Skip to main content
Log in

Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the generalized polynomial complementarity problem, which is a subclass of generalized complementarity problems with the involved map pairs being two polynomials. Based on the analysis on two structured tensor pairs located in the heading items of polynomials involved, and by using the degree theory, we achieve several results on the nonemptiness and compactness of solution sets. When generalized polynomial complementarity problems reduce to polynomial complementarity problems (or tensor complementarity problems), our results reduce to the existing ones. In particular, one of our results broadens the one proposed in a very recent paper to guarantee the nonemptiness and compactness of solution sets to generalized polynomial complementarity problems. Furthermore, we establish several existence and uniqueness results, which enrich the theory of generalized complementarity problems with the observation that some known conditions to guarantee the existence and uniqueness of solutions may not hold for a lot of generalized polynomial complementarity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalashnikov, V.V.: Complementarity Problem and Generalized Oligopoly Models. Habilitation Thesis, Central Economics and Mathematics Institute, Moscow (1995)

  2. Ferris, M., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)

    Article  MathSciNet  Google Scholar 

  3. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  4. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, New York (2003)

    MATH  Google Scholar 

  5. Zhang, L.: A nonlinear complementarity model for supply chain network equilibrium. J. Ind. Manag. Optim. 3(4), 727–737 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Bensoussan, A., Lions, J.L.: Nouvelle formulation de problémes de contrôle impulsionnel et applications. C. R. Acad. Sci. Paris, Ser. A-B 276, 1189–1192 (1973)

  7. Isac, G.: On the implicit complementarity problem in Hilbert spaces. Bull. Austral. Math. Soc. 32, 251–260 (1985)

    Article  MathSciNet  Google Scholar 

  8. Isac, G.: Complementarity problem via nonlinear eigenvalues problems and coincidence equations on cones. Math. Method. Oper. Res. 51, 23–33 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Isac, G., Carbone, A.: Exceptional families of elements for continuous functions: some applications to complementarity theory. J. Global Optim. 15(2), 181–196 (1999)

    Article  MathSciNet  Google Scholar 

  10. Kalashnikov, V.V., Isac, G.: Solvability of implicit complementarity problems. Ann. Oper. Res. 116(1), 199–221 (2002)

    Article  MathSciNet  Google Scholar 

  11. Nie, J.: Tight relaxations for polynomial optimization and Lagrange multiplier expressions. Math. Program. 178, 1–37 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a non-negative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)

    Article  MathSciNet  Google Scholar 

  13. Qi, L., Yu, G., Wu, E.X.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MathSciNet  Google Scholar 

  14. Becker, H., Albera, L., Comon, P., Gribonval, R., Wendling, F., Merlet, I.: Brain-source imaging: from sparse to tensor models. IEEE Signal Process. Mag. 32(6), 100–112 (2015)

    Article  Google Scholar 

  15. Zhou, G., Zhao, Q., Zhang, Y., Adalı, T., Xie, S., Cichocki, A.: Linked component analysis from matrices to high-order tensors: applications to biomedical data. Proc. IEEE 104(2), 310–331 (2016)

    Article  Google Scholar 

  16. Huang, Z.H., Qi, L.: Formulating an \(n\)-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66(3), 557–576 (2017)

    Article  MathSciNet  Google Scholar 

  17. Wang, Y., Huang, Z.H., Qi, L.: Global uniqueness and solvability of tensor variational inequalities. J. Optim. Theory Appl. 177(1), 137–152 (2018)

    Article  MathSciNet  Google Scholar 

  18. Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33, 308–323 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Che, M., Qi, L., Wei, Y.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wang, Y., Huang, Z.H., Bai, X.L.: Exceptionally regular tensors and tensor complementarity problems. Optim. Methods Softw. 31, 815–828 (2016)

    Article  MathSciNet  Google Scholar 

  21. Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)

    Article  MathSciNet  Google Scholar 

  22. Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)

    Article  MathSciNet  Google Scholar 

  23. Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)

    Article  MathSciNet  Google Scholar 

  24. Liu, D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear Algebra 66(9), 1726–1749 (2018)

    Article  MathSciNet  Google Scholar 

  25. Wang, X., Che, M., Wei, Y.: Global uniqueness and solvability of tensor complementarity problems for \({\cal{H}}_+\)-tensors. Numer. Algor. (2019). https://doi.org/10.1007/s11075-019-00769-9

    Article  Google Scholar 

  26. Guo, Q., Zheng, M.M., Huang, Z.H.: Properties of \(S\)-tensors. Linear Multilinear Algebra 67(4), 685–696 (2019)

    Article  MathSciNet  Google Scholar 

  27. Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12(3), 639–648 (2018)

    Article  MathSciNet  Google Scholar 

  28. Zheng, M.M., Zhang, Y., Huang, Z.H.: Global error bounds for the tensor complementarity problem with a \(P\)-tensor. J. Ind. Manag. Optim. 15(2), 933–946 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Hu, S., Wang, J., Huang, Z.H.: Error bounds for the solution sets of quadratic complementarity problems. J. Optim. Theory Appl. 179, 983–1000 (2018)

    Article  MathSciNet  Google Scholar 

  30. Yu, W., Ling, C., He, H.: On the properties of tensor complementarity problems. 14(4), 675-691 (2018)

  31. Hieu, V.T.: On the \(R_0\)-tensors and the solution map of tensor complementarity problems. J. Optim. Theory Appl. 181(1), 163–183 (2019)

    Article  MathSciNet  Google Scholar 

  32. Huang, Z.H., Qi, L.: Tensor complementarity problems - part I: basic theory. J. Optim. Theory Appl. 183(1), 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  33. Qi, L., Huang, Z.H.: Tensor complementarity problems - part II: solution methods. J. Optim. Theory Appl. 183(2), 365–385 (2019)

    Article  MathSciNet  Google Scholar 

  34. Huang, Z.H., Qi, L.: Tensor complementarity problems - part III: applications. J. Optim. Theory Appl. 183(3), 771–791 (2019)

    Article  MathSciNet  Google Scholar 

  35. Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)

    Book  Google Scholar 

  36. Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13, 227–241 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Ling, L., He, H., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67, 341–358 (2018)

    Article  MathSciNet  Google Scholar 

  38. Ling, L., Ling, C., He, H.: Properties of the solution set of generalized polynomial complementarity problems. arXiv: 1905.00670. To appear in Pac. J. Optim. (2019)

  39. Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)

    Article  MathSciNet  Google Scholar 

  40. Kanzow, C., Fukushima, M.: Equivalence of the generalized complementarity problem to differentiable unconstrained minimization. J. Optim. Theory Appl. 90, 581–603 (1996)

    Article  MathSciNet  Google Scholar 

  41. Wang, J., Huang, Z.H., Xu, Y.: Existence and uniqueness of solutions of the generalized polynomial variational inequality. Optim. Lett. https://doi.org/10.1007/s11590-019-01461-6 (2019)

Download references

Acknowledgements

The authors are very thankful to the anonymous reviewers for their useful comments and constructive advice. The second author’s work is partially supported by the National Natural Science Foundation of China (Grant No. 11871051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

Communicated by Guoyin Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, MM., Huang, ZH. & Ma, XX. Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems. J Optim Theory Appl 185, 80–98 (2020). https://doi.org/10.1007/s10957-020-01645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01645-6

Keywords

Mathematics Subject Classification

Navigation