Skip to main content

Advertisement

Log in

A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Several iterative methods have been proposed in the literature for solving the variational inequalities in Hilbert or Banach spaces, where the underlying operator A is monotone and Lipschitz continuous. However, there are very few methods known for solving the variational inequalities, when the Lipschitz continuity of A is dispensed with. In this article, we introduce a projection-type algorithm for finding a common solution of the variational inequalities and fixed point problem in a reflexive Banach space, where A is pseudo-monotone and not necessarily Lipschitz continuous. Also, we present an application of our result to approximating solution of pseudo-monotone equilibrium problem in a reflexive Banach space. Finally, we present some numerical examples to illustrate the performance of our method as well as comparing it with related method in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 34, 138–142 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Hartman, P., Stampacchia, G.: On some non linear elliptic differential–functional equations. Acta Math. 115, 271–310 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  MATH  Google Scholar 

  5. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  6. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem. Comput. Appl. Math. (2019). https://doi.org/10.1007/s40314-019-1014-2

    Article  MATH  Google Scholar 

  7. Gibali, A., Reich, S., Zalas, R.: Iterative methods for solving variational inequalities in Euclidean space. J. Fixed Point Theory Appl. 17, 775–811 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math. 38(2), Article 77 (2019)

  9. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody. 12, 747–756 (1976). (In Russian)

    MathSciNet  MATH  Google Scholar 

  10. Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Mat. Metody. 12, 1164–1173 (1976)

    Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for variational inequality problems in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Halpern, B.: Fixed points of nonexpanding maps. Proc. Am. Math. Soc. 73, 957–961 (1967)

    MathSciNet  MATH  Google Scholar 

  14. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A self adaptive inertial subgradient extragradient algorithm for variational inequality and common fixed point of multivalued mappings in Hilbert spaces. Demonstr. Math. 52, 183–203 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. Numer. Funct. Anal. Optim. 30, 23–36 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kanzow, C., Shehu, Y.: Strong convergence of a double projection-type method for monotone variational inequalities in Hilbert spaces. J. Fixed Point Theory Appl. (2018). https://doi.org/10.1007/s11784-018-0531-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Gibali, A.: A new Bregman projection method for solving variational inequalities in Hilbert spaces. Pure Appl. Funct. Anal. 3(3), 403–415 (2018)

    MathSciNet  Google Scholar 

  22. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving system of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21(4), 1319–1344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cai, G., Gibali, A., Iyiola, O.S., Shehu, Y.: A new double-projection method for solving variational inequalities in Banach space. J. Optim. Theory Appl. 178(1), 219–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chidume, C.E., Nnakwe, M.O.: Convergence theorems of subgradient extragradient algorithm for solving variational inequalities and a convex feasibility problem. Fixed Theory Appl. 2018, 16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iiduka, H.: A new iterative algorithm for the variational inequality problem over the fixed point set of a firmly nonexpansive mapping. Optimization 59, 873–885 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iiduka, H., Yamada, I.: A use of conjugate gradient direction for the convex optimization problem over the fixed point set of a nonexpansive mapping. SIAM J. Optim. 19, 1881–1893 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Iiduka, H., Yamada, I.: A subgradient-type method for the equilibrium problem over the fixed point set and its applications. Optimization 58, 251–261 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity and Legendre functions in Banach space. Commun. Contemp. Math. 3, 615–647 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reem, D., Reich, S., De Pierro, A.: Re-examination of Bregman functions and new properties of their divergences. Optimization 68, 279–348 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems. Bull. Malays. Math. Sci. Soc. (2019). https://doi.org/10.1007/s40840-019-00781-1

    Article  MATH  Google Scholar 

  33. Borwein, J.M., Reich, S., Sabach, S.: A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept. J. Nonlinear Convex Anal. 12, 161–184 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computational and Infinite Dimensional Optimization. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  35. Butnariu, D., Reich, S., Zaslavski, A.J.: There are many totally convex functions. J. Convex Anal. 13, 623–632 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal., Article ID: 84919. 1-39 (2006)

  37. Reich, S., Sabach, S.: Two strong convergence theorem for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31(13), 22–44 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Reich, S., Sabach, S.: A strong convergence theorem for proximal type- algorithm in reflexive Banach spaces. J. Nonlinear Convex Anal. 10, 471–485 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators. Marce Dekker, New York, pp. 313–318 (1996)

  40. Mashreghi, J., Nasri, M.: Forcing strong convergence of Korpelevich’s method in Banach spaces with its applications in game theory. Nonlinear Anal. 72, 2086–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, L.J., Yang, M.F., Ansari, Q.H., Kassay, G.: Existence results for Stampacchia and Minty type implicit variational inequalities with multivalued maps. Nonlinear Anal. Theory Methods Appl. 61, 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Iusem, A.N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J. Glob. Optim. 50, 50–76 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yao, J.C.: Variational inequalities with generalized monotone operators. Math. Oper. Res. 19, 691–705 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space. Demonstr. Math. 51, 211–232 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems. Rend. Circ. Mat. Palermo (2019). https://doi.org/10.1007/s12215-019-00431-2

    Article  MATH  Google Scholar 

  47. Izuchukwu, C., Aremu, K.O., Mebawondu, A.A., Mewomo, O.T.: A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space. Appl. Gen. Topol. 20(1), 193–210 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Contemp. Math. 568, 225–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Aubin, J.P.: Optima and Equilibria. Springer, New York (1998)

    Book  MATH  Google Scholar 

  50. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  51. Bowers, A., Kalton, N.J.: An Introductory Course in Functional Analysis. Springer, New York (2014)

    Book  MATH  Google Scholar 

  52. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ceng, L.C., Teboulle, M., Yao, J.C.: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems. J. Optim. Theory Appl. 146, 19–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yao, Y., Postolache, M.: Iterative methods for pseudomonotone variational inequalities and fixed-point problems. J. Optim. Theory Appl. 155, 273–287 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Vuong, P.T.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176, 399–409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Editor in Chief and the anonymous reviewers for their careful reading, constructive comments and fruitful suggestions that substantially improved the manuscript. The first author acknowledges with thanks the bursary and financial support from Department of Science and Technology and National Research Foundation, Republic of South Africa Center of Excellence in Mathematical and Statistical Sciences (DST-NRF COE-MaSS) (BA2019-039) Doctoral Bursary. The second author acknowledges with thanks the International Mathematical Union Breakout Graduate Fellowship (IMU-BGF-20191101) Award for his doctoral study. The fourth author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant Number 119903). Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the CoE-MaSS, NRF and IMU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatosin Temitope Mewomo.

Additional information

Communicated by Antonino Maugeri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jolaoso, L.O., Taiwo, A., Alakoya, T.O. et al. A Strong Convergence Theorem for Solving Pseudo-monotone Variational Inequalities Using Projection Methods. J Optim Theory Appl 185, 744–766 (2020). https://doi.org/10.1007/s10957-020-01672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01672-3

Keywords

Mathematics Subject Classification

Navigation