Skip to main content
Log in

Identification of Diffusion Properties of Polymer-Matrix Composite Materials with Complex Texture

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The paper deals with the identification of three-dimensional anisotropic diffusion properties of polymer-matrix composite materials with complex texture, based on the exploitation of short-time gravimetric tests. According to the Thermodynamics of Irreversible Processes, the diffusion behavior can be isotropic or orthotropic: for many materials, due to the complexity of the microscopic texture, the principal directions of orthotropy are not known a priori and enter the identification issue. After reviewing some identification methods (proper generalized decomposition) for isotropic and orthotropic material whose orthotropy directions are known, the paper proposes an experimental protocol and an identification algorithm for the full three-dimensional diffusion case, aiming at establishing the 3 coefficients of diffusion along the principal directions of orthotropy and the orientation of the orthotropic reference frame with respect to the sample frame. The identification of the physical properties is done through the minimization of a distance in the space of the physical parameters. The problem being non-convex, the numerical strategy used for the search of the global minimum is a particle swarm optimization, the code adaptive local evolution-particle swarm optimization with adaptive coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We have already mentioned that two are the possible cases for the behavior concerning the diffusion properties: isotropic or orthotropic. However, for the sake of shortness we denote here and in the following as anisotropic an orthotropic case when the orthotropy axes do not coincide with the reference frame. In such a case, as well known, the property is still orthotropic but the tensor representing it in the reference frame looks like that of a completely anisotropic case [11].

References

  1. Popineau, S., Rondeau-Mouro, C., Sulpice-Gaillet, C., Shanahan, M.: Free/bound water absorption in an epoxy adhesive. Polymer 46, 10733–40 (2005)

    Article  Google Scholar 

  2. Grace, L., Altan, M.: Characterization of anisotropic moisture absorption in polymeric composites using hindered diffusion model. Compos. Part A Appl. Sci. Manuf. 43(8), 1187–96 (2012)

    Article  Google Scholar 

  3. Weitsman, Y.: Fluid Effects in Polymers and Polymeric Composites. Springer, Berlin (2012)

    Book  Google Scholar 

  4. Pierron, F., Poirette, Y., Vautrin, A.: A novel procedure for identification of 3D moisture diffusion parameters on thick composites: theory, validation and experimental results. J. Compos. Mater. 36(19), 2219–43 (2002)

    Article  Google Scholar 

  5. Arnold, J., Alston, S., Korkees, F.: An assessment of methods to determine the directional moisture diffusion coefficients of composite materials. Compos. Part A Appl. Sci. Manuf. 55, 120–8 (2013)

    Article  Google Scholar 

  6. Beringhier, M., Gigliotti, M.: A novel methodology for the rapid identification of the water diffusion coefficients of composite materials. Compos. Part A Appl. Sci. Manuf. 68, 212–8 (2015)

    Article  Google Scholar 

  7. Beringhier, M., Simar, A., Gigliotti, M., Grandidier, J.C., Ammar-Khodja, I.: Identification of the orthotropic diffusion properties of RTM textile composite for aircraft applications. Compos. Struct. 137, 33–43 (2016)

    Article  Google Scholar 

  8. Shen, C., Springer, G.: Moisture absorption and desorption of composite materials. J. Compos. Mater. 10, 2–20 (1976)

    Article  Google Scholar 

  9. Arhonime, M.T., Neuman, S., Marom, G.: The anisotropic diffusion of water in kevlar-epoxy composites. J. Mater. Sci. 22, 2435–46 (1987)

    Article  Google Scholar 

  10. Beringhier, M., Djato, A., Maida, D., Gigliotti, M.: A novel protocol for rapid identification of anisotropic diffusion properties of polymer matrix composite materials with complex texture. Compos. Struct. 201, 1088–1096 (2018)

    Article  Google Scholar 

  11. Vannucci, P.: Anisotropic Elasticity. Springer, Singapore (2018)

    Book  Google Scholar 

  12. De Groot, D.R., Mazur, P.: Thermodynamics of Irreversible Processes. North-Holland, Amsterdam (1962)

    Google Scholar 

  13. Glansdorff, P., Prigogine, I.: Structure. Stability and Fluctuations. Wiley, New York (1971)

    MATH  Google Scholar 

  14. Muller, I.: Thermodynamik. Bertelsmann, Dusseldorf (1973)

    MATH  Google Scholar 

  15. Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  16. Powers, J.M.: On the necessity of positive semi-definite conductivity and Onsager reciprocity in modeling heat conduction in anisotropic media. J. Heat Transf. 126, 670–675 (2004)

    Article  Google Scholar 

  17. Nouy, A.: A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199, 1603–1626 (2010)

    Article  MathSciNet  Google Scholar 

  18. Gonzalez, D., Ammar, A., Chinesta, F., Cueto, E.: Recent advances on the use of separated representations. Int. J. Numer. Methods Eng. 81(5), 637–59 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Chinesta, F., Keunings, R., Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulations, pp. 71–88. Springer, Berlin (2014)

    Book  Google Scholar 

  20. Ghnatios, C., Chinesta, F., Cueto, E., Leygue, A., Poitou, A., Breitkopf, P., et al.: Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Compos. Part A Appl. Sci. Manuf. 42(9), 1169–78 (2011)

    Article  Google Scholar 

  21. Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1975)

    MATH  Google Scholar 

  22. Carslaw, H.S., Jaeger, J.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959)

    MATH  Google Scholar 

  23. Aktas, L., Hamidi, Y.K., Altan, M.C.: Combined edge and anisotropy effects on Fickian mass diffusion in polymer composites. J. Eng. Mater. Technol. 126, 427–35 (2004)

    Article  Google Scholar 

  24. Eberhart, R. C., Kennedy, J.: Particles swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ (1995)

  25. Vannucci, P.: ALE-PSO: an adaptive swarm algorithm to solve design problems of laminates. Algorithms 2, 710–734 (2009)

    Article  MathSciNet  Google Scholar 

  26. Shi, Y., Eberhart, R. C.: Parameter selection in particle swarm optimization. In: Proceedings of 7th Annual conference on Evolution Computation, New York, NY (1998)

  27. Ozcan, E., Mohan, C. K.: Particle swarm optimization: surfing the waves. In: Proceedings of IEEE Congress on Evolutionary Computation, Washington DC (1999)

  28. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a multi- dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  29. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inform. Proc. Lett. 85, 317–325 (2003)

    Article  MathSciNet  Google Scholar 

  30. Liu, H., Abraham, A., Clerc, M.: Chaotic dynamic characteristics in swarm intelligence. Appl. Soft Comput. 7, 1019–1026 (2007)

    Article  Google Scholar 

  31. Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102, 8–16 (2007)

    Article  MathSciNet  Google Scholar 

  32. Hu, X., Eberhart, R. C.: Adaptive particle swarm optimization: detection and response to dynamic systems. In: Proceedings of IEEE Congress on Evolutionary Computation, Hawaii (2002)

  33. Yasuda, K., Ide, A., Iwasaki, N.: Adaptive particle swarm optimization using velocity information of swarm. In: Proceedings of IEEE International Conference on Systems, Man & Cybernetics, The Hague, Netherlands (2004)

  34. Yamaguchi, T., Iwasaki, N., Yasuda, K.: Adaptive particle swarm optimization using information about global best. Electr. Eng. Jpn. 159, 270–276 (2007)

    Google Scholar 

  35. DeBao, C., ChunXia, Z.: Particle swarm optimization with adaptive population size and its application. Appl. Soft Comput. 9, 39–48 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work pertains to the French Government programs “Investissements d’Avenir” LABEX INTERACTIFS (Reference ANR-11-LABX-0017-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marianne Beringhier or Marco Gigliotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beringhier, M., Gigliotti, M. & Vannucci, P. Identification of Diffusion Properties of Polymer-Matrix Composite Materials with Complex Texture. J Optim Theory Appl 184, 188–209 (2020). https://doi.org/10.1007/s10957-019-01602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01602-y

Keywords

Mathematics Subject Classification

Navigation