak \(E\)-optimal solution in vector optimization. Taiwan. J. Math. 17, 1287–1302 (2013)

    Article  MathSciNet  Google Scholar 

  6. Zhao, K.Q., Xia, Y.M., Yang, X.M.: Nonlinear scalarization characterizations of \(E\)-efficiency in vector optimization. Taiwan. J. Math. 19, 455–466 (2015)

    Article  MathSciNet  Google Scholar 

  7. Lalitha, C.S., Chatterjee, P.: Stability and scalarization in vector optimization using improvement sets. J. Optim. Theory Appl. 166, 825–843 (2014)

    Article  MathSciNet  Google Scholar 

  8. Oppezzi, P., Rossi, A.: Improvement sets and convergence of optimal points. J. Optim. Theory Appl. 165, 405–419 (2015)

    Article  MathSciNet  Google Scholar 

  9. Oppezzi, P., Rossi, A.: Existence and convergence of optimal points with respect to improvement sets. SIAM J. Optim. 26, 1293–1311 (2016)

    Article  MathSciNet  Google Scholar 

  10. Zhou, Z.A., Yang, X.M., Zhao, K.Q.: \(E\)-super efficiency of set-valued optimization problems involving improvement sets. J. Ind. Manag. Optim. 12, 1031–1039 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chen, C.R., Zuo, X., Lu, F., Li, S.J.: Vector equilibrium problems under improvement sets and linear scalarization with stability applications. Optim. Methods Softw. 31, 1240–1257 (2016)

    Article  MathSciNet  Google Scholar 

  12. You, M.X., Li, S.J.: Nonlinear separation concerning \(E\)-optimal solution of constrained multi-objective optimization problems. Optim. Lett. 12, 123–136 (2018)

    Article  MathSciNet  Google Scholar 

  13. Chen, J.W., Huang, L., Li, S.J.: Separations and optimality of constrained multiobjective optimization via improvement sets. J. Optim. Theory Appl. 178, 794–823 (2018)

    Article  MathSciNet  Google Scholar 

  14. Xiao, Y.B., Sofonea, M.: Generalized penalty method for elliptic variational-hemivariational inequalities. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-019-09563-4

    Article  Google Scholar 

  15. Sofonea, M., Matei, A., Xiao, Y.B.: Optimal control for a class of mixed variational problems. Z. Angew. Math. Phys. (submitted)

  16. Sofonea, M., Xiao, Y.B., Couderc, M.: Optimization problems for a viscoelastic frictional contact problem with unilateral constraints. Nonlinear Anal. Real World Appl. 50, 86–103 (2019)

    Article  MathSciNet  Google Scholar 

  17. Xiao, Y.B., Sofonea, M.: On the optimal control of variational–hemivariational inequalities. J. Math. Anal. Appl. 475, 364–384 (2019)

    Article  MathSciNet  Google Scholar 

  18. Giannessi, F.: Constrained Optimization and Image Space Analysis. Springer, Berlin (2005)

    MATH  Google Scholar 

  19. Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proceedings of the Ninth International Mathematical Programming Symposium, Hungarian Academy of Sciences, Budapest, pp. 423–439 (1979)

  20. Li, S.J., Xu, Y.D., Zhu, S.K.: Nonlinear separation approach to constrained extremum problems. J. Optim. Theory Appl. 154, 842–856 (2012)

    Article  MathSciNet  Google Scholar 

  21. Xu, Y.D.: Nonlinear separation functions, optimality conditions and error bounds for Ky Fan quasi-inequalities. Optim. Lett. 10, 527–542 (2016)

    Article  MathSciNet  Google Scholar 

  22. Xu, Y.D., Li, S.J.: Optimality conditions for generalized Ky Fan quasi-inequalities with applications. J. Optim. Theory Appl. 157, 663–684 (2013)

    Article  MathSciNet  Google Scholar 

  23. You, M.X., Li, S.J.: Separation functions and optimality conditions in vector optimization. J. Optim. Theory Appl. 175, 527–544 (2017)

    Article  MathSciNet  Google Scholar 

  24. Chinaie, M., Zafarani, J.: A new approach to constrained optimization via image space analysis. Positivity 20, 99–114 (2016)

    Article  MathSciNet  Google Scholar 

  25. Giannessi, F., Pellegrini, L.: Image space analysis for vector optimization and variational inequalities: scalarization. In: Pardalos, P.M., Migdalas, A., Burkard, R.E. (eds.) Combinatorial and Global Optimization. Series in Applied Mathematics, vol. 14, pp. 97–110. World Scientific Publishing, River Edge (2002)

    Chapter  Google Scholar 

  26. Chinaie, M., Zafarani, J.: Nonlinear separation in the image space with applications to constrained optimization. Positivity 21, 1031–1047 (2017)

    Article  MathSciNet  Google Scholar 

  27. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. Part 1: sufficient optimality conditions. J. Optim. Theory Appl. 142, 147–163 (2009)

    Article  MathSciNet  Google Scholar 

  28. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. Part 2: necessary optimality conditions. J. Optim. Theory Appl. 142, 165–183 (2009)

    Article  MathSciNet  Google Scholar 

  29. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part I: image space analysis. J. Optim. Theory Appl. 161, 738–762 (2014)

    Article  MathSciNet  Google Scholar 

  30. Zhu, S.K., Li, S.J.: Unified duality theory for constrained extremum problems. Part II: special duality schemes. J. Optim. Theory Appl. 161, 763–782 (2014)

    Article  MathSciNet  Google Scholar 

  31. Li, G.H., Li, S.J.: Unified optimality conditions for set-valued optimization. J. Ind. Manag. Optim. 15, 1101–1116 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Chinaie, M., Zafarani, J.: Image space analysis and scalarization of multivalued optimization. J. Optim. Theory Appl. 142, 451–467 (2009)

    Article  MathSciNet  Google Scholar 

  33. Chinaie, M., Zafarani, J.: Image space analysis and scalarization for \(\varepsilon \)-optimization of multifunctions. J. Optim. Theory Appl. 157, 685–695 (2013)

    Article  MathSciNet  Google Scholar 

  34. Benoist, J., Popovici, N.: Characterizations of convex and quasiconvex set-valued maps. Math. Methods Oper. Res. 57, 427–435 (2003)

    Article  MathSciNet  Google Scholar 

  35. Sach, P.H.: Nearly subconvexlike set-valued maps and vector optimization problems. J. Optim. Theory Appl. 119, 335–356 (2003)

    Article  MathSciNet  Google Scholar 

  36. Jahn, J.: Mathematical Vector Optimization in Partially Order Linear Spaces. Peter Lang, Frankfurt (1986)

    MATH  Google Scholar 

  37. Zǎlinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  Google Scholar 

  38. Jabarootian, T., Zafarani, J.: Characterizations of preinvex and prequasiinvex set-valued maps. Taiwan. J. Math. 13, 871–898 (2009)

    Article  MathSciNet  Google Scholar 

  39. Rong, W.D., Wu, Y.N.: \(\varepsilon \)-weak minimal solutions of vector optimization problems with set-valued maps. J. Optim. Theory Appl. 106, 569–579 (2000)

    Article  MathSciNet  Google Scholar 

  40. Hiriart-Urruty, J.B.: Tangent cone, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)

    Article  MathSciNet  Google Scholar 

  41. Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (11431004, 11861002) and the Key Project of Chongqing Frontier and Applied Foundation Research (cstc2018jcyj-yszxX0009, cstc2017jcyjBX0055, cstc2015jcyjBX0113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiang Zhou.

Additional information

Jafar Zafarani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Chen, W. & Yang, X. Scalarizations and Optimality of Constrained Set-Valued Optimization Using Improvement Sets and Image Space Analysis. J Optim Theory Appl 183, 944–962 (2019). https://doi.org/10.1007/s10957-019-01554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01554-3

Keywords

Mathematics Subject Classification

Navigation