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Abstract In this paper, we consider matrix optimization with the variable
as a matrix that is constrained into a low-rank spectral set, where the low-
rank spectral set is the intersection of a low-rank set and a spectral set. Three
typical spectral sets are considered, yielding three low-rank spectral sets. For
each low-rank spectral set, we first calculate the projection of a given point
onto this set and the formula of its normal cone, based on which the induced
stationary points of matrix optimization over low-rank spectral sets are then
investigated. Finally, we reveal the relationship between each stationary point
and each local/global minimizer.
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Local minimizer · Global minimizer.
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1 Introduction

In general, matrix optimization is an optimization problem , that involves ma-
trices as variables. In this paper, we are interested in low-rank constrained
matrix optimization, which aims at minimizing an objective function with a
low-rank matrix as the variable. In recent years, this problem has attracted
considerable attention in the fields of machine learning, signal and image pro-
cessing, control, statistics and so on (see, e.g., the related surveys of [1–5]).
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The low-rank set (see (2) for the definition) is disjunctive and noncon-
vex, making the low-rank constrained matrix optimization problem NP-hard
in general. Therefore, in recent decades, scholars have paid many efforts in
finding different techniques to process the low-rank sets. These techniques can
be summarized into three groups.

The first group consists in replacing the rank function by an approximate
function. These methods include convex approximation via the nuclear norm
[6,7], nonconvex approximation via the Schatten p-norm (0 < p < 1) [8–11]
and other approximation functions (see, e.g.,[12,13]).

The second group consists in searching an equivalent representation for
the low-rank set. In [14], Burer and Monteiro factorized a low-rank matrix as
the product of two much smaller matrices. This method has also been widely
studied recently, e.g., [15–19]. In [20], Gao penalized the sum of the n − r
smallest singular values of a matrix to force a solution to be approximately at
most rank r, and similar approaches can be found in [21–23]. In [24], Zhou,
Qi and Xiu penalized the distance between a matrix and the low-rank set,
achieving a very small distance such that the matrix was almost in the low-
rank set.

The third group consists in studying the low-rank constrained matrix
optimization problem directly along with the point of the tangent and nor-
mal cones to the low-rank set. In [25], Luke presented the expression of the
Mordukhovich normal cone (see [26, Defintion 6.4]) to the low-rank set and
applied this expression to derive the local linear convergence rate of the inex-
act alternating projection algorithm to solve the feasibility problem (namely,
finding the intersection of the low-rank set and a closed set). In [27], Cason,
Absil and Van Dooren presented expressions of the Fréchet normal cone to an
intersection of the low-rank set and a unit ball and proposed an iterative algo-
rithm that converges to an F -stationary point of the low-rank approximation
problem (see [27, Section 6]), where the Fréchet normal cone and F -stationary
point can be found in Section 4 and (42), respectively. In [28], Schneider and
Uschmajew developed a projected line-search method and established the con-
vergence analysis via the idea of the F -stationary point. In [29], Zhou et al.
developed a Riemannian rank-adaptive method for the low-rank constrained
matrix optimization problem with an extra matrix manifold constraint. In [30],
Li, Song and Xiu established the optimality conditions of low-rank constrained
matrix optimization by taking advantage of the tangent and normal cones.

Motivated by the above research, this paper focuses on a class of low-rank
constrained matrix optimization problems, that is, matrix optimization over
low-rank spectral sets (MOLS), which aims at minimizing a general contin-
uously differentiable objective function subject to the variable being in the
intersection of a low-rank set and a spectral set. Three typical spectral sets
are considered. The major contribution of this paper is to provide a compre-
hensive description of the stationary points and local and global minimizers
of the MOLS, which establishes the first-order optimality conditions for the
MOLS. Specifically, we first investigate the properties of the projection of a
given point onto each low-rank spectral set and then derive the closed formulas
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of their normal cones. These formulas enable us to define two types of station-
ary points, namely, two kinds of first-order optimality conditions. Finally, the
relationship between each stationary point and each global/local minimizer of
the MOLS is revealed under some mild conditions on the objective function.

The outline of this paper is as follows. Notation definitions and basic spec-
tral decomposition are presented in Section 2. The properties of the projections
onto low-rank spectral sets are given in Section 3. Sections 4 and 5 provide
closed formulas of the normal cones to low-rank spectral sets and some results
of the stationary points of the MOLS. We investigate the optimality conditions
associated with the stationary points and global/local minimizers in Section
6. Finally, conclusions are presented in the last section.

2 Preliminaries

In this paper, we focus on the following MOLS problem

min
X∈Sn

f(X), s.t. X ∈ Sn(r) ∩ C, (1)

where f : Sn → R is continuously differentiable with Sn denoting the space of
real symmetric matrices of order n equipped with the Frobenius inner product.
Here, we call Sn(r) ∩ C a low-rank spectral set (LSS), where

Sn(r) := {X ∈ Sn : rank(X) ≤ r} (2)

is the low-rank set with r ∈ {1, 2, · · · , n} and rank(X) being the rank of X,
and C is a spectral set in Sn (see Definition 2.1 below). Three typical choices
of interest in this paper are the closed unit Frobenius ball, the symmetric box
and the spectrahedron, i.e.,

C1 := {X ∈ Sn : ‖X‖F ≤ 1}, (3)

C2 := {X ∈ Sn : −tIn � X � tIn, t > 0} (4)

C3 := {X ∈ Sn : X � 0, Tr(X) = 1}, (5)

where ‖X‖F is the Frobenius norm and Tr(X) is the trace of X.
Our research on MOLS is motivated by a number of important applica-

tions in various areas. For example, the graph similarity problem in [31,27]
is a special case of C = C1. When C = C2 in (1), the application covers the
wireless sensor network localization problem [32,33] and the nearest low-rank
correlation matrix problem [34,35]. Moreover, the quantum-state tomography
problem [36,37] can be modeled by (1) with C = C3.

Some related fundamental notation used throughout the paper is defined
as follows. Let Rn be the Euclidean space equipped with the norm ‖ · ‖2.
Let Sn be the Euclidean space of the real symmetric matrices equipped with
inner product 〈X,Y 〉 = Tr(XY ) and the induced Frobenius norm ‖X‖F :=√

Tr(XX) for X,Y ∈ Sn. Let rank(X) denote the rank of X ∈ Sn. For a given
vector x ∈ Rn and an index set T ⊆ {1, · · · , n}, we denote xT = (xi)i∈T ∈ R|T |
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as the subvector of x corresponding to the indices in T , where |T | is the
cardinality of set T . Similarly, XT is the submatrix consisting of the columns of
X indexed by T . The complementary set of T is written as T⊥ = {1, · · · , n}\T .
Define a sparse set by Rn(r) := {x ∈ Rn : ‖x‖0 ≤ r}, where r ∈ {1, · · · , n}
and ‖ · ‖0 is the l0 norm counting the number of nonzero entries of x. For a
vector x ∈ Rn, let Diag(x) be an n× n diagonal matrix with diagonal entries
xi. Denote Sn+ as the space containing all the positive semidefinite matrices
and Sn− := −Sn+. The n-order identity matrix is written as In.

For any given matrix X ∈ Sn with s := rank(X) < n, denote

Λ(X) := Diag(λ(X)) and λ(X) := (λ1(X), · · · , λn(X))>

as the vector containing all the eigenvalues of X arranged in nonincreasing
order, i.e.,

λ1(X) ≥ · · · ≥ λn(X).

For a subset α ⊆ {1, · · · , n}, write

λα(X) := (λ(X))α = (λi(X))i∈α, Λα(X) := Diag(λα(X)).

Let Γ be the index set that contains all the indices of the nonzero elements of
λ(X). We then have the following eigenvalue decomposition (EVD)

X = UΛ(X)U> = [UΓ UΓ⊥ ]

[
ΛΓ (X)

0

]
[UΓ UΓ⊥ ]> = UΓΛΓ (X)U>Γ , (6)

where U := [UΓ UΓ⊥ ] ∈ On and UΓ ∈ Rn×s is the submatrix that contains all
columns indexed on Γ of U and On is the set of all n×n orthogonal matrices,
i.e.,

On = {A ∈ Rn×n : A>A = AA> = In}.

Hereafter, for simplicity, we write the block diagonal matrix asA1

. . .

An

 :=

A1 · · · 0
...

. . .
...

0 · · · An

 ,
where Ai is the matrix for i ∈ {1, · · · , n}.

Definition 2.1 [38, Proposittion 5.1] The set C in Sn is a spectral set if there
exists a symmetric set K 1.) in Rn such that

C := λ−1(K) = {X ∈ Sn : λ(X) ∈ K}.

1 A set K ∈ Rn is said to be symmetric if Px ∈ K for every x ∈ K and every P ∈ Pn,
where Pn denotes the set of all n× n permutation matrices ( For those matrices that have
only one nonzero entry in every row and column, which is 1, see [38]
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For example,

C1 = λ−1(K1), K1 := {x ∈ Rn : ‖x‖2 ≤ 1},
C2 = λ−1(K2), K2 := {x ∈ Rn : ‖x‖∞ ≤ t, t > 0},
C3 = λ−1(K3), K3 := {x ∈ Rn : ‖x‖1 = 1, xi ≥ 0, i = 1, . . . , n}.

In fact, since X = UΛ(X)U> = UDiag(λ(X))U>, ‖X‖F ≤ 1 is equivalent to
‖λ(X)‖2 ≤ 1, which means λ(X) ∈ K1. Moreover, it is easy to find that K1

is symmetric. Then, C1 is a spectral set, and C1 = λ−1(K1). Similar reasoning
can be applied to derive the last two equations. In addition, one can verify
that Sn(r) and Sn(r) ∩ Ci, i = 1, 2, 3 are also spectral sets, namely,

λ−1(Rn(r)) = Sn(r), λ−1(Rn(r) ∩ Ki) = Sn(r) ∩ Ci, i = 1, 2, 3. (7)

3 Projections

To study the projections onto Sn(r) ∩ C, we first introduce the metric projec-
tion, which is defined as

ΠΩ(X) ∈ ΠΩ(X) := argminY ∈Ω‖Y −X‖F .

Here, we denote ΠΩ(X) as the set containing all projections of X onto Ω,
and ΠΩ(X) is a particular projection in ΠΩ(X). ΠΩ(X) is a singleton if Ω is
a closed and convex set. The following result associated with projection onto
the low-rank set is borrowed from [20, Lemma 2.9]. Let

α := {i : |λi(X)| > λabsr (X)},
β := {i : |λi(X)| = λabsr (X)}, (8)

γ := {i : |λi(X)| < λabsr (X)},

where λabsr (·) is the rth largest (in absolute terms) entry of (|λ1(·)|, · · · , |λn(·)|).
Clearly, (8) implies |α| < r. Define

VQ := [Uα UβQ Uγ ] , (9)

Q :=

[
Q+

Q−

]
, Q+ ∈ O|β+|, Q− ∈ O|β−|, (10)

where

β+ :=
{
i : λi(X) = λabsr (X)

}
, β− :=

{
i : λi(X) = −λabsr (X)

}
.

It is easy to check that

Q ∈ O|β|, VQ ∈ On, Λβ(X) = QΛβ(X)Q>. (11)

We now rewrite the EVD (6) as

X = [Uα Uβ Uγ ]

Λα(X)
Λβ(X)

Λγ(X)

 [Uα Uβ Uγ ]
>
, (12)
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and the metric projection over the set Sn(r) is given by

ΠSn(r)(X) =
{
VQDiag(y)V >Q : any y ∈ Y and any Q satisfies (10)

}
, (13)

where

Y =

{
y ∈ Rn : yi =

{
λi(X), i ∈ α ∪ β0

0, otherwise
with any β0 ⊆ β, |β0| = r− |α|

}
.

In general, the set ΠSn(r)(X) is not singleton. The multiplicity of projection

occurs only at the index set of β. If rank(X) = s < r, then λabsr (X) = 0 and
|α| = s. In this case, ΠSn(r)(X) = {X}.

We aim at calculating projections over three low-rank spectral sets to
prepare for the first-order optimality conditions of problem (1) in Section 5.
Before the main results are presented, we introduce lemma [39, Fact 2.3], which
plays an important role in the subsequent proof.

Lemma 3.1 [39,Fact 2.3] Let K be a symmetric set. For any X ∈ Sn, the
projection of X onto the spectral set λ−1(K) is given by

Πλ−1(K)(X) =
{
UDiag(y)U> : y ∈ ΠK(λ(X)), U ∈ On(X)

}
, (14)

where the set On(X) := {U ∈ On : X = UDiag(λ(X))U>}.

This lemma is actually a generalization of [40,Corollary2.8] due to (7). For
simplicity, write ΠCΠSn(r)(X) = ΠC(ΠSn(r)(X)) and

ΠCΠSn(r)(X) :=
{
ΠCΠSn(r)(X) : ∀ ΠSn(r)(X) ∈ ΠSn(r)(X)

}
.

Theorem 3.1 Let X ∈ Sn have the EVD as in (12) and let VQ be given as
(9). For a set T , by defining ΞTC1(X) : Sn → Rn as

[
ΞTC1(X)

]
i

=

 c1λi(X), i ∈ T,

0, otherwise,
(15)

where c1 := min{1, c−1/2F } with cF := ‖λα(X)‖22 + (r − |α|)(λabsr (X))2, it
follows that

ΠSn(r)∩C1(X) = ΠC1ΠSn(r)(X) (16)

=

{
VQDiag

(
Ξ
α∪β1

C1 (X)
)
V >Q :

any Q satisfies (10),
any β1 ⊆ β, |β1| = r − |α|

}
. (17)

Proof. We first prove the second equation (17). For any Q satisfying (10) and
any β1 ⊆ β, |β1| = r − |α|, every element ΠSn(r)(X) in ΠSn(r)(X) from (13)
takes the form

ΠSn(r)(X) = VQDiag
(
[λα∪β1(X)> 0]>

)
V >Q .
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Since VQ ∈ On due to (11), β1 ⊆ β and the definition of β in (8), we have

‖ΠSn(r)(X)‖2F = ‖λα∪β1
(X)‖22

= ‖λα(X)‖22 + (r − |α|)(λabsr (X))2 = cF . (18)

Lemma 3.1 with λ−1(K) = C1 and X = ΠSn(r)(X) indicates

ΠC1(ΠSn(r)(X)) = VQDiag(x∗)V >Q ,

where

x∗ = argmin‖z‖2≤1 ‖z − [λα∪β1(X)> 0]>‖2
(18)
= Ξ

α∪β1

C1 (X),

which verifies (17). Next, we prove (16) by proving two parts. In the first part,
ΠSn(r)∩C1(X) ⊆ ΠC1ΠSn(r)(X) is proven. In the second part, we show the
reverse inclusion.

Part 1. For any ΠSn(r)∩C1(X) ∈ ΠSn(r)∩C1(X), Lemma 3.1, in which
λ−1(K) = Sn(r) ∩ C1, indicates

ΠSn(r)∩C1(X) = UDiag(x∗)U>,

where x∗ is an optimal solution of

min {‖z − λ(X)‖2 : z ∈ K1 ∩ Rn(r)}. (19)

The above problem is equivalent to

min
z

{
‖zα∪β1

− λα∪β1
(X)‖2 :

‖zα∪β1
‖2 ≤ 1,

zi = 0, i /∈ α ∪ β1

}
(20)

for any β1 ⊆ β, |β1| = r− |α| owing to [41, Lemma 1], where α,β are defined
as in (8). Therefore, there exists one β′1 such that x∗ is an optimal solution
of (20) with β1 = β′1. For such β′1, by (13) with Q = I, there must be one
ΠSn(r)(X) satisfying

ΠSn(r)(X) = UDiag([λα∪β′1(X)> 0]>)U>,

which again with Lemma 3.1 with λ−1(K) = C1 and X = ΠSn(r)(X) implies

ΠC1ΠSn(r)(X) = UDiag(x∗S)U>,

where x∗S is an optimal solution of

min
z

{
‖z − [λα∪β′1(X)> 0]>‖2 : ‖z‖2 ≤ 1

}
.

The solution of the above problem is actually the same as (20) with β1 = β′1.
Then, x∗ = x∗S , which suffices to show that ΠSn(r)∩C1(X) ⊆ ΠC1ΠSn(r)(X).
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Part 2. To show ΠSn(r)∩C1(X) ⊇ ΠC1ΠSn(r)(X), we first specify a mini-
mizer Y ∗ ∈ argminY ∈Sn(r)∩C1‖Y −X‖

2
F = ΠSn(r)∩C1(X) and then prove that

for each X∗ ∈ ΠC1ΠSn(r)(X), it follows that

X∗ ∈ Sn(r) ∩ C1, ‖X −X∗‖F = ‖X − Y ∗‖F .

Thus, X∗ ∈ ΠSn(r)∩C1(X). From the proof of Part 1, we can see that for the
above, given β′1,

Y ∗ := U

 c1Λα(X)
c1Λβ′1(X)

0

U> ∈ ΠC1ΠSn(r)(X)

also satisfies Y ∗ ∈ ΠSn(r)∩C1(X). So the optimal objective function value is

f∗ = min
Y ∈Sn(r)∩C1

‖Y −X‖2F = ‖Y ∗ −X‖2F

= (c1 − 1)2‖Λα∪β′1(X)‖2F + ‖Λ(β\β′1)∪γ(X)‖2F
= (c1 − 1)2‖λα∪β′1(X)‖22 + ‖λ(β\β′1)∪γ(X)‖22

(18),(8)
= (c1 − 1)2cF + [|β| − (r − |α|)](λabsr (X))2 + ‖λγ(X)‖2F .

Then, for any X∗ ∈ ΠC1ΠSn(r)(X), it takes the form in (17), namely,

X∗ = U


c1Λα(X)

Q

[
c1Λβ1

(X)
0

]
Q>

0

U>.
In addition,

Λβ(X)
(11)
= QΛβ(X)Q> = Q

[
Λβ1(X)

Λβ\β1
(X)

]
Q>,

resulting in

X = U


Λα(X)

Q

[
Λβ1

(X)
Λβ\β1

(X)

]
Q>

Λγ(X)

U>.
Now, above facts allow us to derive the following chain of equations

‖X∗ −X‖2F = (c1 − 1)2‖Λα∪β1
(X)‖2F + ‖Λ(β\β1)∪γ(X)‖2F

= (c1 − 1)2‖λα∪β1
(X)‖22 + ‖λ(β\β1)∪γ(X)‖22

(18),(8)
= (c1 − 1)2cF + [|β| − (r − |α|)](λabsr (X))2 + ‖λγ(X)‖2F
= f∗.

Furthermore, clearly, X∗ ∈ Sn(r) ∩ C1. Therefore, X∗ ∈ ΠSn(r)∩C1(X), which
implies ΠSn(r)∩C1(X) ⊇ ΠC1ΠSn(r)(X). ut
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Theorem 3.2 Let X ∈ Sn have the same EVD as in (12) and let VQ be given
as in (9). For a set T , by defining ΞTC2(X) : Sn → Rn as

[
ΞTC2(X)

]
i

=

 sign(λi(X)) min{|λi(X)|, t}, i ∈ T,

0, otherwise,
(21)

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and sign(x) = 0 otherwise,
it follows that

ΠSn(r)∩C2(X) = ΠC2ΠSn(r)(X) (22)

=

{
VQDiag

(
Ξ
α∪β2

C2 (X)
)
V >Q :

any Q satisfies (10),
any β2 ⊆ β, |β2| = r − |α|

}
. (23)

Proof. We first prove the second equation (23). For any Q satisfying (10) and
any β2 ⊆ β, |β2| = r − |α|, every element ΠSn(r)(X) in ΠSn(r)(X) from (13)
takes the form

ΠSn(r)(X) = VQDiag
(
[λα∪β2(X)> 0]>

)
V >Q .

Since VQ ∈ On, Lemma 3.1 with λ−1(K) = C2 and X = ΠSn(r)(X) indicates

ΠC2(ΠSn(r)(X)) = VQDiag(x∗)V >Q ,

where

x∗ = argmin‖z‖∞≤t ‖z − [λα∪β2
(X)> 0]>‖2 = Ξ

α∪β2

C2 (X),

yielding (23). The proof of (22) is similar to that of Theorem 3.1 and is thus
omitted here. ut

Note that ΠSn(r)(X) keeps the r-largest absolute eigenvalues of X. Now, we
consider ΠSn(r)∩C3(X). Let ΠLr

(X) be the operator that keeps the r-largest
(not in absolute terms) eigenvalues of X and sets the remaining n− s to zero,
and let ΠLr

(X) be the set covering all ΠLr
(X). To derive ΠLr

(X), we need
the following notation similar to (8)-(10).

a := {i : λi(X) > λr(X)}, (24)

b := {i : λi(X) = λr(X)}, (25)

c := {i : λi(X) < λr(X)}, (26)

WP := [Ua UbP Uc] ,where P ∈ O|b|. (27)

It is easy to check that

WP ∈ On, Λb(X) = PΛb(X)P>. (28)

Similarly, we now rewrite the EVD (6) as

X = [Ua Ub Uc]

Λa(X)
Λb(X)

Λc(X)

 [Ua Ub Uc]
>

(29)
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and then ΠLr (X) is given by

ΠLr
(X) =

{
WPDiag(y)W>P : any y ∈ Y and any P ∈ O|b|

}
, (30)

where

Y =

{
y ∈ Rn : yi =

{
λi(X), i ∈ a ∪ b0

0, otherwise
with any b0 ⊆ b, |b0| = r − |a|

}
.

Theorem 3.3 Let X ∈ Sn have the same EVD as in (29) and let WP be given
as in (27). For a set T , by defining ΞTC3(X) : Sn → Rn as

[
ΞTC3(X)

]
i

=

{
max

{
λi(X)− 1

% (
∑%
j=1 λj(X)− 1), 0

}
, i ∈ T,

0, otherwise,
(31)

where % := max{j : λj(X) > 1
j (
∑j
i=1 λi(X)− 1)}, it follows that

ΠSn(r)∩C3(X) = ΠC3ΠLr
(X) (32)

=

{
WPDiag

(
Ξa∪b3C3 (X)

)
W>P :

any P ∈ O|b|,
any b3 ⊆ b, |b3| = r − |a|

}
. (33)

Proof. We first prove the second equation (33). For any P ∈ O|b| and any
b3 ⊆ b, |b3| = r − |a|, every element ΠLr (X) in ΠLr (X) from (30) satisfies

ΠLr
(X) = WPDiag

(
[λa∪b3(X)> 0]>

)
W>P .

Since WP ∈ On, Lemma 3.1 with λ−1(K) = C3 and X = ΠLn(r)(X) indicates

ΠC3(ΠLr
(X)) = WPDiag(x∗)W>P ,

where

x∗ = argminz∈K3
‖z − [λa∪b3(X)> 0]>‖2 = Ξa∪b3C3 (X),

where the last equality follows [41, Lemma 3](Page 16), which verifies (33).
Next, we prove (32) through proving two parts. In the first part, we prove
that ΠSn(r)∩C3(X) ⊆ ΠC3ΠLr (X). In the second part, we show the reverse
inclusion.

Part 1. For any ΠSn(r)∩C3(X) ∈ ΠSn(r)∩C3(X), Lemma 3.1, in which
λ−1(K) = Sn(r) ∩ C3, indicates

ΠSn(r)∩C3(X) = UDiag(x∗)U
>
,

where U = [Ua Ub Uc] and x∗ is an optimal solution of

min {‖z − λ(X)‖2 : z ∈ K3 ∩ Rn(r)}. (34)

The above problem is equivalent to

min
z

{
‖za∪b3 − λa∪b3(X)‖2 :

‖za∪b3‖1 = 1, za∪b3 ≥ 0,
zi = 0, i /∈ a ∪ b3

}
(35)
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for any b3 ⊆ b, |b3| = r− |a| owing to [41, Algorithm 1] (Page 17), where a, b
are defined as in (24-25). The rest of the proof of Part 1 to verify

ΠSn(r)∩C3(X) ⊆ ΠC3ΠLr
(X)

is similar to that of Part 1 in Theorem 3.1.

Part 2. The idea is the same as that used to prove Part 2 in Theorem
3.1. From the proof in Part 1, we can see that for a given b′3 ⊆ b, |b′3| = r−|a|,

Y ∗ := U

[
Diag((λi(X))i∈a∪b′3)

0

]
U
> ∈ ΠC3ΠLr (X)

is also Y ∗ ∈ ΠSn(r)∩C3(X), where U = [Ua Ub Uc] and

λi(X) := max
{
λi(X)− 1

%
(

%∑
j=1

λj(X)− 1), 0
}
, i ∈ a ∪ b′3.

In addition,

X
(29)
= U

Λa(X)
Λb(X)

Λc(X)

U>.
Therefore, the optimal objective function value is

f∗ = min
Y ∈Sn(r)∩C3

‖Y −X‖2F = ‖Y ∗ −X‖2F

= ‖λa(X)− λa(X)‖22 + ‖λb′3(X)− λb′3(X)‖22 + ‖λb\b′3(X)‖22 + ‖λc(X)‖22.

Then, from (33), any X∗ ∈ ΠC3ΠLr
(X) can be expressed as

X∗ = U


Diag(λa(X))

P

[
Diag(λb3(X))

0

]
P>

0

U>.
Moreover,

Λb(X)
(28)
= PΛb(X)P> = P

[
Λb3(X)

Λb\b3(X)

]
P>,

resulting in

X = U


Λa(X)

P

[
Λb3(X)

Λb\b3(X)

]
P>

Λγ(X)

U>.
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These facts suffice to show that

‖X∗ −X‖2F
= ‖λa(X)− λa(X)‖22 + ‖λb3(X)− λb3(X)‖22 + ‖λb\b3(X)‖22 + ‖λc(X)‖22
= ‖λa(X)− λa(X)‖22 + ‖λb′3(X)− λb′3(X)‖22 + ‖λb\b′3(X)‖22 + ‖λc(X)‖22
= f∗,

where the second equality is based on three facts: (i) b3 ⊆ b, b′3 ⊆ b, (ii)

λi(X) = λr(X), and (iii) λi(X) = max
{
λr(X)− 1

% (
∑%
j=1 λj(X)− 1), 0

}
for

any i ∈ b. Moreover, X∗ ∈ Sn(r) ∩ C3. Therefore, X∗ ∈ ΠSn(r)∩C3(X), which
implies ΠSn(r)∩C3(X) ⊇ ΠC3ΠLr (X). ut

4 Normal Cones

In this section, we provide a decomposition property of the Fréchet normal
cone to Sn(r) ∩ C to prepare for the optimality conditions of problem (1) in
Section 5. Let Ω be a closed and non-empty subset in Sn and X ∈ Ω. A matrix
Z is Fréchet normal (also called prenormal in [42]) to Ω at X provided that
for every ε > 0, there exists a θ > 0 such that

〈Z, Y −X〉 ≤ ε‖Y −X‖F , for all Y ∈ (X + θB) ∩Ω,

where B is a unit ball in Sn and 〈X,Y 〉 = Tr(XY ). Fréchet normal cone

NF
Ω(X) (also written as N̂Ω(X) in [26]) is the set containing all these matrices

Z. For any closed and convex set Ω and any X ∈ Ω, one has

NF
Ω(X) = Nconv

Ω (X),

where Nconv
Ω (X) is the convex normal cone in convex analysis, namely,

Nconv
Ω (X) = {W ∈ Sn : 〈W,Y −X〉 ≤ 0, ∀Y ∈ Ω}.

The indicator function of set Ω is given as δΩ(x) = 0 if x ∈ Ω and δΩ(x) = +∞
otherwise. Let bdΩ and intΩ stand for the boundary and interior of set Ω,
respectively.

A closed formula for the Fréchet normal cone to the set of low-rank (pos-
sibly rectangular) real matrices has been derived by [27,28]. This formula can
be directly applied to the space of a symmetric matrix.

Lemma 4.1 For X ∈ Sn(r) with the same EVD as in (6) and s := rank(X),
the Fréchet normal cone to Sn(r) at X is given by

NF
Sn(r)(X) =


{0}, s < r,{

[UΓ UΓ⊥ ]

[
0
D

]
[UΓ UΓ⊥ ]>

∣∣∣ D ∈ Sn−s
}
, s = r.
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The next results present the normal cones to sets C. We would like to define
some notation here. For X ∈ C with the EVD in (6) and letting s := rank(X),
we define two types of matrices. For Y ∈ Ss, Z ∈ Sn−s, define

MX(Y, Z) := [UΓ UΓ⊥ ]

[
Y
Z

]
[UΓ UΓ⊥ ]>. (36)

Particularly, for C2, let

η+ := {i : λi(X) = t}, η− := {i : λi(X) = −t},
η± := {i : 0 < |λi(X)| < t}, η= := {i : λi(X) = 0}. (37)

For A ∈ S|η+|, B ∈ S|η±|, C ∈ S|η−|, D ∈ S|η=|, define

NX(A,B,C,D) (38)

:= [Uη+Uη±Uη−Uη= ]


A
B
C
D

 [Uη+
Uη±Uη−Uη=

]>.

Clearly, one can check that if X ∈ C2, then

Γ = η+ ∪ η± ∪ η−, Γ⊥ = η=. (39)

As a closed and convex set, each Ki usually appears in the vector space. Its
normal cone has been given in [43, Examples 5.14 and 5.2.6] and [26, Example
6.10] and allows us to obtain the normal cone of Ci by the following lemma.

Lemma 4.2 [39, Fact 2.4] Let K ∈ Rn be a closed symmetric set. For any
X ∈ λ−1(K), the Fréchet normal cone to the spectral set λ−1(K) is given by

NF
λ−1(K)(X) = { UDiag(y)U> : y ∈ NF

K(λ(X)), U ∈ On(X)}. (40)

Proof. Since K is closed and symmetric, its indicator function δK is lower semi-
continuous and symmetric. Then, the result directly follows from [44, Theorem
4.2] in the sense of the Fréchet normal. ut

Proposition 4.1 (Normal cones to C) For X ∈ C with the EVD in (6) and
s := rank(X) = |Γ |, the normal cone to C at X is given as follows.

(i) If X ∈ intC1, then NF
C1(X) = {0}. If X ∈ bdC1, then

NF
C1(X) = {MX (ρΛΓ (X), 0) : ρ ≥ 0} .

(ii) If X ∈ intC2, then NF
C2(X) = {0}. If X ∈ bdC2, then

NF
C2(X) =

{
NX(A, 0, C, 0) : A ∈ S|η+|

+ , C ∈ S|η−|−

}
.
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(iii) If X ∈ C3, then

NF
C3(X) =

{
MX (ρIs, ρIn−s +D) : ρ ∈ R, D ∈ Sn−s−

}
.

Proof. (i) Let X ∈ C1. Then, from [43, Examples 5.14] and Lemma 4.2, the
normal cone to C1 at X is given by

NF
C1(X) =

{
{0}, for X ∈ intC1,

ρX, with ρ ≥ 0, for X ∈ bdC1.

This result, together with the EVD in (6), yields the conclusion immediately.
(ii) Let X ∈ C2. Clearly, Nconv

C2 (X) = {0} when X ∈ intC2. Consider the
case of X ∈ bdC2. Decompose

C2 = C12 × C22 × · · · × Cn2 ,

where each Ci2 := {X ∈ Sn : −t ≤ λi(X) ≤ t} is a closed interval. Then, by
[26, Example 6.10] and Lemma 4.2, the normal cone to C2 at X takes the
form

NF
C2(X) = NF

C12
(λ1(X))×NF

C22
(λ2(X))× · · · ×NF

Cn2 (λn(X)),

where

NF
Ci2

(λi(X)) =

cuiu>i : c

≥ 0, i ∈ η+
≤ 0, i ∈ η−
= 0, otherwise

 .

This result derives the conclusion immediately.
(iii) Let X ∈ C3. Clearly, C3 is the intersection of Sn+ and

∆ := {X ∈ Sn|Tr(X) = 1}.

Then, by [43, Proposition 5.3.1 and Remark 5.3.2], the normal cone to C3 at
X is given by

NF
C3(X) = NF

∆(X) + NF
Sn+(X)

= {ρIn : ρ ∈ R}+ {W ∈ Sn : tr(XW ) = 0,W ∈ Sn−}.

Since X has the same EVD as in (6), then

NF
Sn+(X) =

{
MX (0, D) : D ∈ Sn−

}
.

This result concludes the proof. ut
To end this section, we calculate the normal cone to Sn(r)∩C, which turns

out to be a summation of the normal cone to Sn(r) and the normal cone to C.

Theorem 4.1 Let X ∈ Sn(r) ∩ C. We have

NF
Sn(r)∩C(X) = NF

Sn(r)(X) + NF
C (X). (41)
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Proof. Since Rn(r) ∩ K is closed and symmetric and it is easy to verify that
Sn(r) ∩ C = λ−1(Rn(r) ∩ K), we have the following chain of equations

NF
Sn(r)∩C(X)

= NF
λ−1(Rn(r)∩K)(X)

Lemma4.2
= {UDiag(w)U> : w ∈ NF

Rn(r)∩K(λ(X)), U ∈ On(X)}

= {UDiag(w)U> : w ∈ NF
Rn(r)(λ(X)) +NF

K (λ(X)), U ∈ On(X)}

= {UDiag(w)U> : w ∈ NF
Rn(r)(λ(X)), U ∈ On(X)}

+ {UDiag(w)U> : w ∈ NF
K(λ(X)), U ∈ On(X)}

Lemma4.2
= NF

λ−1(Rn(r))(X) + NF
λ−1(K)(X)

= NF
Sn(r)(X) + NF

C (X),

where the third equation holds from NF
Rn(r)∩K(x) = NF

Rn(r)(x) + NF
K(x) for

x ∈ Rn(r)∩K by [45, Corollary 4.1] or [46, Corollary 2.9] for K = K1,K2,K3.
The proof is thus complete. ut
Remark 4.1 It is worth mentioning that (41) may not hold for other general
sets C. To derive it, some basic qualification conditions [26, Theorem 6.42] are
necessary. However, these qualification conditions are naturally satisfied when
C is one of C1, C2 and C3. Therefore, (41) allows us to calculate NF

Sn(r)∩C(X)
easily through Lemma 4.1 and Proposition 4.1.

5 Stationary Points

In this section, we investigate the first-order optimality conditions of problem
(1), starting with the definitions of two types of stationary points. The α-
stationary point defined below is actually a generalization of the concept of
the L-stationary point for the sparsity constrained optimization of Beck and
Eldar in [47, Definition 2.3].

Definition 5.1 Let X ∈ Sn(r) ∩ C be a given feasible point of (1).

(i) We say X is an F -stationary point of (1) if

0 ∈ ∇f(X) +NF
Sn(r)(X) +NF

C (X). (42)

(ii) We say X is an α-stationary point of (1) if, for a given α > 0,

X ∈ ΠSn(r)∩C (X − α∇f(X)) . (43)

Using the formulas of the Fréchet normal cone in Section 4 and the properties of
projection onto Sn(r)∩C in Section 3, we present more explicit representations
of an F -stationary point and an α-stationary point.
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Theorem 5.1 For any X ∈ Sn(r)∩C1 with the same EVD as in (6), denote
s := rank(X) = |Γ | and

ΩC1(X) :=

{
{0}, X ∈ intC1,
{ρ ∈ R | ρ ≤ 0}, X ∈ bdC1.

We have the following results.

(i) X is an F -stationary point of (1) if and only if

∇f(X) ∈


{ρX : ρ ∈ ΩC1(X)} , s < r,{
MX (ρΛΓ (X), D) :

ρ ∈ ΩC1(X)
D ∈ Sn−s

}
, s = r.

(44)

(ii) X is an α-stationary point of (1) for a given α > 0 if and only if

∇f(X) ∈
{
MX (ρΛΓ (X), D) :

ρ ∈ ΩC1(X), D ∈ Sn−s
with λD ≤

(
1
α − ρ

)
λabsr (X)

}
, (45)

where λD := maxi∈{1,··· ,n−s} |λi(D)|.

Proof. (i) By Lemma 4.1, Proposition 4.1 (i) and the sum rule of Theorem
4.1, we can obtain the formula of NF

Sn(r)∩C1(X), which allows us to reach the
conclusion.

(ii) Sketch of the proof: For the ‘If ’ part, we need to show that

∇f(X) ∈ Θ1 =⇒ X ∈ ΠSn(r)∩C1 (X − α∇f(X)) , ∀X ∈ Sn(r) ∩ C1,

where Θ1 is the set of the right hand side of (45). We prove this part by
considering two cases: X ∈ bdC1 and X ∈ intC1. For the ‘Only if ’ part, we
need to show

X ∈ ΠSn(r)∩C1 (X − α∇f(X)) =⇒ ∇f(X) ∈ Θ1.

To do this, we first prove that X and X ′ := X−α∇f(X) have a decomposition
similar to

X = U

[
ΛΓ (X)

0

]
U>, X ′ = U

[
Λ1

Λ2

]
U>,

where Λ1, Λ2 will be specified later, which suffices to show that

∇f(X) =MX (ρΛΓ (X), D) .

We then show ρ ≤ 0 and λD ≤ (1/α− ρ)λabsr (X) by means of the two cases of
X ∈ bdC1 and X ∈ intC1.
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‘If ’ part: Case 1) Suppose X ∈ bdC1. It follows from ∇f(X) ∈ Θ1 that

ΠSn(r)∩C1 (X − α∇f(X))

= ΠSn(r)∩C1 (MX (ΛΓ (X), 0)− αMX (ρΛΓ (X), D))

= ΠSn(r)∩C1 (MX ((1− αρ)ΛΓ (X),−αD))

(16)
= ΠC1ΠSn(r) (MX ((1− αρ)ΛΓ (X),−αD))

= ΠC1 (MX ((1− αρ)ΛΓ (X), 0))

= ΠC1 ((1− αρ)X)

= X,

where the fourth equality holds because

max
i∈{1,··· ,n−s}

|λi(−αD)| = α max
i∈{1,··· ,n−s}

|λi(D)|

= αλD ≤ (1− αρ)λabsr (X)

=

{
0, r < s,
(1− αρ) mini∈Γ |λi(X)|, r = s,

which implies X ∈ ΠSn(r)∩C1 (X − α∇f(X)). Case 2) Suppose X ∈ intC1.
This is a special case of Case 1) with ρ = 0.
‘Only if ’ part: For any X ∈ ΠSn(r)∩C1 (X − α∇f(X)) , let

X ′ := X − α∇f(X) = U ′Diag(λ(X ′))(U ′)>.

Let α′,β′,γ′ be defined as in (8) and Q′ be defined as in (10), in which X is
replaced by X ′. It follows from (17) that for any X ∈ ΠSn(r)∩C1 (X ′) , there is
a Q′ satisfying (10) and a β′1 ⊆ β′, |β′1| = r − |α′| such that

X = [U ′α′ U
′
β′Q

′ U ′γ′ ]

[
c′Λα′∪β′1(X ′)

0

]
[U ′α′ U

′
β′Q

′ U ′γ′ ]
>, (46)

where

c′ := min{1, (‖λα′(X ′)‖22 + (r − |α′|)(λabsr (X ′))2)−1/2}
= min{1, 1/φ}, where φ := ‖Λα′∪β′1(X ′)‖F . (47)

Recall that X has the same EVD as in (6), i.e.,

X = U

[
ΛΓ (X)

0

]
U>.

If rank(X) = s < r, we have rank(X ′) < r, which implies

|α′| = s, γ′ = ∅, Λβ′(X
′) = 0. (48)

Thus, by denoting

T :=

{
α′, if s < r,

α′ ∪ β′1, if s = r,
(49)
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we can rewrite X in (46) as

X = [U ′α′ U
′
β′Q

′ U ′γ′ ]

[
c′ΛT (X ′)

0

]
[U ′α′ U

′
β′Q

′ U ′γ′ ]
>. (50)

By the uniqueness theorem of eigenvalue decomposition in [48, Corollary
4.4.4], the entries in ΛΓ (X) and c′ΛT (X ′) have the same values but different
indices, and the columns of U and [U ′α′ U

′
β′Q

′ U ′γ′ ] are the same but with
different locations. Without loss of generality, we let

Γ = T, ΛΓ (X) = c′ΛT (X ′), U = [U ′α′ U
′
β′Q

′ U ′γ′ ]. (51)

Then, we can rewrite X ′ as

X ′ = U ′

Λα′(X ′) Λβ′(X ′)
Λγ′(X

′)

 (U ′)>

(11)
= U ′

Λα′(X ′) Q′Λβ′(X ′)(Q′)>
Λγ′(X

′)

 (U ′)>

(51)
= U

Λα′(X ′) Λβ′(X ′)
Λγ′(X

′)

U>
(51)
= U

[
ΛΓ (X ′)

ΛΓ⊥(X ′)

]
U>

(51)
= U

[
ΛΓ (X)/c′

ΛΓ⊥(X ′)

]
U>,

which in combination with (50) yields

∇f(X) =
X − (X − α∇f(X))

α
=
X −X ′

α
= U

[
ρΛΓ (X)

D

]
U>, (52)

where

ρ :=
1− 1/c′

α
, D := −ΛΓ⊥(X ′)

α
. (53)

This result proves ∇f(X) =MX (ρΛΓ (X), D).
We now need to show that ρ ≤ 0 and λD ≤ (1/α−ρ)λabsr (X), before which

we require several facts. If s < r, then Λβ′1(X ′) = 0 due to (48) and β′1 ⊆ β′,
which results in

‖ΛT (X ′)‖F
(49)
= ‖Λα′(X ′)‖F = ‖Λα′∪β′1(X ′)‖F

(47)
= φ.

When s = r, T = α′ ∪ β′1 from (49). Overall, we have

‖ΛT (X ′)‖F = φ,

which results in our first fact,

‖ΛΓ (X)‖F
(51)
= c′‖ΛT (X ′)‖F = c′φ

(47)
=

{
φ < 1, if φ < 1,

1, if φ ≥ 1.
(54)
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The second fact is that

Γ =

{
α′, r < s,
α′ ∪ β′1, r = s,

, Γ⊥ =

{
β′, r < s,
(β′\β′1) ∪ γ′, r = s,

(55)

and thus, according to the definitions of α′,β′1,γ
′, we obtain the third fact

min
i∈Γ
|λi(X ′)| ≥ max

i∈Γ⊥
|λi(X ′)|. (56)

Case 1) Suppose X ∈ bdC1. Then, ‖ΛΓ (X)‖F = 1, which indicates φ ≥ 1 by
(54) and hence c′ ≤ 1 by (47). Therefore, ρ ≤ 0 by (53). If s = r, the following
chain of inequalities holds

(1/α− ρ)λabsr (X)
s=r
= (1/α− ρ) min

i∈Γ
|λi(X)|

(51)
= (1/α− ρ)c′min

i∈Γ
|λi(X ′)|

(53)
= min

i∈Γ
|λi(X ′)|/α

(56)

≥ max
i∈Γ⊥

|λi(X ′)|/α
(53)
= λD.

If s < r, then holds λabsr (X) = 0 and

D
(53)
= −ΛΓ⊥(X ′)/α

(55)
= Λβ′(X

′)/α
(48)
= 0.

Thus, λD = 0 = (1/α− ρ)λabsr (X). These results prove (45).
Case 2) Suppose X ∈ intC1. We must have ‖ΛΓ (X)‖F < 1, which implies
φ < 1 by (54) and hence c′ = 1 by (47). This result yields ρ = 0. The rest of
the proof is the same as that of Case 2). ut

Theorem 5.2 For any X ∈ Sn(r)∩C2 with the same EVD as in (6), denote
s := rank(X) = |Γ | and let η+,η±,η−, η= be defined as in (37). We have the
following results.

(i) X is an F -stationary point of (1) if and only if

∇f(X) ∈


{
NX(A, 0, C, 0) : A ∈ S|η+|

− , C ∈ S|η−|+

}
, s < r,

{
NX(A, 0, C,D) :

A ∈ S|η+|
− , C ∈ S|η−|+ ,

D ∈ S|η=|

}
, s = r.

(57)

(ii) X is an α-stationary point of (1) for a given α > 0 if and only if

∇f(X) ∈

{
NX(A, 0, C,D) :

A ∈ S|η+|
− , C ∈ S|η−|+ ,

D ∈ S|η=| with λD ≤ 1
αλ

abs
r (X)

}
, (58)

where λD := maxi∈{1,··· ,n−s} |λi(D)|.



20 Xinrong Li et al.

Proof. (i) By Lemma 4.1, Proposition 4.1 (ii) and Theorem 4.1, we can obtain
the formula of NF

Sn(r)∩C2(X), which enables us to derive the conclusion.

(ii) Sketch of the proof: For the ‘If ’ part, we need to show that

∇f(X) ∈ Θ2 =⇒ X ∈ ΠSn(r)∩C2 (X − α∇f(X)) , ∀X ∈ Sn(r) ∩ C2,

where Θ2 is the set of the right-hand side of (58). For the ‘Only if ’ part, we
need to show that

X ∈ ΠSn(r)∩C2 (X − α∇f(X)) =⇒ ∇f(X) ∈ Θ2.

To do this, we first prove that X and X ′ := X − α∇f(X) has a similar
decomposition to

X = U

[
ΛΓ (X)

0

]
U>, X ′ = U

[
Λ1

Λ2

]
U>,

where Λ1, Λ2 will be specified later, which results in ∇f(X) = MX (H,D).
We then prove that H takes the form

H =

A 0
C

 ,
which yields ∇f(X) = NX(A, 0, C,D). We complete the proof by verifying
λD ≤ 1

αλ
abs
r (X).

‘If ’ part: For any X ∈ Sn(r) ∩ C2 , it follows from X ∈ C2 and (39) that

Γ = η+ ∪ η± ∪ η−. (59)

Since ∇f(X) ∈ Θ2, there is an A ∈ S|η+|
− , C ∈ S|η−|+ and D ∈ S|η=|

+ with

λD ≤ 1
αλ

abs
r (X) such that

∇f(X) = NX(A, 0, C,D)
(36,38,59)

= MX(E, 0), where E =:

A 0
C

 ,
which contributes to

X − α∇f(X) =MX(ΛΓ (X), 0)− αMX(E,D)

=MX(ΛΓ (X)− αE,−αD) (60)

and

ΛΓ (X)− αE =

Λη+
(X)− αA

Λη±(X)
Λη−(X)− αC

 .
As A ∈ S|η+|

− , C ∈ S|η−|+ and α > 0, it follows that

λi(X − α∇f(X)) = λi(ΛΓ (X)− αE)

=

 t− αλi(A) ≥ t, i ∈ η+,
λi(X) ∈ (−t, 0) ∪ (0, t), i ∈ η±,

−t− αλi(C) ≤ −t, i ∈ η−.
(61)
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If s < r, then λabsr (X) = 0, making D = 0. If s = r, by the definitions (37) of
η+,η±,η−, it is easy to see that λabsr (X) = mini∈η± |λi(X)|, which together

with λD ≤ 1
αλ

abs
r (X) suffices to show that

max
i∈{1,··· ,n−s}

|λi(−αD)| = α max
i∈{1,··· ,n−s}

|λi(D)| = αλD

≤ λabsr (X) = min
i∈η±

|λi(X)|

(61)
= min

i∈η±
|λi(X − α∇f(X))|

= min
i∈Γ
|λi(X − α∇f(X))|.

Both cases allow us to derive

ΠSn(r)(MX(ΛΓ (X)− αE,−αD)) =MX(ΛΓ (X)− αE, 0)

and hence to obtain

ΠSn(r)∩C2(X − α∇f(X))
(22)
= ΠC2ΠSn(r)(X − α∇f(X))

(60)
= ΠC2ΠSn(r)(MX(ΛΓ (X)− αE,−αD))

= ΠC2(MX(ΛΓ (X)− αE, 0))

(61)
= X.

Therefore, X is an α-stationary point, which proves the ‘If ’ part.

‘Only if ’ part: For any X ∈ ΠSn(r)∩C2 (X − α∇f(X)) , let

X ′ := X − α∇f(X) = U ′Diag(λ(X ′))(U ′)>

and α′,β′,γ′ be defined as in (8) and Q′ be defined as in (10), in which X is
replaced by X ′. It follows from (23) that for any X ∈ ΠSn(r)∩C2 (X ′) , there is
a Q′ satisfying (10) and a β′2 ⊆ β′, |β′2| = r − |α′| such that

X = [U ′α′ U
′
β′Q

′ U ′γ′ ]

[
Diag(yα′∪β′2)

0

]
[U ′α′ U

′
β′Q

′ U ′γ′ ]
>, (62)

where

y ∈ Rn with yi = sign(λi(X
′)) min{|λi(X ′)|, t}, i = 1, . . . , n. (63)

Recall that X has the same EVD as in (6), i.e.,

X = U

[
ΛΓ (X)

0

]
U>.

If rank(X) = s < r, we have rank(X ′) < r, which implies

|α′| = s, γ′ = ∅, Λβ′(X
′) = 0. (64)
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Similarly as the proof of (51), by the uniqueness theorem of eigenvalue de-
composition in [48, Corollary 4.4.4], we can let

Γ =

{
α′, if s < r,

α′ ∪ β′2, if s = r,
ΛΓ (X) = Diag(yΓ ), U = [U ′α′ U

′
β′Q

′ U ′γ′ ] (65)

and rewrite (62) as

X = [U ′α′ U
′
β′Q

′ U ′γ′ ]

[
Diag(yΓ )

0

]
[U ′α′ U

′
β′Q

′ U ′γ′ ]
>. (66)

Then, we can rewrite X ′ as

X ′ = U ′

Λα′(X ′) Λβ′(X ′)
Λγ′(X

′)

 (U ′)>

(11)
= U ′

Λα′(X ′) Q′Λβ′(X ′)(Q′)>
Λγ′(X

′)

 (U ′)>

(65)
= U

Λα′(X ′) Λβ′(X ′)
Λγ′(X

′)

U>
(65)
= U

[
ΛΓ (X ′)

ΛΓ⊥(X ′)

]
U>.

The above two equations contribute to

∇f(X) =
X − (X − α∇f(X))

α
=
X −X ′

α
= U

[
H
D

]
U>, (67)

where

H :=
Diag(yΓ )− ΛΓ (X ′)

α
, D := −ΛΓ⊥(X ′)

α
. (68)

Now, let us consider H. For any i ∈ Γ , we have

αHii = λi(X)− λi(X ′)
(63)
= sign(λi(X

′)) min{|λi(X ′)|, t} − λi(X ′)

=

−t− λi(X
′) ≥ 0, λi(X

′) ≤ −t,
t− λi(X ′) ≤ 0, λi(X

′) ≥ t,
= 0, 0 < |λi(X ′)| < t.

(69)

This result implies that

{i ∈ Γ : λi(X
′) ≥ t} = {i ∈ Γ : λi(X) = t} = η+,

{i ∈ Γ : λi(X
′) ≤ −t} = {i ∈ Γ : λi(X) = −t} = η−,

{i ∈ Γ : 0 < |λi(X ′)| < t} = {i ∈ Γ : λi(X) = λi(X
′) 6= 0} = η±.

(70)
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Based on these equations, define

A :=
[
Diag(yη+

)− Λη+
(X ′)

]
/α =

[
Λη+

(X)− Λη+
(X ′)

]
/α

(69)
∈ S|η+|

− ,

C :=
[
Diag(yη−)− Λη−(X ′)

]
/α =

[
Λη−(X)− Λη−(X ′)

]
/α

(69)
∈ S|η−|+ .

Therefore, ∇f(X) can be rewritten as

∇f(X) = [Uη+
Uη±Uη−Uη=

]


A

0
C
D

 [Uη+
Uη±Uη−Uη=

]>

= NX(A, 0, C,D) with A ∈ S|η+|
− , C ∈ S|η−|+ .

Similarly, we also have (55), where β′1 is replaced by β′2, and (56). If s = r,
then

λD
(68)
= max

i∈Γ⊥
|λi(X ′)|/α

(56)

≤ min
i∈Γ
|λi(X ′)|/α

(70)
= min

i∈η+∪η±∪η−
|λi(X ′)|/α

= min
i∈η±

|λi(X ′)|/α
(70)
= min

i∈η±
|λi(X)|/α = λabsr (X)/α.

If s < r, it holds that λabsr (X) = 0 and

D
(68)
= −ΛΓ⊥(X ′)/α

(55)
= Λβ′(X

′)/α
(64)
= 0.

Thus, λD = 0 = λabsr (X)/α. These results prove (58). ut

Theorem 5.3 For any X ∈ Sn(r) ∩ C3 with the same EVD as in (6) and
denoting s := rank(X) = |Γ |, we have the following results.

(i) X is an F -stationary point of (1) if and only if

∇f(X) ∈


{
MX (ρIs, ρIn−s +D) : ρ ∈ R, D ∈ Sn−s+

}
, s < r,

{MX (ρIs, D) : ρ ∈ R, D ∈ Sn−s} , s = r.
(71)

(ii) X is an α-stationary point of (1) for a given α > 0 if and only if

∇f(X) ∈
{
MX (ρIs, ρIn−s +D) :

ρ ∈ R, D ∈ Sn−s
with λD ≥ −λr(X)/α

}
, (72)

where λD := mini∈{1,··· ,n−s} λi(D).
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Proof. (i) By Lemma 4.1, Proposition 4.1 (iii) and the sum rule of Theorem
4.1, we can obtain the formula of NF

Sn(r)∩C3(X), which can be used to derive
the conclusion.
(ii) Sketch of the proof: For the ‘If ’ part, we need to show that

∇f(X) ∈ Θ3 =⇒ X ∈ ΠSn(r)∩C3 (X − α∇f(X)) , ∀X ∈ Sn(r) ∩ C3,

where Θ3 is the set of the right-hand side of (72). To do so, we prove two
equations

ΠSn(r)∩C3 (X − α∇f(X)) = ΠC3 (MX (Λ0, 0)) = X

where Λ0 will be specified later. For the ‘Only if ’ part, we need to show that

X ∈ ΠSn(r)∩C3 (X − α∇f(X)) =⇒ ∇f(X) ∈ Θ3.

To do this, we first prove that X and X ′ := X − α∇f(X) has a similar
decomposition to

X = U

[
ΛΓ (X)

0

]
U>, X ′ = U

[
Λ1

Λ2

]
U>,

where Λ1, Λ2 will be specified later, which yields∇f(X) =MX (H, ρIn−s +D).
We then prove that H = ρIs and λD ≥ −λr(X)/α.
‘If ’ part: For any X ∈ Sn(r) ∩ C3, it follows from ∇f(X) ∈ Θ3 that there is a
ρ ∈ R, D ∈ Sn−s with λD ≥ −λr(X)/α satisfying

∇f(X) =MX (ρIs, ρIn−s +D) ,

which suffices to show that

ΠSn(r)∩C3 (X − α∇f(X))

= ΠSn(r)∩C3 (MX (ΛΓ (X), 0)− αMX (ρIs, ρIn−s +D))

= ΠSn(r)∩C3 (MX (ΛΓ (X)− αρIs,−αD − αρIn−s))
(32)
= ΠC3ΠLr

(MX (ΛΓ (X)− αρIs,−αD − αρIn−s))
= ΠC3 (MX (ΛΓ (X)− αρIs, 0)) , (73)

where the last equality holds because

max
i∈{1,··· ,n−s}

λi(−αD − αρIn−s) = −α min
i∈{1,··· ,n−s}

λi(D)− αρ

= −αλD − αρ ≤ λr(X)− αρ
≤ min

i∈Γ
λi(X)− αρ

= min
i∈Γ

λi(X − αρIs).

Now, we need to prove ΠC3 (MX (ΛΓ (X)− αρIs, 0)) = X. From Lemma 3.1,
this fact can be verified by proving the following result

λ(X) =

[
λΓ (X)

0

]
= argminz∈K3

∥∥∥∥z − [λΓ (X)− αρe
0

]∥∥∥∥2
2

,
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where e is a vector with all elements being one. In fact, K3 is convex; thus, the
right-hand side has a unique optimal solution. Since X ∈ C3, it follows that
λ(X) ∈ K3. One can prove that λ(X) is the unique solution by verifying the
Karush-Kuhn-Tucker(KKT)-system of the above problem, where the Lagrange
multipliers for z ≥ 0 and e>z = 0 are [0 αρe>]> and−αρ, respectively. Overall,

ΠSn(r)∩C3 (X − α∇f(X))
(73)
= ΠC3 (MX (ΛΓ (X)− αρIs, 0)) = X,

which means X is an α-stationary point.
‘Only if ’ part: For any X ∈ ΠSn(r)∩C3 (X − α∇f(X)) , let

X ′ := X − α∇f(X) = U ′Diag(λ(X ′))(U ′)>.

Let a′, b′, c′ be defined as in (24-26), in which X is replaced by X ′. It follows
from (33) that for any X ∈ ΠSn(r)∩C3 (X ′) , there exists a P ′ ∈ O|b′| and a
b′3 ⊆ b′, |b′2| = r − |a′| such that

X = [U ′a′ U
′
b′P
′ U ′c′ ]

[
Diag(ya′∪b′3)

0

]
[U ′a′ U

′
b′P
′ U ′c′ ]

> (74)

where

y ∈ Rn with yi = max {λi(X ′)− τ, 0} , i = 1, . . . , n (75)

and τ := 1
% (
∑%
j=1 λj(X

′) − 1), % := max{j : λj(X
′) > 1

j (
∑j
i=1 λi(X

′) − 1)}.
Recall that X has the same EVD as in (6), i.e.,

X = U

[
ΛΓ (X)

0

]
U>.

If s < r, we have yi = 0,∀i ∈ b′3, which together with (75) indicates

λr(X
′) = λi(X

′) ≤ τ,∀i ∈ b′. (76)

If s = r, we have yi > 0,∀i ∈ b′3, which together with (75) indicates

λr(X
′) = λi(X

′) > τ, ∀i ∈ b′. (77)

Similarly as the proof of (51), by the uniqueness theorem of eigenvalue de-
composition in [48, Corollary 4.4.4], we can let

Γ =

{
a′, if s < r,

a′ ∪ b′3, if s = r,
ΛΓ (X) = Diag(yΓ ), U = [U ′a′ U

′
b′P
′ U ′c′ ] (78)

and can rewrite X in (74) as

X = [U ′a′ U
′
b′P
′ U ′c′ ]

[
Diag(yT )

0

]
[U ′a′ U

′
b′P
′ U ′c′ ]

>. (79)
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Then, X ′ can be written as

X ′ = U ′

Λa′(X ′) Λb′(X ′)
Λc′(X

′)

 (U ′)>

(28)
= U ′

Λa′(X ′) P ′Λb′(X ′)(P ′)>
Λc′(X

′)

 (U ′)>

(78)
= U

Λa′(X ′) Λb′(X ′)
Λc′(X

′)

U>
= U

[
ΛΓ (X ′)

ΛΓ⊥(X ′)

]
U>.

These two equations yield

∇f(X) =
X −X ′

α
= U

[
H
ρIn−s +D

]
U> (80)

with

ρ := −τ/α, H :=
Diag(yΓ )− ΛΓ (X ′)

α
, D := −ΛΓ⊥(X ′)

α
− ρI. (81)

For any i ∈ Γ , we have λi(X) 6= 0, which implies

0 6= λi(X) = yi = max {λi(X ′)− τ, 0} = λi(X
′)− τ

(75)
> 0, i ∈ Γ. (82)

Therefore, we have

H
(82)
=

ΛΓ (X ′)− τIs − ΛΓ (X ′)

α
= ρIs.

This result proves ∇f(X) = MX (ρIs, ρIn−s +D). The final step is to esti-
mate λD. If s = r, the definitions (24-26) of a′, b′, c′ yield

max
i∈Γ⊥

λi(X
′) ≤ min

i∈Γ
λi(X

′),

which is beneficial for the following chain of inequalities

λD = mini∈{1,··· ,n−s} λi(D)
(81)
= −maxi∈Γ⊥ λi(X

′)/α− ρ
≥ −mini∈Γ λi(X

′)/α− ρ (82)
= −mini∈Γ (λi(X) + τ)/α− ρ

(81)
= −mini∈Γ λi(X)/α

(77)
= −λr(X)/α.

If s < r, we have

λD = −maxi∈Γ⊥ λi(X
′)/α− ρ (81)

= −maxi∈b′∪c′ λi(X
′)/α− ρ

(76)
= −λr(X ′)/α− ρ

(76)

≥ −τ/α− ρ = 0.
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Thus, the proof is completed.
ut

Remark 5.1 We would like to describe the relation between an F -stationary
point and an α-stationary point based on Theorems 5.1, 5.2 and 5.3.

(i) When s < r, for each C, one can observe that an F -stationary point is
the same as an α-stationary point. For example, from (71) and (72), when
s < r, λD ≥ −λr(X)/α = 0 due to X ∈ C3, then D ∈ Sn−s+ . When s = r,
an α-stationary point must be an F -stationary point, but the converse
is not true. Therefore, being an F -stationary point is a weaker necessary
optimality condition than is being an α-stationary point.

(ii) The α-stationary point as a stronger necessary condition has been widely
studied in [11,28,30,45,47,49] , and under some mild conditions, a global
optimal solution is an α-stationary point for some α > 0; see [47, Theorem
2.2] or Theorem 6.1 (1) established in the next section. Therefore, in terms
of guaranteeing an optimal solution, being an α-stationary point is a better
condition than being an F -stationary point.

(iii) Most importantly, compared with that of an F -stationary point, the char-
acterization of an α-stationary point presents a much easier way to design
numerical algorithms to search. The updating scheme usually takes the
form

Xk+1 = ΠSn(r)∩C
(
Xk − α∇f(Xk)

)
based on α-stationary point (43), where Xk is the currently computed
iterate; see [11,28,47,49] for more details. Numerical experiments have
demonstrated that such a scheme could yield desirable solutions with fast
computational speed since the projection ΠSn(r)∩C

(
Xk − α∇f(Xk)

)
often

has a closed form, such as the cases of C = Ci, i = 1, 2, 3.

6 Local and Global Minimizers

Given the expressions presented in the previous section, this section estab-
lishes the relationships among the stationary points and the global/local min-
imizers of (1). We first introduce the so-called r-restricted subspace.

Definition 6.1 Let X ∈ Sn(r) with s := rank(X) have the same EVD as in
(6). We call the subspace

SnX := {MX(A, 0) : A ∈ Ss} (83)

the X-restricted subspace. In fact, X ∈ SnX ⊆ Sn(r).

We say the gradient of a function f is Lipschitz continuous with constant Lf
over Sn if

‖∇f(X)−∇f(Y )‖ ≤ Lf‖X − Y ‖, ∀ X,Y ∈ Sn.

Our first result is to analyze the relations between an α-stationary point and
the local/global minimizers of (1).
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Theorem 6.1 For problem (1), the relations between an α-stationary point
and the local and global minimizers are given as follows.

(A) If the gradient ∇f is Lipschitz with constant Lf over Sn, then a global
minimizer of (1) is also an α-stationary point for any 0 < α < 1/Lf .

(B) Let f be convex and X ∈ Sn(r) ∩ C be an α-stationary point.
(B1) If X ∈ bdC, then X is a global minimizer of (1) restricted on SnX .
(B2) If X ∈ intC with rank(X) = r, then X is a global minimizer of (1)

restricted on SnX .
(B3) If X ∈ intC with rank(X) < r, then X is a global minimizer of (1).

Proof. (A) This conclusion is proven in [47, Theorem 2.2] for the vector case.
For the sake of completeness, we provide the proof of this part. Let X be a
minimizer of (1). Suppose that there exists a matrix Y ,

X 6= Y ∈ ΠSn(r)∩C(X − α∇f(X)).

It follows that

‖Y −X + α∇f(X)‖2F ≤ ‖X −X + α∇f(X)‖2F ,

which suffices to show that〈
∇f(X), Y −X

〉
≤ −(1/(2α))‖Y −X‖2. (84)

Since f is the gradient Lipschitz with a positive Lipschitz constant Lf and
0 < α < 1/Lf , by the Descent Lemma [50, Proposition A.24] and (84), we
have

f(Y ) ≤ f(X) +
〈
∇f(X), Y −X

〉
+
Lf
2
‖Y −X‖2

≤ f(X) +
Lf − 1/α

2
‖Y −X‖2 < f(X),

contradicting the optimality of X.
(B1) We consider three cases:
Case of C = C1. If X is an α-stationary point, then from Theorem 5.1, there
exists a ρ ≤ 0 and a D ∈ Sn−s such that

∇f(X) =MX(ρΛΓ (X), D).

Since X ∈ bdC1, ‖X‖F = ‖ΛΓ (X)‖F = 1. For any Y ∈ C1 ∩ SnX , there exists
an A ∈ Ss with ‖A‖F ≤ 1 such that Y =MX(A, 0), which yields

Y −X =MX(A, 0)−MX(ΛΓ (X), 0) =MX(A− ΛΓ (X), 0).

For any Y ∈ SnX ∩ C1, X + Y ∈ Sn(r). As f is convex, it holds that

f(Y )− f(X) ≥ 〈∇f(X), Y −X〉
= 〈MX(ρΛΓ (X), D),MX(A− ΛΓ (X), 0)〉
= ρ〈ΛΓ (X), A− ΛΓ (X)〉 = ρ〈ΛΓ (X), A〉 − ρ
≥ ρ‖A‖F ‖ΛΓ (X)‖F − ρ ≥ 0.



Matrix Optimization Over Low-Rank Spectral Sets 29

Therefore, X is a global minimizer of (1) restricted on SnX .
Case of C = C2. If X is an α-stationary point, then from Theorem 5.2, there

exists an A ∈ S|η+|
− , C ∈ S|η−|+ , D ∈ S|η=|, where η+,η±,η−, η= are defined

as in (37), such that
∇f(X) = NX(A, 0, C,D).

For any Y ∈ SnX ∩ C2, it follows that

Y −X = NX(A1, A2, A3, 0)−NX
(
tI|η+|, Λη±(X),−tI|η−|, 0

)
= NX

(
A1 − tI|η+|, A2 − Λη±(X), A3 + tI|η−|, 0

)
.

By Y ∈ C2, it has A1 − tI|η+| ∈ S|η+|
− and A3 + tI|η+| ∈ S|η−|+ . These results

suffice to show that

〈∇f(X), Y −X〉 = 〈A,A1 − tI|η+|〉+ 〈C,A3 + tI|η−|〉 ≥ 0,

which together with the convexity of f yields the conclusion.
Case of C = C3. If X is an α-stationary point, then from Theorem 5.3, there
exists a ρ ∈ R and D ∈ Sn−s such that

∇f(X) =MX(ρIs, ρIn−s +D).

Since X ∈ bdC3, then 〈Is, ΛΓ (X)〉 = 1. For any Y ∈ C3 ∩ SnX , there exists an
A ∈ Ss with 〈Is, A〉 = 1 such that Y =MX(A, 0), which yields

Y −X =MX(A, 0)−MX(ΛΓ (X), 0) =MX(A− ΛΓ (X), 0).

For any Y ∈ SnX ∩ C3, X + Y ∈ Sn(r). As f is convex, it holds that

f(Y )− f(X) ≥ 〈∇f(X), Y −X〉
= 〈MX(ρIs, ρIn−s +D),MX(A− ΛΓ (X), 0)〉
= ρ〈Is, A− ΛΓ (X)〉 = ρ(1− 1) = 0.

Therefore, X is a global minimizer of (1) restricted on SnX .
(B2) and (B3) If X ∈ intC, problem (1) reduces to rank-constrained optimiza-
tion. These results have been established by [30, Theorem 2] and are omitted
here. ut

Our next major result is to analyze the relations between an F -stationary
point and the local/global minimizers of (1).

Theorem 6.2 For problem (1), the relations between an F -stationary point
and the local and global minimizers are given as follows.

(A) A local optimal solution of (1) is also an F -stationary point.
(B) Let f be convex and X ∈ Sn(r) ∩ C be an F -stationary point.

(B1) If X ∈ bdC, then X is a global minimizer of (1) restricted on SnX .
(B2) If X ∈ intC with rank(X) = r, then X is a global minimizer of (1)

restricted on SnX .
(B3) If X ∈ intC with rank(X) < r, then X is a global minimizer of (1).
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Proof. (A) IfX is a local optimal solution of (1), then 0 ∈ ∇f(X)+NF
Sn(r)∩C(X)

by [26, Theorem 6.12]. From Theorem 4.1, 0 ∈ ∇f(X) +NF
Sn(r)(X) +NF

C (X),
namely, X is an F -stationary point.
(B) The proof is omitted here since it is similar to that of (B) in Theorem 6.1.

ut
To end this section, we bring an example to illustrate Theorem 6.1.

Example 6.1 Consider the problem

min
X∈S3

f(X) := 1
2‖X − Y ‖

2
F

s.t. rank(X) ≤ 2
‖X‖F ≤ 1,

(85)

where Y = U

4
3

2

U> with U =

√2/2 0
√

2/2
0 1 0√
2/2 0 −

√
2/2

.

Clearly, f is convex, and the gradient ∇f(X) = X−Y is Lipschitz continuous
with constant Lf = 1 over S3. Based on (17), the global minimizer of (85) is

X∗ := ΠS3(2)∩C1(Y ) = UDiag(4/5, 3/5, 0)U>.

Direct calculation yields ∇f(X∗) = X∗ − Y = −UDiag(16/5, 12/5, 2)U> and
X∗ ∈ bdC1. From (45), we have

Θρ(X
∗) : =

{
MX∗ (ρΛΓ (X∗), D) :

ρ ≤ 0, D ∈ S3−2
λD ≤

(
1
α − ρ

)
λabs2 (X∗)

}

=

U
4ρ/5

3ρ/5
D

U> :
ρ ≤ 0, D ∈ R
|D| ≤ 3

5

(
1
α − ρ

) .

Then, it can be seen that ∇f(X∗) ∈ Θρ(X∗) with ρ = −4 for any α > 0, which
together with Theorem 5.1 (ii), reveals that X∗ is an α-stationary point of
(85).

Let us consider a point X := UDiag(2/
√

5, 0, 1/
√

5)U>. Direct calculation
gives ∇f(X) = UDiag(2/

√
5− 4,−3, 1/

√
5− 2)U> and

Θρ(X) =

U
2ρ/

√
5
D

ρ/
√

5

U> :
ρ ≤ 0, D ∈ R
|D| ≤ 1√

5

(
1
α − ρ

) .

Then, it holds that ∇f(X) ∈ Θρ(X) with ρ = 1− 2
√

5 for any 0 < α ≤ 1√
5+1

,

which together with Theorem 5.1 (ii), indicates that X∗ is also an α-stationary
point with 0 < α ≤ 1√

5+1
of (85). Apparently, X is not the global minimizer

of (85), but it is a global minimizer restricted on

S3
X
∩ C1 =

U
a 0

b

U> : ∀a, b ∈ R, a2 + b2 ≤ 1

 .
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7 Conclusions

In this paper, with the help of explicit expressions of the projections and
Fréchet normal cones to constrained sets, we have established the first-order
optimality conditions (i.e., α-stationary point and F -stationary point) of the
MOLS and have revealed the relationship between each stationary point and
each local/global minimizer of the MOLS. Whether similar results hold for
low-rank optimization problems with general constraints, such as linear/nonlinear
equalities and inequalities, remains to be determined. We leave this topic to
be investigated in the future.
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