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1 Introduction

There now exists a large number of publications devoted to the task of identifying diffused

crack affecting a beam [1, 2]. The increasing attention about this problem in the last decades

is essentially due to the growing number of applications in structural engineering such as, for

example, the study of the stability of existing structures hit by earthquake or the monitoring of

structural integrity [3].

This paper focuses on a diffused crack identification method based on the natural frequencies

that uses the Timoshenko interdependent interpolation element [4–7]. The main peculiarity of

this element is its capability to avoid the shear locking problem, that may affect discretization

approaches for moderately/thick beams, that are hereinafter intended as shear deformable beams

in the spirit of Timoshenko beam theory. In particular, the interdependent interpolation element

is obtained by using the Hermite cubic functions for the transverse displacement and interde-

pendent quadratic interpolation for the rotation. By so doing the element exhibits a locking-free

behavior also in the thin beam limit. This feature is not shared by the linear Timoshenko beam

element that is well known to be affected by the locking phenomenon when the beam depth h

tends to zero.

Structural health monitoring is nowadays indispensable for the reliable assessment of struc-

tures under both service loads and some extreme loads such as earthquakes and strong winds.
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Although recently many numerical techniques such as changes in modal data [8–10], the transfer

function parameters [11], the flexibility matrix [12], the strain energy [13], the frequency response

functions [14, 15], perturbation approaches [16, 17] and so on, have been developed to localize and

to define the magnitude of diffused cracks affecting structural elements, many of them continue

to require experimental modal data of both the damaged and the undamaged elements.

The presented damage identification method, instead, is based only on the comparison be-

tween the natural frequencies resulting from experimental studies and those obtained by inves-

tigating the dynamic behaviour of the same undamaged beam through numerical computation,

i.e. on the definition of the differences between the real structure and the corresponding design

model. Under the hypothesis that the initial state is fully known (and undamaged), the axioms

of structural health monitoring set in [18] are met and referring specifically to axiom 2 the

two systems under comparison are the real structure and the one simulated numerically via the

approximation approach presented herein.

As suggested in many papers [19–25], this is relatively easy to do for various reasons: the

simplicity of measuring natural frequencies, whereas mode shapes require a very large num-

ber of sensors and can be affected by measurement errors, and, under the assumption of linear

behaviour, the opportunity to describe the diffused crack affecting a beam with only three pa-

rameters. These three parameters are the position, the extension and the coefficient of stiffness

reduction (or magnitude), and very few frequencies are required to define their values. Therefore,

given this scenario and well aware of the huge amount of methods available for identification of

structural damage, the ultimate goal of this paper is to provide a damage identification method

for moderately thick beams, that enjoys the following distinctive features:

1. the method is numerically inexpensive in that it does not call for a massive amount of data

to be initialized and work properly;
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2. the method is based on a relatively simple damage model, that does not call for damage

mechanics or nonlinearity whatsoever. It should in fact be kept in mind that the overall goal

is to determine damage amplitude and location, whereas no attention is paid to post-damage

response that would call for finite-step nonlinear analysis or the like;

3. the quality of data needed for the proposed method to converge (natural frequencies) are well

known to be the most easily available in the field of structural vibrations and this should be

considered a dramatic pro.

4. last but not least, the adoption of quite a sound finite element capable to rule out locking

pathologies from the formulation should be considered a distinctive feature of the proposed

approach.

2 Interdependent Interpolation Element: Formulation

As well known, the Timoshenko beam element is a beam that presents shear deformation. So

plane sections normal to beam axis remain plane, but not necessarily normal to the axis during

the deformation. According with the classical stress theory, the strain energy U for an isotropic

linear elastic material occupying region Ω can be written as

U =
1

2

∫
Ω

σ : ε dV , (1)

where ε is the strain tensor and σ is the Cauchy stress tensor conjugated to ε. It’s expedient to

remember that the strain tensor must satisfy the compatibility equation

ε =
1

2

[
∇u+ (∇u)

T
]
, (2)

and that the constitutive equation is given by

σ = λtr (ε) I + 2µε , (3)

where λ and µ are the Lamé’s constants that uniquely determine the material isotropic behavior.
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Assuming an orthogonal Cartesian coordinate system (x, y, z), in which the x-axis is coin-

cident with the centroidal axis of the undeformed beam, the y-axis is the neutral axis and the

z-axis is the third axis, the displacements field in a Timoshenko beam for the pure bending case

can be described by

u1 = zϑ(x, t), u2 = 0, u3 = v(x, t) , (4)

where u1, u2 and u3 are the x-, y- and z-components of the displacement vector u of a generic

point with coordinates (x, y, z) on a beam cross section, v is the z-component of the displacement

vector of a generic point along the x-axis, and ϑ is the rotation angle (about the y-axis) of the

cross section with respect to the z-axis.

From Eqs. (2) and (4), it follows that the strain components are

εxx = z
∂θ

∂x
, γxz = ϑ+

∂v

∂x
, εyy = εzz = εxy = εyz = 0 , (5)

whereas the stress components are

σxx = Eεxx , σxz = Gγxz , σyy = σzz = σxy = σyz = 0 . (6)

Upon denoting with ρ and h the mass density and the beam depth, respectively, the equilib-

rium equations of the beam for the dynamic problem are:

∂

∂x

(
EI

∂ϑ

∂x

)
−GAKs

(
∂v

∂x
+ ϑ

)
− ρh2

12

∂2ϑ

∂t2
= 0 , (7)

∂

∂x

[
GAKs

(
∂v

∂x
+ ϑ

)]
− ρ∂

2v

∂t2
= −q (x) , (8)

where v (x, t) is the transverse deflection, ϑ (x, t) the rotation of a transverse section normal to

the longitudinal axis, E the Young’s modulus, G the shear modulus, A the cross section area, I

the moment of inertia, Ks the shear correction factor and q (x) the distributed transverse load.
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The Clapeyron theorem yields to the following expression for the total energy:

U =
1

2

∫
V

σijεij dV =

=
1

2

∫ l

0

Mχ dx+
1

2

∫ l

0

V γ dx+

∫ l

0

(
ρ
∂2v

∂t2
v +

ρh2

12

∂2ϑ

∂t2
ϑ

)
dx−

∫ l

0

q (x) v dx+

− V0v (0, t)− Vlv (l, t)−M0ϑ (0, t)−Mlϑ (l, t) , (9)

where M is the bending moment, V the shear action, χ the bending curvature, γ the shear

deformation angle and l the element length.

By substituting both the compatibility and the constitutive equations into (9), one can write

the total potential energy as quadratic functional in two fields as follows:

Π (v, ϑ) =
1

2

∫ l

0

∂ϑ

∂x
EI

∂ϑ

∂x
dx+

1

2

∫ l

0

(
∂v

∂x
+ ϑ

)
GAKs

(
∂v

∂x
+ ϑ

)
dx+

+

∫ l

0

(
ρ
∂2v

∂t2
v +

ρh2

12

∂2ϑ

∂t2
ϑ

)
dx−

∫ l

0

q (x) v dx− V0v (0, t)− Vlv (l, t) +

− M0ϑ (0, t)−Mlϑ (l, t) . (10)

The continous weak formulation for the Timoshenko beam element is obtained by applying

the principle of stationarity of total potential energy, one can write the problem as

find (v, ϑ) s.t.



δΠv =

∫ l

0

∂δv

∂x
GAKs

(
∂v

∂x
+ ϑ

)
dx+

∫ l

0

ρ
∂2v

∂t2
δv dx−

∫ l

0

q (x) δv dx+

− V0δv(0, t)− Vlδv(l, t) = 0 ∀ δv ,

δΠϑ =

∫ l

0

∂δϑ

∂x
EI

∂ϑ

∂x
dx+

∫ l

0

δϑGAKs

(
∂v

∂x
+ ϑ

)
dx+

∫ l

0

ρh2

12

∂2ϑ

∂t2
δϑdx+

−M0δϑ(0, t)−Mlδϑ(l, t) = 0 ∀ δϑ ,

(11)

where δv and δϑ play the role of test functions.

The discrete problem takes the form
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find (vh, ϑh) s.t.

δΠvh =

∫ l

0

∂δvh
∂x

GAKs

(
∂vh
∂x

+ ϑh

)
dx+

∫ l

0

ρ
∂2vh
∂t2

δvh dx−
∫ l

0

q (x) δvh dx+

− V0δvh(0, t)− Vlδvh(l, t) = 0 ∀ δvh ,

δΠϑh
=

∫ l

0

∂δϑh
∂x

EI
∂ϑh
∂x

dx+

∫ l

0

δϑhGAKs

(
∂vh
∂x

+ ϑh

)
dx+

∫ l

0

ρh2

12

∂2ϑh
∂t2

δϑh dx+

−M0δϑh(0, t)−Mlδϑh(l, t) = 0 ∀ δϑh .
(12)

At this point, the displacement vh and the rotation ϑh are written as linear combinations of

basis functions that span respectively the finite dimensional spaces

V1h = span
{
ψ
(1)
i i = 1, . . . , 4

}
, V2h = span

{
ψ
(2)
i i = 1, . . . , 4

}
, (13)

where ψ
(1)
i are the shape functions associated to the transverse displacement, whereas ψ

(2)
i are

relative to the nodal rotations. The approximations can be written as

vh (x, t) ≈
4∑
i=1

ai (t)ψ
(1)
i (x) , ϑh (x, t) ≈

4∑
i=1

bi (t)ψ
(2)
i (x) . (14)

Substitution of (14), δv = ψ
(1)
i and δθ = ψ

(2)
i into (12) leads to the following compact form

of the problem:

M∆̈+K∆ = q +Q, (15)

where the stiffness matrix is given by

Kij =

∫ l

0

[
dψ

(2)
i

dx
EI

dψ
(2)
j

dx
+

(
dψ

(1)
i

dx
+ ψ

(2)
i

)
GAKs

(
dψ

(1)
j

dx
+ ψ

(2)
j

)]
dx , (16)

the mass matrix is

Mij =

∫ l

0

(
ψ
(1)
i I0ψ

(1)
j + ψ

(2)
i I2ψ

(2)
j

)
dx , (17)

where I0 =
∫
A
ρ dA = ρA and I2 =

∫
A
ρz2 dA = ρh2A

12 . The load vector qi is
∫ l
0
q (x)ψ

(1)
i dx.
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The boundary conditions, denoted by the vector {Q}, are

V0 = −
[
GAKs

(
dv

dx
+ ϑ

)]
x=0

, M0 = −
[
EI

dϑ

dx

]
x=0

,

Vl =

[
GAKs

(
dv

dx
+ ϑ

)]
x=l

, Ml =

[
EI

dϑ

dx

]
x=l

.

(18)

As suggested in various papers [5–7], the choice of Hermite cubic interpolating functions

for the transverse deflection and quadratic interpolating functions for the rotation, leads to the

following shape functions:

ψ
(1)
1 = (1/ζ)

[
ζ − 12Ωη − (3− 2η) η2

]
, ψ

(1)
2 = − (l/ζ)

[
(1− η)

2
η + 6Ω (1− η) η

]
,

ψ
(1)
3 = (1/ζ)

[
(3− 2η) η2 + 12Ωη

]
, ψ

(1)
4 = (l/ζ)

[
(1− η) (η)

2
+ 6Ω (1− η) η

]
,

ψ
(2)
1 = (6/lζ) (1− η) η , ψ

(2)
2 = (1/ζ)

(
ζ − 4η + 3η2 − 12Ωη

)
,

ψ
(2)
3 = − (6/lζ) (1− η) η , ψ

(2)
4 = (1/ζ)

(
3η2 − 2η + 12Ωη

)
,

(19)

where the parameters Ω, ζ and η are: EI
GAKsl2

, 1 + 12Ω, x
l .

Upon introducing the parameters ξ = 1 − 6Ω and κ = 1 + 3Ω, the substitution of (19) into

(16) leads to

K =

(
2EI

ζl3

)


6 −3l −6 −3l

−3l 2l2κ 3l l2ξ

−6 3l 6 3l

−3l l2ξ 3l 2l2κ


, (20)

while, by substituting (19) into (17), we obtain several parts that compose the element mass

matrix, as shown below.

M1 =



156 −22l 54 13l

−22l 4l2 −13l −3l2

54 −13l 156 22l

13l −3l2 22l 4l2


, M2 =



36 −3l −36 −3l

−3l 4l2 3l −l2

−36 3l 36 3l

−3l −l2 3l 4l2


, M3 =



84 −11l 36 9l

−11l 2l2 −9l −2l2

36 −9l 84 11l

9l −2l2 11l 2l2


,
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M4 =



0 6 0 6

6 2l −6 −2l

0 −6 0 6

6 −2l −6 2l


, M5 =



240 −30l 120 30l

−30l 6l2 −30l −6l2

120 −30l 240 30l

30l −6l2 30l 6l2


, M6 =



0 0 0 0

0 2 0 1

0 0 0 0

0 1 0 2


.

The element mass matrix is given by the combination of the matrices described above:

M =
I0l

420ζ2
M1 +

I2
30lζ2

M2 +
Ω

ζ2

(
I0l

10
M3 + I2M4 +

ΩI0l

5
M5 + 24ΩI2lM6

)
. (21)

It is easy to observe that in the thin beam limit, i.e. Ω → 0 (ζ → 1, ξ → 1, κ → 1), (20)

reduces to the Euler-Bernoulli elementar stiffness matrix. This choice of finite element model

based on the two-component form of the Timoshenko beam theory is powerful for the dynamic

analysis, in fact, the mass matrix ensure a superconvergent method [6].

3 Damage Detection: Direct Problem

Consider the following abstract problem: find x such that

F (x,p) = 0 , (22)

where x is the design variable vector, p is the set of parameters, which the solution depends

on and F is the objective function. When x is the unknown and F and p are given, we have

to do with a direct problem. So, in our case, the direct problem consists in the analysis of the

variations in behaviour, for both the static and the dynamic problems, due to the presence of a

damaged beam segment.

First of all, it is very important to define the suitable number of parameters needed to describe

accurately the presence of diffused cracking; as suggested in [22], if damage affects a diffused zone

of a beam it can be described by only three parameters, that are the position XD, the extension
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LD of the cracked zone and the stiffness EID of the damaged beam whereas the virgin one is

denoted by EIU . So, the physical problem can be described as shown in Fig. 1. In computational

Fig. 1 Model of a beam with a diffuse cracked zone - Physical problem.

terms, it may be appropriate to work with a dimensionless problem: through the definition of

the following non-dimensional parameters

xD =
XD

L
, bD =

LD
L

, β =
EIU − EID

EIU
, (23)

it’s possible to study the problems shown in Figs. 3 and 10. As one can see in Fig. 2, the beam

Fig. 2 Model of a beam with a diffuse cracked zone - Non-dimensional problem.

length has been split into three segments, each one characterized by a different axial coordinate,

say ξ1, ξ2 and ξ3, that are respectively defined as

ξ1 = xD −
bD
2
, ξ2 = bD , ξ3 = 1− ξ1 − ξ2 . (24)
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The axial coordinate ξi (with i = 1, 2, 3) vary in a range between 0 and 1. This subdivision

permits to treat separately the three segments and to assemble the global stiffness matrix by

taking into account the lower stiffness of the second segment.

Furthermore, as suggested in [21, 22, 24, 25], it is expedient to define a relationship among

the eigenvalues Λ and the damage parameters, that takes the form

G
(
Λ, XD, LD, EI

D
)

= 0 , (25)

for the physical problem, and

g (Λ, xD, bD, β) = 0 , (26)

for the non-dimensional one. Starting from the modal finite element analysis of both the un-

damaged and the damaged beams, one can straightforwardly evaluate the function (25), or (26),

through the computation of the ratio

ωUi − ωDi
ωUi

= 1−
(
ΛDi
ΛUi

)2

i = 1, 2, 3. , (27)

where a superposed U and D respectively indicate undamaged and damaged states, Λi is the

i–th system eigenvalue and ωi ≡
√
Λi is the i–th natural frequency.

3.1 Numerical Example: Simply Supported Beam

Fig. 3 Simply supported beam.
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The first numerical example consists in the simply supported beam subdivided into 400 ele-

ments, shown in Fig. 3, subjected to an uniform transverse load which geometric and mechanical

properties are listed in Table 1.

Table 1 Geometric and mechanical properties of the simply supported beam

Properties Symbol Value

Geometric

Beam length L 8 [m]

Cross section area A 0.3 [m2]

Cross section inertia I 0.00625 [m4]

Mechanical

Young modulus E 100000 [MPa]

Poisson modulus ν 0.37

Shear modulus G E/(2(1 + ν)) [MPa]

Shear correction factor Ks 5/6

Material density ρ 1 [kg/dm3]

Uniform transverse load q −1 [kN/m]

Concerning to the choice of the damage parameters, for this first numerical example we set

a position XD = 0.7 · L = 5.6, an extension LD = L/10 = 0.8 and a dimensionless magnitude

β = 0.5.

What one would expect from the numerical computation of the problem is an increase of

the deformability of the beam due to the presence of a cracked zone. On the basis of these

considerations, in the remainder of this section the results obtained for the static and the modal

analysis are shown.

From Fig. 4 it is possible to observe that the maximum deflection of the damaged beam is

obviously greater than those obtained with the undamaged one and that it isn’t located in the

middle span of the beam, but it’s shifted toward the cracked zone.
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(a) (b)

Fig. 4 Simply supported beam: transverse displacements of the beam. (a) physical problem - (b) non-dimensional

problem. Solid line represents data relative to the undamaged beam, dashed line to the damaged one. The cracked

zone is indicated with the gray band.

(a) (b)

Fig. 5 Simply supported beam: nodal rotations of the beam. (a) physical problem - (b) non-dimensional problem.

Solid line represents data relative to the undamaged beam, dashed line to the damaged one. The cracked zone is

indicated with the gray band.

From Fig. 5, the increase in rotation to which the damaged beam is subjected is sharply

evident: in the particular case of a concentrated damage, one can note that, in correspondence

of the cracked zone, the trend of the nodal rotations undergoes a jump that can be taken into
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(a) (b)

Fig. 6 Simply supported beam: mode 1 - Free vibrations analysis of the undamaged beam (solid line) and the

damaged one (dashed line). (a) displacement field - (b) rotation field.

(a) (b)

Fig. 7 Simply supported beam: mode 2 - Free vibrations analysis of the undamaged beam (solid line) and the

damaged one (dashed line). (a) displacement field - (b) rotation field.

account by introducing an equivalent torsional spring. As suggested in [22], such torsional spring,

characterized by a stiffness K, represents both the extension and the magnitude of the damage.

As observed from results of the static problem, also for the free vibrations analysis, which

results are shown in Figs. 6-8, it is possible to note that greater variations in the response were

found in terms of rotations, where the presence of a cracked zone causes an increase of the nodal
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(a) (b)

Fig. 8 Simply supported beam: mode 3 - Free vibrations analysis of the undamaged beam (solid line) and the

damaged one (dashed line). (a) displacement field - (b) rotation field.

rotations. Concerning the displacements field, the effects of damage are only lightly visible. In

this case, we set the same finite element size for the three segments with the aim to obtain a

more clear and representative result.

In this paper, the first three frequencies are studied and the curves shown in Fig. 9 are

obtained by varying both the damage position xD and the non-dimensional magnitude β.

The variation of frequencies, as expected, assume the maximum values when the damage is

located in the maximum or minimum values of the undamaged frequency modes. Furthermore,

variation of frequencies increase with the damage magnitude and, obviously, the functions plotted

above are equal to zero if β = 0, i.e. if the beam is not damaged.

The trends of the curves shown above is equal to those obtained in [22] for the same problem,

i.e. the case of a simply supported beam via analytical solution.

3.2 Numerical Example: Cantilever Beam

A necessary condition for an inverse problem solver to work properly is of course its capability

to address successfully the analysis problem (direct problem). To show the capabilities of the
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(a) (b)

(c)

Fig. 9 Simply supported beam: variations of the first three frequencies. Curves are obtained by varying both

damage position xD and magnitude β, for a fixed value of the damage extension bD = 0.10.

Fig. 10 Cantilever beam.
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proposed approach, a few numerical studies concerning the cantilever in Figure 10 are then

reported next. Geometric and mechanical properties of the structure are listed in Table 2 and

150 elements have been used for the discretization of the beam.

Table 2 Geometric and mechanical properties of the cantilever beam

Properties Symbol Value

Geometric

Beam length L 3 [m]

Cross section area A 0.12 [m2]

Cross section inertia I 0.0009 [m4]

Mechanical

Young modulus E 2000000 [MPa]

Poisson modulus ν 0.37

Shear modulus G E/(2(1 + ν)) [MPa]

Shear correction factor Ks 5/6

Material density ρ 1 [kg/dm3]

Uniform transverse load q −1 [kN/m]

As to the damage parameters, we set a position XD = L/5 = 0.6, an extension LD = L/10 =

0.3 and a non-dimensional magnitude β = 0.5.

In this case, the effects of the presence of a cracked zone on the static analysis are visible only

if the damage position is sufficiently near to the clamped end. Since a suitable damage position

is defined, also for this example one can observe the increase in both the displacements and the

rotations due to the stiffness reduction that affects the damaged segment.

In particular, from Fig. 11 it is possible to observe that the differences of the static response

in terms of displacements begin to be visible exactly in correspondence of the cracked zone and

that they grow along the beam axis.

Concerning nodal rotations, the static response for both the damaged and the undamaged

beam is the same up to the start of the cracked segment, then nodal rotations of the first one
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(a) (b)

Fig. 11 Cantilever beam: transverse displacements of the beam for the physical problem (a) and for the non-

dimensional one (b). Solid line represents data relative to the undamaged beam, dashed line to the damaged one

and the cracked zone is indicated with the gray band.

(a) (b)

Fig. 12 Cantilever beam: nodal rotations of the beam for the physical problem (a) and for the non-dimensional

one (b). Solid line represents data relative to the undamaged beam, dashed line to the damaged one and the

cracked zone is indicated with the gray band.

suffer a rise and finally, after the end of the damaged zone, the two solutions keep about parallel

along the beam axis. If the position of the damaged zone is near to the free end of the beam, the

gap between solutions is much smaller than that obtained by the proposed numerical example.
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(a) (b)

Fig. 13 Cantilever beam: mode 1 - Free vibrations analysis of the undamaged beam (solid line) and the damaged

one (dashed line). In (a) the displacement field is shown, (b) contains the rotation field.

(a) (b)

Fig. 14 Cantilever beam: mode 2 - Free vibrations analysis of the undamaged beam (solid line) and the damaged

one (dashed line). In (a) the displacement field is shown, (b) contains the rotation field.

Concerning free vibration analysis, also for the case of a cantilever beam the greater variations

in behaviour are visible from the results in terms of nodal rotations, whereas displacements are

about the same for both the undamaged and the damaged beam.

In particular, nodal displacements for the first two modes (Figs. 13, 14) are approximately

coincident, while in the third mode, shown in Fig. 15, one can note some differences in corre-
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(a) (b)

Fig. 15 Cantilever beam: mode 3 - Free vibrations analysis of the undamaged beam (solid line) and the damaged

one (dashed line). In (a) the displacement field is shown, (b) contains the rotation field.

spondence of the cracked zone. On the contrary, the variations in behaviour of the rotation field

are visible in all of the three modes considered in this example. Also for this structure, in the

free vibration analysis it is assumed that the finite element length adopted for the discretization

of the three segments must be the same with the aim to provide more representative results.

As one can observe from Fig. 16, variations of frequencies, given from the evaluation of (27),

assume their maximum value where the flexural curvature is greater and they decrease where

the curvature is lower.

Furthermore, also in this numerical example, it is possible to note that variations of frequencies

are strongly dependent on the damage magnitude: in fact, they grow with this last one and if

β → 0 then the non-dimensional frequency variation ∆ωi/ω
U
i → 0 (i = 1, 2, 3).

4 Damage Detection: Inverse Problem

Considering now the problem (22), when F and x are given and p is the unknown, we have

to do with an inverse problem. The damage identification procedure considered in this paper is

based on the comparison between the frequencies: this method, as suggested in [21, 22, 24] is well
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(a) (b)

(c)

Fig. 16 Cantilever beam: variations of the first three frequencies. Curves are obtained by varying both damage

position xD and magnitude β, for a fixed value of the damage extension bD = 0.10.

known as response quantities procedure. The aim of the inverse problem is to define the damage

parameters by using the following input data:

- frequencies of the beam in the undamaged condition

- experimental frequencies of the real beam subjected to damage.

It is important to specify that, in this paper, experimental data are given through the devel-

opment of the direct problem: in such way, one can control whether or not the damage parameters

are really found and test the robustness of the method.
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4.1 Numerical Optimization

This is a typical case of nonlinear constrained optimization (NCO) because the objective function

is nonlinear, the damage parameters are subjected to linear inequalities and they are characterized

by both lower and upper bounds. So, the general structure of a NCO problem is the following

(vector inequalities are intended componentwise):

min
x
f (x) s.t.

A · x ≤ b , Aeq · x = beq , lb ≤ x ≤ ub , c (x) ≤ 0 , ceq (x) = 0 .

(28)

In our case, the objective function used, which, as previously mentioned, is based on the

comparison between experimental and analytical frequencies, is

f(xD, bD, β) =
∑
i

∣∣∣∣∣ωDi − ω̃Di (xD, bD, β)

ωUi

∣∣∣∣∣
2

i = 1, 2, 3. , (29)

where ωDi is the experimental value of the i-th frequency of the real beam subjected to damage,

ω̃Di (xD, bD, β) is the analytical expression of the i-th frequency defined as a function of the

damage parameters and ωUi is the frequency value of the undamaged beam. With reference to

(28), and taking into account of the non-dimensional parameters (23), the linear inequalities

bD/2 ≤ xD ≤ 1− bD/2, can be expressed in matrix form as

A =

−1 1/2 0

1 1/2 0

 , x = (xD, bD, β)
T
, b = (0, 1)

T
. (30)

Furthermore, the non-dimensional parameters (23) are bounded as follow:

0 ≤ xD ≤ 1 , 0 ≤ bD ≤ 1 , 0 ≤ β ≤ 1 ,

and in vectorial form assume the following form

lb = (lbxD
, lbbD , lbβ)

T
= (0, 0, 0)

T
, ub = (ubxD

, ubbD , ubβ)
T

= (1, 1, 1)
T
. (31)
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Finally, the linear equalities constraints and the nonlinear equalities/inequalities constraints in

(28) are not present in this optimization problem. Since the objective function is non-convex,

the traditional optimization methods (such as barrier m., penalty m., trust region m., etc.) allow

to define the damage parameters only if the initial point x0 is sufficiently close to the global

minimum.

In constrained optimization, the general aim is to transform the problem into an easier sub-

problem, that can then be solved and used as the basis of an iterative process. To find some

way, so that damage identification is successful for any choice of the initial point, a two-phase

procedure has been considered in this paper. So, the objective function directly derived by Eq.

28 becomes

f̂ (xD) = min
bD,β

f(xD, bD, β) , (32)

for prescribed values of both the damage extension bD and the coefficient of stiffness reduction

β, and it depends only on the damage position xD. It is important to note that, obviously, the

prescribed values of the two parameters bD and β must be respectful of the linear inequalities

and the bounds. In such way, the values of the damage parameters that minimize the differences

between experimental and analytical frequencies are uniquely defined by using only the first three

frequencies of the beam.

The algorithm adopted is based on the active-set method, that focuses on the solution of

the Karush-Kuhn-Tucker (KKT) equations. The KKT equations are necessary conditions for

optimality for a NCO problem. Denoted with n the number of damage parameters and with

m the number of constraints, referring to the problem (28) the Kuhn-Tucker theorem says us

that, if the constraints are qualified in x∗i (i = 1, . . . , n) then exists a vector of multipliers λ∗j

(j = 1, . . . ,m), known as Kuhn-Tucker multipliers, such that x∗i and λ∗j are solutions of the

following system of optimality conditions:

a ∇f(x∗i )−
∑m
j=1 λ

∗
j∇(Ajix

∗
i ) ≤ 0,
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b x∗i ≥ 0, ∀ i = 1, . . . , n

c x∗i

[
∇f(x∗i )−

∑m
j=1 λ

∗
j∇(Ajix

∗
i )
]

= 0, ∀ i = 1, . . . , n

d bj −Ajix∗j ≥ 0, ∀ j = 1, . . . ,m

e λ∗j ≥ 0, ∀ j = 1, . . . ,m

f λ∗j
[
bj −Ajix∗j

]
= 0, ∀ j = 1, . . . ,m

From the m conditions (items d,e,f) it is clear that, if a multipliers λ∗j is positive then it must

be true that bj −Ajix∗j = 0 or, in other words, that this constraints is active. It follows that, in

the conditions (items a,b,c) only the active constraints in x∗i intervene. The procedure of damage

detection described in this Section has been integrated in an in-house code. The integration of

the damage procedure is truly necessary to solve automatically, at each step of optimization

problem, the numerical Finite Element analysis.

4.2 Numerical Examples

The numerical examples considered for the optimization procedure are relative to the structures

analyzed in the previous section. So, both geometric and mechanical properties of this structure

are those listed in Tables 1 and 2, whereas the values of the damage parameters vary as shown

in Table 3.

Table 3 Numerical example and relative values of the damage parameters considered

Structure Example xD bD β

Simply supported beam
1a 0.7 0.1 0.5

1b 0.5 0.2 0.3

Cantilever beam
2a 0.2 0.1 0.5

2b 0.5 0.2 0.3
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By applying the procedure described in section 4.1 to the input data listed in Table 3, we

obtain the results shown in Figs. 17-20. In Figs. 17-20 denoted by (a) the objective functions

f(xD, bD, β) are plotted for a prescribed minimum values bminD and βmin obtained by the opti-

mization process.

In Figs. 17 and 19 denoted by (a), it is important to note how the objective functions is non-

convex and that the values of xD respect the physical conditions for which bD/2 ≤ xD ≤ 1−bD/2.

As expected, the objective functions relating to Example 1a and Example 1b are symmetric with

respect to the span of the variable xD. A very small finite element length has been chosen for this

investigation that allowed us to approach the absolute minimum of the quadratic error function

(that theoretically tends to zero when the number of elements goes to infinity).

As to Figs. 17-20 denoted by (b), which contain the interpolating surface of the objective

function f(xD, bD, β) for a prescribed value of xminD that is the minimum value obtained by the

optimization procedure, the global minimums are indicated with a red square.

(a) (b)

Fig. 17 Objective function f(xD, bD, β) of Example 1a: (a) f(xD) = f(xD, b
min
D βmin) - (b) f(bD, β) =

f(xmin
D , bD, β).
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(a) (b)

Fig. 18 Objective function f(xD, bD, β) of Example 1b: (a) f(xD) = f(xD, b
min
D βmin) - (b) f(bD, β) =

f(xmin
D , bD, β).

(a) (b)

Fig. 19 Objective function f(xD, bD, β) of Example 2a: (a) f(xD) = f(xD, b
min
D βmin) - (b) f(bD, β) =

f(xmin
D , bD, β).

In practical cases, it is hard to get extremely accurate frequencies and this can cause a wrong

damage identification: to avoid such type of problem, one may use a greater number of frequencies

to search for the absolute minimum. In spite of this, the use of higher frequencies introduces

irregularities in the objective function that are likely to make damage detection more complex.

In fact, by observing Figs. 17,19 and 20 it is possible to note that the objective function presents
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(a) (b)

Fig. 20 Objective function f(xD, bD, β) of Example 2b: (a) f(xD) = f(xD, b
min
D βmin) - (b) f(bD, β) =

f(xmin
D , bD, β).

more than one minimum and this calls for higher precision in on-site frequency measurement.

Therefore the fundamental requirements for damage detection in the real case are both the high

quality of frequencies and a great number of experimental measurements.

Finally, the algorithm implemented for the development of the inverse problem is rather sim-

ple but considerably onerous in computational terms because it scans the whole structure to

find damage parameters values that minimize the difference between experimental and analyti-

cal frequencies. It follows that a damage identification problem developed with such numerical

optimization technique and applied to a complex structure may require a considerable execution

time, even though it guarantees the definition of the global minimum.

5 Conclusions

After a brief introduction of the governing strong form, the Timoshenko interdependent interpo-

lation element has been derived using a weak formulation setting. As for transverse displacement
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and nodal rotations, Hermite interpolation functions and quadratic functions have been used,

respectively.

By using the interdependent interpolation element and with reference to a beam subjected

to a single diffused cracked zone, the direct problem, that consists in the study of the change in

behaviour of the beam due to the presence of damage, is investigated. It results that the damaged

beam presents a greater deformability than the undamaged one and that the differences are

visible especially in terms of nodal rotations for both the static and the free vibrations analysis.

Furthermore, the non-dimensional variations of the first three frequencies of the beam are studied

by varying the value of the damage parameters.

Starting from the first three frequencies obtained by the development of the direct problem,

the inverse problem, that consists in the definition of the unknown damage parameters of a

structure, is presented through the implementation of an optimization algorithm organized in a

two-phase procedure by which we minimize an objective function based on the difference between

experimental and analytical frequencies. This algorithm focuses on the solution of the Karush-

Kuhn-Tucker equations and guarantees the definition of the global minimum in spite of its great

computational cost.

Through the analysis of two numerical examples, it is demonstrated that only the first three

frequencies are required to find the global minimum of the objective function for the experimental

study, whereas in the real case it is necessary to use more than three frequencies because their

measurements is often affected by errors that can compromise the accuracy of the solution.

References

1. Casciati, S.: Stiffness identification and damage localization via differential evolution algo-

rithms. Structural Control and Health Monitoring 15(3), 436–449 (2008). DOI 10.1002/



Beam damage identification method using interdependent element 29

stc.236. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-42449155569&

doi=10.1002%2fstc.236&partnerID=40&md5=b89bbfaba461119a67b623552c62ca5b

2. Casciati, S., Elia, L.: The potential of the firefly algorithm for damage localization

and stiffness identification. Studies in Computational Intelligence 585, 163–178 (2015).

DOI 10.1007/978-3-319-13826-8 9. URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-84927144572&doi=10.1007%2f978-3-319-13826-8_9&partnerID=40&md5=

c5746f996b97305c65c6d53b4db8fef9

3. Casciati, F., Faravelli, L.: Sensor placement driven by a model order reduction (mor) reason-

ing. Smart Structures and Systems 13(3), 343–352 (2014). DOI 10.12989/sss.2014.13.3.343.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896984926&doi=10.

12989%2fsss.2014.13.3.343&partnerID=40&md5=99259bdcbba1c08ab00d759995ef8689

4. Friedman, Z., Kosmatka, J.: An improved two-node timoshenko beam finite element. Com-

puters and Structures 47(3), 473–481 (1993). DOI 10.1016/0045-7949(93)90243-7. URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027907486&doi=10.1016%

2f0045-7949%2893%2990243-7&partnerID=40&md5=eeb8f70bcb806726062820f1182f072a

5. Reddy, J.: On locking-free shear deformable beam finite elements. Computer

Methods in Applied Mechanics and Engineering 149(1-4), 113–132 (1997). DOI

10.1016/S0045-7825(97)00075-3. URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-0031248593&doi=10.1016%2fS0045-7825%2897%2900075-3&partnerID=40&

md5=d741249f5d29aefbb6a982c742cf35ba

6. Reddy, J.: On the dynamic behaviour of the timoshenko beam finite elements.

Sadhana - Academy Proceedings in Engineering Sciences 24(3), 175–198 (1999).

DOI 10.1007/BF02745800. URL https://www.scopus.com/inward/record.

uri?eid=2-s2.0-0033339906&doi=10.1007%2fBF02745800&partnerID=40&md5=

db83695996dcfd5672d43336fad7fdea

https://www.scopus.com/inward/record.uri?eid=2-s2.0-42449155569&doi=10.1002%2fstc.236&partnerID=40&md5=b89bbfaba461119a67b623552c62ca5b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-42449155569&doi=10.1002%2fstc.236&partnerID=40&md5=b89bbfaba461119a67b623552c62ca5b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927144572&doi=10.1007%2f978-3-319-13826-8_9&partnerID=40&md5=c5746f996b97305c65c6d53b4db8fef9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927144572&doi=10.1007%2f978-3-319-13826-8_9&partnerID=40&md5=c5746f996b97305c65c6d53b4db8fef9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927144572&doi=10.1007%2f978-3-319-13826-8_9&partnerID=40&md5=c5746f996b97305c65c6d53b4db8fef9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896984926&doi=10.12989%2fsss.2014.13.3.343&partnerID=40&md5=99259bdcbba1c08ab00d759995ef8689
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896984926&doi=10.12989%2fsss.2014.13.3.343&partnerID=40&md5=99259bdcbba1c08ab00d759995ef8689
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027907486&doi=10.1016%2f0045-7949%2893%2990243-7&partnerID=40&md5=eeb8f70bcb806726062820f1182f072a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027907486&doi=10.1016%2f0045-7949%2893%2990243-7&partnerID=40&md5=eeb8f70bcb806726062820f1182f072a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031248593&doi=10.1016%2fS0045-7825%2897%2900075-3&partnerID=40&md5=d741249f5d29aefbb6a982c742cf35ba
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031248593&doi=10.1016%2fS0045-7825%2897%2900075-3&partnerID=40&md5=d741249f5d29aefbb6a982c742cf35ba
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031248593&doi=10.1016%2fS0045-7825%2897%2900075-3&partnerID=40&md5=d741249f5d29aefbb6a982c742cf35ba
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033339906&doi=10.1007%2fBF02745800&partnerID=40&md5=db83695996dcfd5672d43336fad7fdea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033339906&doi=10.1007%2fBF02745800&partnerID=40&md5=db83695996dcfd5672d43336fad7fdea
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033339906&doi=10.1007%2fBF02745800&partnerID=40&md5=db83695996dcfd5672d43336fad7fdea


30 Marco Pingaro et al.

7. Mukherjee, S., Reddy, J., Krishnamoorthy, C.: Convergence properties and deriva-

tive extraction of the superconvergent timoshenko beam finite element. Computer

Methods in Applied Mechanics and Engineering 190(26-27), 3475–3500 (2001). DOI

10.1016/S0045-7825(00)00280-2. URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-0035896049&doi=10.1016%2fS0045-7825%2800%2900280-2&partnerID=40&

md5=ebac464c039c772edcbd446dbb2f9068

8. Hearn, G., Testa, R.: Modal analysis for damage detection in structures. Jour-

nal of Structural Engineering (United States) 117(10), 3042–3063 (1991). DOI

10.1061/(ASCE)0733-9445(1991)117:10(3042). URL https://www.scopus.com/inward/

record.uri?eid=2-s2.0-84930776372&doi=10.1061%2f%28ASCE%290733-9445%281991%

29117%3a10%283042%29&partnerID=40&md5=d78e8425e60af1617fe065bfd1d03c62

9. Davini, C., Gatti, F., Morassi, A.: A damage analysis of steel beams. Meccanica 28(1),

27–37 (1993). DOI 10.1007/BF00990287. URL https://www.scopus.com/inward/

record.uri?eid=2-s2.0-0002605536&doi=10.1007%2fBF00990287&partnerID=40&md5=

59fcc6018d94a94c64ee4a12a1661fc8

10. Bicanic, N., Chen, H.P.: Damage identification in framed structures using natural fre-

quencies. International Journal for Numerical Methods in Engineering 40(23), 4451–4468

(1997). DOI 10.1002/(SICI)1097-0207(19971215)40:23〈4451::AID-NME269〉3.0.CO;2-L.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031352908&doi=10.

1002%2f%28SICI%291097-0207%2819971215%2940%3a23%3c4451%3a%3aAID-NME269%3e3.

0.CO%3b2-L&partnerID=40&md5=c0527b420b70ba5e40480435fb95de40

11. Lew, J.S.: Using transfer function parameter changes for damage detection of struc-

tures. AIAA Journal 33(11), 2189–2193 (1995). DOI 10.2514/3.12965. URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029484590&doi=10.2514%

2f3.12965&partnerID=40&md5=d2c1f333f281ad5c2a043cb698981153

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035896049&doi=10.1016%2fS0045-7825%2800%2900280-2&partnerID=40&md5=ebac464c039c772edcbd446dbb2f9068
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035896049&doi=10.1016%2fS0045-7825%2800%2900280-2&partnerID=40&md5=ebac464c039c772edcbd446dbb2f9068
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0035896049&doi=10.1016%2fS0045-7825%2800%2900280-2&partnerID=40&md5=ebac464c039c772edcbd446dbb2f9068
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930776372&doi=10.1061%2f%28ASCE%290733-9445%281991%29117%3a10%283042%29&partnerID=40&md5=d78e8425e60af1617fe065bfd1d03c62
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930776372&doi=10.1061%2f%28ASCE%290733-9445%281991%29117%3a10%283042%29&partnerID=40&md5=d78e8425e60af1617fe065bfd1d03c62
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930776372&doi=10.1061%2f%28ASCE%290733-9445%281991%29117%3a10%283042%29&partnerID=40&md5=d78e8425e60af1617fe065bfd1d03c62
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0002605536&doi=10.1007%2fBF00990287&partnerID=40&md5=59fcc6018d94a94c64ee4a12a1661fc8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0002605536&doi=10.1007%2fBF00990287&partnerID=40&md5=59fcc6018d94a94c64ee4a12a1661fc8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0002605536&doi=10.1007%2fBF00990287&partnerID=40&md5=59fcc6018d94a94c64ee4a12a1661fc8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031352908&doi=10.1002%2f%28SICI%291097-0207%2819971215%2940%3a23%3c4451%3a%3aAID-NME269%3e3.0.CO%3b2-L&partnerID=40&md5=c0527b420b70ba5e40480435fb95de40
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031352908&doi=10.1002%2f%28SICI%291097-0207%2819971215%2940%3a23%3c4451%3a%3aAID-NME269%3e3.0.CO%3b2-L&partnerID=40&md5=c0527b420b70ba5e40480435fb95de40
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031352908&doi=10.1002%2f%28SICI%291097-0207%2819971215%2940%3a23%3c4451%3a%3aAID-NME269%3e3.0.CO%3b2-L&partnerID=40&md5=c0527b420b70ba5e40480435fb95de40
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029484590&doi=10.2514%2f3.12965&partnerID=40&md5=d2c1f333f281ad5c2a043cb698981153
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029484590&doi=10.2514%2f3.12965&partnerID=40&md5=d2c1f333f281ad5c2a043cb698981153


Beam damage identification method using interdependent element 31

12. Lin, C.: Location of modeling errors using modal test data. AIAA Journal 28(9),

1650–1654 (1990). DOI 10.2514/3.25264. URL https://www.scopus.com/inward/

record.uri?eid=2-s2.0-0025493399&doi=10.2514%2f3.25264&partnerID=40&md5=

5579581b5a3ce9a64ebeabbb75bd8d64

13. Cornwell, P., Doebling, S., Farrar, C.: Application of the strain energy damage detec-

tion method to plate-like structures. Journal of Sound and Vibration 224(2), 359–374

(1999). DOI 10.1006/jsvi.1999.2163. URL https://www.scopus.com/inward/record.

uri?eid=2-s2.0-0000189590&doi=10.1006%2fjsvi.1999.2163&partnerID=40&md5=

36bd96311474511a0bcd662297c9ec16

14. Wang, Z., Lin, R., Lim, M.: Structural damage detection using measured frf data.

Computer Methods in Applied Mechanics and Engineering 147(1-2), 187–197 (1997). DOI

10.1016/S0045-7825(97)00013-3. URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-0031186859&doi=10.1016%2fS0045-7825%2897%2900013-3&partnerID=40&

md5=e62555ab4b4ca55b42c28750a1044648

15. Thyagarajan, S., Schulz, M., Pai, P., Chung, J.: Detecting structural damage us-

ing frequency response functions. Journal of Sound and Vibration 210(1), 162–170

(1998). DOI 10.1006/jsvi.1997.1308. URL https://www.scopus.com/inward/record.

uri?eid=2-s2.0-0032003770&doi=10.1006%2fjsvi.1997.1308&partnerID=40&md5=

7ceeb2457ff86ea992d1330ea0ced082

16. Lofrano, E., Paolone, A., Vasta, M.: A perturbation approach for the identification of

uncertain structures. International Journal of Dynamics and Control 4(2), 204–212 (2016).

DOI 10.1007/s40435-015-0171-4. URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-84969753176&doi=10.1007%2fs40435-015-0171-4&partnerID=40&md5=

db6d60ff344e9d01dbb7abf23e1583eb

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025493399&doi=10.2514%2f3.25264&partnerID=40&md5=5579581b5a3ce9a64ebeabbb75bd8d64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025493399&doi=10.2514%2f3.25264&partnerID=40&md5=5579581b5a3ce9a64ebeabbb75bd8d64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025493399&doi=10.2514%2f3.25264&partnerID=40&md5=5579581b5a3ce9a64ebeabbb75bd8d64
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000189590&doi=10.1006%2fjsvi.1999.2163&partnerID=40&md5=36bd96311474511a0bcd662297c9ec16
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000189590&doi=10.1006%2fjsvi.1999.2163&partnerID=40&md5=36bd96311474511a0bcd662297c9ec16
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0000189590&doi=10.1006%2fjsvi.1999.2163&partnerID=40&md5=36bd96311474511a0bcd662297c9ec16
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031186859&doi=10.1016%2fS0045-7825%2897%2900013-3&partnerID=40&md5=e62555ab4b4ca55b42c28750a1044648
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031186859&doi=10.1016%2fS0045-7825%2897%2900013-3&partnerID=40&md5=e62555ab4b4ca55b42c28750a1044648
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031186859&doi=10.1016%2fS0045-7825%2897%2900013-3&partnerID=40&md5=e62555ab4b4ca55b42c28750a1044648
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032003770&doi=10.1006%2fjsvi.1997.1308&partnerID=40&md5=7ceeb2457ff86ea992d1330ea0ced082
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032003770&doi=10.1006%2fjsvi.1997.1308&partnerID=40&md5=7ceeb2457ff86ea992d1330ea0ced082
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032003770&doi=10.1006%2fjsvi.1997.1308&partnerID=40&md5=7ceeb2457ff86ea992d1330ea0ced082
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969753176&doi=10.1007%2fs40435-015-0171-4&partnerID=40&md5=db6d60ff344e9d01dbb7abf23e1583eb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969753176&doi=10.1007%2fs40435-015-0171-4&partnerID=40&md5=db6d60ff344e9d01dbb7abf23e1583eb
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969753176&doi=10.1007%2fs40435-015-0171-4&partnerID=40&md5=db6d60ff344e9d01dbb7abf23e1583eb


32 Marco Pingaro et al.

17. Lofrano, E., Paolone, A., Vasta, M.: Identification of uncertain vibrating beams through

a perturbation approach. ASCE-ASME Journal of Risk and Uncertainty in Engineer-

ing Systems, Part A: Civil Engineering 2(2) (2016). DOI 10.1061/AJRUA6.0000845.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045334734&doi=10.

1061%2fAJRUA6.0000845&partnerID=40&md5=b9063a16bdabe22812fcab660d388e96

18. Worden, K., Farrar, C., Manson, G., Park, G.: The fundamental axioms of struc-

tural health monitoring. Proccedings of the Royal Society A 463, 1639–1664 (2007).

DOI 10.1098/rspa.2007.1834. URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-36349001267&doi=10.1098%2frspa.2007.1834&partnerID=40&md5=

dce64a9c2a74b62f7831c7c7d54b5de9

19. Sayyad, F., Kumar, B.: Identification of crack location and crack size in a sim-

ply supported beam by measurement of natural frequencies. JVC/Journal of

Vibration and Control 18(2), 183–190 (2012). DOI 10.1177/1077546310395979.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856286400&doi=10.

1177%2f1077546310395979&partnerID=40&md5=24fdcfc9ccc7197fe68a8270c661a0b2

20. Sayyad, F., Kumar, B., Khan, S.: Approximate analytical method for damage de-

tection in free-free beam by measurement of axial vibrations. International Jour-

nal of Damage Mechanics 22(1), 133–142 (2013). DOI 10.1177/1056789512440897.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873129814&doi=10.

1177%2f1056789512440897&partnerID=40&md5=9f474a761a322463e3f9ee72702e7a40

21. Vestroni, F., Capecchi, D.: Damage evaluation in cracked vibrating beams us-

ing experimental frequencies and finite element models. JVC/Journal of Vibra-

tion and Control 2(1), 69–86 (1996). DOI 10.1177/107754639600200105. URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030085845&doi=10.1177%

2f107754639600200105&partnerID=40&md5=3b1a133b186ccd10da9e92d9e2fca13a

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045334734&doi=10.1061%2fAJRUA6.0000845&partnerID=40&md5=b9063a16bdabe22812fcab660d388e96
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045334734&doi=10.1061%2fAJRUA6.0000845&partnerID=40&md5=b9063a16bdabe22812fcab660d388e96
https://www.scopus.com/inward/record.uri?eid=2-s2.0-36349001267&doi=10.1098%2frspa.2007.1834&partnerID=40&md5=dce64a9c2a74b62f7831c7c7d54b5de9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-36349001267&doi=10.1098%2frspa.2007.1834&partnerID=40&md5=dce64a9c2a74b62f7831c7c7d54b5de9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-36349001267&doi=10.1098%2frspa.2007.1834&partnerID=40&md5=dce64a9c2a74b62f7831c7c7d54b5de9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856286400&doi=10.1177%2f1077546310395979&partnerID=40&md5=24fdcfc9ccc7197fe68a8270c661a0b2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856286400&doi=10.1177%2f1077546310395979&partnerID=40&md5=24fdcfc9ccc7197fe68a8270c661a0b2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873129814&doi=10.1177%2f1056789512440897&partnerID=40&md5=9f474a761a322463e3f9ee72702e7a40
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873129814&doi=10.1177%2f1056789512440897&partnerID=40&md5=9f474a761a322463e3f9ee72702e7a40
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030085845&doi=10.1177%2f107754639600200105&partnerID=40&md5=3b1a133b186ccd10da9e92d9e2fca13a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030085845&doi=10.1177%2f107754639600200105&partnerID=40&md5=3b1a133b186ccd10da9e92d9e2fca13a


Beam damage identification method using interdependent element 33

22. Cerri, M., Vestroni, F.: Detection of damage in beams subjected to diffused cracking.

Journal of Sound and Vibration 234(2), 259–276 (2000). DOI 10.1006/jsvi.1999.2887. URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034227847&doi=10.1006%

2fjsvi.1999.2887&partnerID=40&md5=a524ece347c1d2d20c496236b3f69b07

23. Vestroni, F., Capecchi, D.: Damage detection in beam structures based on frequency

measurements. Journal of Engineering Mechanics 126(7), 761–768 (2000). DOI

10.1061/(ASCE)0733-9399(2000)126:7(761). URL https://www.scopus.com/inward/

record.uri?eid=2-s2.0-0033721959&doi=10.1061%2f%28ASCE%290733-9399%282000%

29126%3a7%28761%29&partnerID=40&md5=4a4abaf7fdfd938ee5875bd3fa1fc279

24. Capecchi, D., Vestroni, F.: Monitoring of structural systems by using frequency

data. Earthquake Engineering and Structural Dynamics 28(5), 447–461 (1999).

DOI 10.1002/(SICI)1096-9845(199905)28:5〈447::AID-EQE812〉3.0.CO;2-2. URL

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032991364&doi=10.1002%

2f%28SICI%291096-9845%28199905%2928%3a5%3c447%3a%3aAID-EQE812%3e3.0.CO%

3b2-2&partnerID=40&md5=b2cfdd3f966fb48ddce925a9c7d2989f

25. Sinha, J., Friswell, M., Edwards, S.: Simplified models for the location of cracks in beam

structures using measured vibration data. Journal of Sound and Vibration 251(1), 13–38

(2002). DOI 10.1006/jsvi.2001.3978. URL https://www.scopus.com/inward/record.

uri?eid=2-s2.0-0037149207&doi=10.1006%2fjsvi.2001.3978&partnerID=40&md5=

7bf8f3fef0ff4a7207683321bc6e9f8f

https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034227847&doi=10.1006%2fjsvi.1999.2887&partnerID=40&md5=a524ece347c1d2d20c496236b3f69b07
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034227847&doi=10.1006%2fjsvi.1999.2887&partnerID=40&md5=a524ece347c1d2d20c496236b3f69b07
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033721959&doi=10.1061%2f%28ASCE%290733-9399%282000%29126%3a7%28761%29&partnerID=40&md5=4a4abaf7fdfd938ee5875bd3fa1fc279
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033721959&doi=10.1061%2f%28ASCE%290733-9399%282000%29126%3a7%28761%29&partnerID=40&md5=4a4abaf7fdfd938ee5875bd3fa1fc279
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033721959&doi=10.1061%2f%28ASCE%290733-9399%282000%29126%3a7%28761%29&partnerID=40&md5=4a4abaf7fdfd938ee5875bd3fa1fc279
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032991364&doi=10.1002%2f%28SICI%291096-9845%28199905%2928%3a5%3c447%3a%3aAID-EQE812%3e3.0.CO%3b2-2&partnerID=40&md5=b2cfdd3f966fb48ddce925a9c7d2989f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032991364&doi=10.1002%2f%28SICI%291096-9845%28199905%2928%3a5%3c447%3a%3aAID-EQE812%3e3.0.CO%3b2-2&partnerID=40&md5=b2cfdd3f966fb48ddce925a9c7d2989f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0032991364&doi=10.1002%2f%28SICI%291096-9845%28199905%2928%3a5%3c447%3a%3aAID-EQE812%3e3.0.CO%3b2-2&partnerID=40&md5=b2cfdd3f966fb48ddce925a9c7d2989f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037149207&doi=10.1006%2fjsvi.2001.3978&partnerID=40&md5=7bf8f3fef0ff4a7207683321bc6e9f8f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037149207&doi=10.1006%2fjsvi.2001.3978&partnerID=40&md5=7bf8f3fef0ff4a7207683321bc6e9f8f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037149207&doi=10.1006%2fjsvi.2001.3978&partnerID=40&md5=7bf8f3fef0ff4a7207683321bc6e9f8f

	Introduction
	Interdependent Interpolation Element: Formulation
	Damage Detection: Direct Problem
	Damage Detection: Inverse Problem
	Conclusions

