
Noname manuscript No.
(will be inserted by the editor)

An Inexact Interior-Point Lagrangian Decomposition
Algorithm with Inexact Oracles

Deyi Liu · Quoc Tran-Dinh∗

Received: date / Accepted: date

Abstract We develop a new inexact interior-point Lagrangian decomposition
method to solve a wide range class of constrained composite convex optimiza-
tion problems. Our method relies on four techniques: Lagrangian dual de-
composition, self-concordant barrier smoothing, path-following, and proximal-
Newton technique. It also allows one to approximately compute the solution
of the primal subproblems (called the slave problems), which leads to inexact
oracles (i.e., inexact gradients and Hessians) of the smoothed dual problem
(called the master problem). The smoothed dual problem is nonsmooth, we
propose to use an inexact proximal-Newton method to solve it. By appropri-
ately controlling the inexact computation at both levels: the slave and master
problems, we still estimate a polynomial-time iteration-complexity of our al-
gorithm as in standard short-step interior-point methods. We also provide a
strategy to recover primal solutions and establish complexity to achieve an
approximate primal solution. We illustrate our method through two numer-
ical examples on well-known models with both synthetic and real data and
compare it with some existing state-of-the-art methods.

Keywords Interior-point Lagrangian decomposition · barrier smoothing ·
inexact oracle · proximal-Newton method · constrained convex optimization

Mathematics Subject Classification (2000) 90C25 · 90-08

1 Introduction
The Lagrangian dual decomposition framework is a classical technique to han-
dle constrained convex optimization problems with separable structures such
as conic, multi-stage stochastic, network, and distributed optimization prob-
lems [3,4,9,10,25]. This approach has been incorporated with interior-point

Deyi Liu · Quoc Tran-Dinh
Department of Statistics and Operations Research, The University of North Carolina at
Chapel Hill
333 Hanes Hall, UNC-Chapel Hill, NC27599
Emails: {deyi@live.unc.edu, quoctd@email.unc.edu}
∗Corresponding author.

ar
X

iv
:1

90
4.

09
01

6v
1

 [
m

at
h.

O
C

]
 1

8
A

pr
 2

01
9

2 Deyi Liu · Quoc Tran-Dinh

methods to obtain a dual decomposition interior-point framework in early
1990s [16]. Since then, many researchers have regularly applied this approach
to different problems. For example, [13] exploited this idea to develop a dual
decomposition algorithm for semidefinite programming, and [39] considered
this method for general convex and multi-stage stochastic programming. The
authors in [18] further investigated the method from [39] to solve a more gen-
eral class of problems and obtained more intensive and rigorous complexity
guarantees. The work [34] studied this framework under the effect of inexact
oracle computed by inexactly solving the primal subproblems up to a given
accuracy. Other related theoretical results include [5,12,14,15,24,27,37]. In
particular, [24] solved loosely coupled problems using message passing, and [5]
applied it to multi-agent optimization problems. However, none of these works
has investigated general constrained composite convex optimization settings
involving linear operators and allows both inexactness in the slave problems
and master problem altogether. In addition, existing methods do not handle
directly nonsmooth objectives but often introduce auxiliary variables to refor-
mulate the underlying problem into a smooth problem which may significantly
increase problem size and loose their theoretical guarantee.

Motivation and goals: Although the Lagrangian decomposition method is
classical, it is very useful to handle large-scale constrained convex problems
with separable structure by means of parallel and distributed computational
architectures. In this paper, we conduct an intensive study on the interior-
point Lagrangian decomposition (IPLD) framework considered in many exist-
ing works, especially [18,34,39], from the following aspects.
(a) Firstly, we consider a more general problem class than [16,18,34,39] by

handling directly a nonsmooth composite convex function with a linear
operator (see (2)) instead of couple linear equality constraints as in existing
methods by means of proximal Newton-type methods (see Subsection 5.1).

(b) Secondly, our method works with inexact oracles of the dual problem aris-
ing from inexactly solving the primal subproblems (the slave problems). We
explicitly describe the range of accuracies to flexibly control the tolerance
of the subproblems (see Subsection 4.2).

(c) Thirdly, we also exploit inexact proximal-Newton method to handle general
nonsmooth terms of the dual problems.

(d) Fourthly, we provide a thorough analysis for both the primal and dual
problems and derive concrete iteration-complexity bounds for our method.

(e) Finally, we incorporate our approach with a recent concept called “gener-
alized self-concordance” developed in [29] to handle new applications.

We are interested in the class of constrained composite convex problems where
g is smooth and satisfies some additional properties so that existing methods
often do not have a theoretical convergence guarantee. For instance, the objec-
tive function does not have Lipschitz gradient or is not “tractably proximal”.
We also consider a generic convex set where the projection onto it may not be
tractable to compute such as general polyhedra. Under such assumptions, our
problem setting covers a wide range class of applications ranging from opti-
mal control, operations research, and networks to machine learning, statistics,

An Inexact Interior-Point Lagrangian Decomposition Algorithm 3

and signal processing [2,7]. It also covers standard conic programming such
as linear programming, second-order cone programming, and semidefinite pro-
gramming.

Our contribution: We exploit the approach from [16,18,34,39] to develop
a new algorithm for solving a class of constrained convex optimization prob-
lems. The main idea is to smooth the dual problem using a self-concordant
barrier function [22] associated with the constraint set, and apply a path-
following scheme to solve the smoothed dual problem. While [16,18,39] ex-
actly follow this main stream, [34] proposed another path-following scheme
and analyzed its convergence under inexact computation. It also provides a
strategy to recover an approximate primal solution from its approximate dual
solution. Compared to [34], this work studies a much more general problem
class than [34]. In addition, it is different from existing works, including [34],
in several aspects as previously mentioned. To this end, we can summarize our
contribution as follows:

(a) We exploit the approach in [16,18,34,39] and combine it with recent new
mathematical tools in [23,29] to develop a new algorithm. The new math-
ematical tools allow us to cover much broader class of models than [16,18,
34,39], and to analyze polynomial-time iteration-complexity. In addition,
we handle a more general class of problems than [16,18,34,39] by allowing
general composite convex objectives involving linear operators (see (2)).

(b) We propose a new inexact interior-point Lagrangian decomposition algo-
rithm to solve this class of problems. Our algorithm can deal with inex-
act oracles of the dual problems arising from approximating the primal
subproblem solutions. It also uses an inexact proximal-Newton scheme to
approximate the search direction in the dual problem. We characterize ex-
plicitly the choice of all related parameters and accuracies based on our
analysis.

(c) We establish a polynomial-time iteration-complexity estimate of our method
to find an approximate optimal solution. Our algorithm can be viewed as
a short-step interior-point methods for general convex problems involving
Nesterov and Nemirovskii’s self-concordance structures. Our complexity
bound is the same as in standard interior-point methods (up to a constant
factor), while it is able to directly handle nonsmooth objective by means
of proximal operator.
In addition to the above main contribution, let us highlight some technical

contribution of our methods. Firstly, unlike other methods involving inexact
oracles in the literature [11], our inexact oracle is rendered from inexact solu-
tion of the subproblem. The accuracy level can be adaptively chosen instead
fixing as in existing methods to flexibly trade-off the computation cost by
choosing rough accuracy at the early iterations and decrease it in the last it-
erations. Secondly, solving the primal subproblem (slave problem) is reduced
to solve a nonlinear equation instead of a general convex problem as in some
existing decomposition methods. As a result, we can characterize an imple-
mentable criterion to control the inexactness of the primal subproblems by
using Newton-type schemes. Thirdly, instead of using unspecified parameters

4 Deyi Liu · Quoc Tran-Dinh

such as the radius of quadratic convergence region and contraction factor,
we compute these parameters explicitly using the theory of self-concordant
barriers as often seen in interior-point methods [19,22]. Finally, combining
inexact oracle and inexact methods make our algorithm practical since this
computation is unavoidable in iterative methods, especially, in decomposition
approaches when handling complex models.

Paper organization: The rest of this paper is organized as follows. Section 2
states the problem of interest, basic assumptions, and its dual form. Section 3
recalls some preliminary results on (generalized) self-concordance and self-
concordant barriers [22]. Section 4 focuses on barrier smoothing techniques
and inexact oracles. Section 5 presents our main algorithm and its complexity
analysis as well as convergence guarantees. Section 6 provides two numerical
examples to verify the theoretical results. For the sake of presentation, we
move all the technical proofs to the appendix.

2 Problem statement, basic assumptions, and dual formulation
Notation and terminologies: We work with finite dimensional vector space
Rp or Rn endowed with standard inner product x>y or 〈x, y〉 and Euclidean

norm ‖x‖2 :=
√
x>x. We denote by Sp+ (resp., Sp++) the set of symmetric

positive semidefinite matrices (resp., symmetric positive definite matrices).

Given H ∈ Sp++, we define a weighted norm ‖u‖H :=
(
u>Hu

)1/2
and its dual

norm ‖v‖∗H :=
(
v>H−1v

)1/2
for any vectors u and v in Rp. For X,Y ∈ Sp+,

X � Y means that Y −X ∈ Sp+ and X � Y stands for X − Y ∈ Sp+.
Given a three-time differentiable and strictly convex function f , we define

the following local norms for any u and v in Rp:

‖u‖x :=
(
u>∇2f(x)u

)1/2
, and ‖v‖∗x :=

(
v>∇2f(x)−1v

)1/2
. (1)

They also satisfy the Cauchy-Schwarz inequality, i.e. u>v ≤ ‖u‖x‖v‖∗x. We say
that f is µf -strongly convex if f(·) − (µf/2)‖ · ‖2 remains convex. We also
often use the following two convex functions: ω(τ) := τ − ln(1 + τ) for τ ≥ 0,
and ω∗(τ) := −τ − ln(1 − τ) for τ ∈ [0, 1). These functions are smooth and
strictly convex. We also use O (·) to denote big-O complexity notion.

2.1 The primal problem and basic assumptions
Consider the following constrained composite convex optimization problem:

P ? := min
x∈K

{
P (x) := g(x) + φ(Ax)

}
, (2)

where g : Rp → R is a smooth and convex function, φ : Rn → R ∪ {+∞}
is a proper, closed, and convex function, A ∈ Rn×p, and K is a nonempty,
closed, and convex set in Rp. As a special case of (2), if we choose φ := δC ,
the indicator of a nonempty, closed, and convex set C in Rn, then (2) reduces
to the following general constrained convex problem:

g? := min
x∈K

{
g(x) s.t. Ax ∈ C

}
. (3)

An Inexact Interior-Point Lagrangian Decomposition Algorithm 5

Without loss of generality, we can also assume that g and K possess a separable
structure as follows:

g(x) :=

N∑
i=1

gi(xi) and K := K1 × · · · × KN , (4)

for N ≥ 1, where xi ∈ Rpi , Ki ⊆ Rpi , and
∑N
i=1 pi = p for i = 1, · · · , N .

Note that the separable structure (4) frequently appears in graph and
network optimization. It is also a natural structure in conic programming such
as linear programming and monotropic programming [26]. Another example
is convex empirical minimization models in statistical learning, which can also
be reformulated into (2) by duplicating variables.

Basic assumptions: Our approach relies on the following assumptions:

Assumption 2.1 The optimal solution set X ? of (2) is nonempty, and hence
the optimal value P ? is finite. The following Slater condition holds:

0 ∈ ri (dom(φ)−A(dom(g) ∩ K)) , (5)

where ri (Z) is the relative interior of Z, and dom(·) is the domain of (·).

Assumption 2.2 The function g is standard self-concordant as in Defini-
tion 3.1. K is endowed with a νf -self-concordant barrier f as in Definition 3.2
and A is full-row rank.

Note that Assumption 2.1 is standard and required in any primal-dual
optimization method to guarantee strong duality. Assumption 2.2 is also not
restrictive. First, the self-concordance of g can be relaxed to a broader class
called generalized self-concordant function as shown in Proposition 3.1 with
additional structures. Next, the full-row rankness of A can always be obtained
by eliminating redundant rows. Finally, the self-concordant barrier of K is
always guaranteed under mild condition as discussed in [22].

Throughout this paper, we assume that both Assumptions 2.1 and 2.2 hold
without recalling them in the sequel.

2.2 Dual problem and optimality condition
The dual problem associated with (2) can be written as

D? := min
y∈Rn

{
D(y) := max

x∈K

{
〈Ax, y〉 − g(x)

}
︸ ︷︷ ︸

d(y)

+ φ∗(−y)

}
, (6)

where φ∗(·) := supu {〈·, u〉 − φ(u)} is the Fenchel conjugate of φ. Under the
separable structure (4), we can decompose the dual function d into N functions
di on smaller spaces Rpi . That is

d(y) :=

N∑
i=1

di(y) with di(y) := max
xi∈Ki

{
〈Aixi, y〉 − gi(xi)

}
.

This computation can be carried out in parallel. Moreover, under Assump-
tion 2.1, the dual optimal solution set Y? of (6) is nonempty, and the strong

6 Deyi Liu · Quoc Tran-Dinh

duality holds, i.e. P ?+D? = 0. The optimality condition of the primal problem
(2) can be written as

0 ∈ ∇g(x?)−A>y? +NK(x?), (primal optimality)

0 ∈ y? + ∂φ(Ax?) (dual optimality)

x? ∈ K, (primal feasibility).

(7)

Under Assumption 2.1, (7) is the necessary and sufficient condition for x? ∈ X ?
to be a primal optimal solution of (2), and y? ∈ Y? to be a dual optimal
solution of (6). Note that 0 ∈ y? + ∂φ(Ax?) can be written as

0 ∈ Ax? − ∂φ∗(−y?) ≡ ∇d(y?)− ∂φ∗(−y?). (8)

This is exactly the optimality condition of the dual problem (6). Our goal is to
approximate a primal-dual solution of (2) and (6) in the sense of Definition 4.2.

3 Generalized self-concordance and self-concordant barriers

Let us review the theory of generalized self-concordant functions [29] and self-
concordant barriers [19,22], which will be used in the sequel.

Generalized self-concordance and standard self-concordance: Assume
that f : dom(f) ⊆ Rp → R is a three-time continuously differentiable convex
function, i.e. f ∈ C3(dom(f)), we use ∇3f(x)[u] to denote the third order
derivative of f at x ∈ dom(f) along a direction u ∈ Rp. We recall the follow-
ing definition [29].

Definition 3.1 ([29]) A C3-convex function f is said to be (Mf , θ)-generalized
self-concordant with the parameter Mf ≥ 0, and order θ > 0 if

|〈∇3f(x)[v]u, u〉| ≤Mf‖u‖2x‖v‖θ−2
x ‖v‖3−θ2 , x ∈ dom(f), u, v ∈ Rp, (9)

where we use the convention 0
0 = 0 for the case θ < 2 and θ > 3. If θ = 3, then

f reduces to the self-concordant function defined by Nesterov and Nemirovskii
in [22]. If θ = 3 and Mf = 2, then f is said to be standard self-concordant.

Basic properties: Basic and fundamental properties as well as examples
of generalized self-concordant functions can be found in [29]. We recall the
following Legendre conjugate of a generalized self-concordant function. Let
f : dom(f)→ R be an (Mf , θ)-generalized self-concordant function, we define

f∗(y) := sup
x∈dom(f)

{
−y>x− f(x)

}
, (10)

the Legendre conjugate of f (i.e. f∗(−y) is the Fenchel conjugate of f). For
generalized self-concordant functions and their conjugates, we have the follow-
ing result.

Proposition 3.1 (a) If f is (Mf , θ)-generalized self-concordant with θ ∈ (0, 3)

and µf -strongly convex w.r.t. the Euclidean norm ‖ · ‖2, then f is M̂f -self-

concordant with M̂f := µ
θ−3
2

f Mf .

An Inexact Interior-Point Lagrangian Decomposition Algorithm 7

(b) If f is an (Mf , θ)-generalized self-concordant function with θ ∈ [3, 6), then
its Legendre conjugate f∗(·) is also (Mf , θ∗)-generalized self-concordant
with θ∗ := 6− θ.

(c) Assume that f is Mf -self-concordant on dom(f) and g is nonlinear and
(Mg, θ)-generalized self-concordant on dom(g) with θ ∈ (0, 3]. If dom(f) ∩
dom(g) is nonempty, closed, and bounded, then h := f + g is Mh-self-

concordant with Mh := max
{
Mf , M̂g

}
, where M̂g := µ

θ−3
2

g Mg and

µg := min
{
λmin(∇2g(x)) | x ∈ dom(f) ∩ dom(g)

}
∈ (0,+∞), (11)

if θ < 3, and M̂g := Mg if θ = 3.

Proof The proof of statements (a) and (b) can be found in [29, Propositions
4 and 6]. If dom(f)∩ dom(g) is nonempty, closed, and bounded, then g is also
µg-strongly convex on dom(f) ∩ dom(g) with µg defined by (11). Applying
statement (a) to the strongly convex function g, we obtain statement (c). �

Discussion: Proposition 3.1 shows that the class of self-concordant functions
can be extended to cover at least three classes of smooth convex functions.
The first one is the class of smooth and strongly convex functions that is also
generalized self-concordant as studied in [29]. In the case it is not strongly
convex, one can add a small quadratic regularizer to obtain this property.
The second class is the conjugate of generalized self-concordant functions with
Lipschitz continuous gradient. The third class of functions is generalized self-
concordant functions on bounded domain. We believe that these three classes
of functions cover a sufficiently large class of applications, see [29] for more
detailed examples and additional properties.

Standard self-concordant barriers: Next, we recall the class of standard
self-concordant barriers, and its properties.

Definition 3.2 Given a nonempty, closed, and convex set K in Rp, we say
that f is a νf -self-concordant barrier of K if f is standard self-concordant on
dom(f) ≡ int (K), f(x)→ +∞ as x approaches the boundary ∂K of K, and

sup
u∈Rp

{
∇f(x)>u− ‖u‖2x

}
≤ νf , ∀x ∈ dom(f). (12)

The self-concordant barrier f is said to be a logarithmically homogeneous self-
concordant barrier if f(τx) = f(x)− νf ln(τ) for any τ > 0 and x ∈ dom(f).

Given a self-concordant barrier of K, we define x?f := argmin
x∈K

f(x) the

analytical center of K if x?f exists. Clearly, if K is bounded, then x?f exists. In
addition to these properties, we also have ‖x−x?f‖x?f ≤ ρf for any x ∈ dom(f),
where ρf := νf + 2

√
νf for general self-concordant barrier f and ρf := νf if f

is logarithmically homogeneous.

8 Deyi Liu · Quoc Tran-Dinh

4 Barrier smoothing technique and inexact oracles

In this section, we describe a barrier smoothing technique for (2) which has
been used in [16,18,20,34,39]. Without loss of generality, we can assume that
Mg = 2, since any self-concordant function g with the parameter Mg > 0,
(M2

g /4)g is standard self-concordant.

4.1 Smoothed dual problem

Under Assumption 2.2, we consider the following self-concordant barrier smoothed
dual problem of (2) (shortly, smoothed dual problem):

D
?

t := min
y∈Rn

{
Dt(y) := max

x∈int(K)

{
y>Ax− g(x)− tf(x)

}
︸ ︷︷ ︸

d̄t(y)

+φ∗(−y)︸ ︷︷ ︸
h̄(y)

}
. (13)

Note that g(·)+tf(·) is self-concordant with the parameter Mt := max
{

2, 2√
t

}
on dom(f) ∩ dom(g). To make it standard self-concordant, we rescale (13) as
follows:

D?
t := min

y∈Rn

{
Dt(y) :=

M2
t

4 d̄t(y)︸ ︷︷ ︸
dt(y)

+
M2
t

4 h̄(y)︸ ︷︷ ︸
ht(y)

}
. (14)

From [18] or [39], dt is standard self-concordant. Clearly, if t ∈ (0, 1], then
Mt = 2√

t
. In this case, we have d̄t(y) = tdt(y) and h̄(y) = tht(y).

To evaluate the (normalized) smoothed dual function dt and its derivative,
we consider the following standard self-concordant function:

ψt(x; y) :=
M2
t

4

[
g(x) + tf(x)− y>Ax

]
. (15)

Primal local norms: Note that ∇2ψt(x; y) =
M2
t

4

[
∇2g(x) + t∇2f(x)

]
=

∇2ψt(x) is symmetric positive definite on dom(g) ∩ dom(f) and independent
of y. Therefore, we define the following local norms on the primal space:

|u|x,t :=
(
u>∇2ψt(x)u

)1/2
, and |v|∗x,t :=

(
v>∇2ψt(x)−1v

)1/2
, (16)

for any u, v ∈ Rp. If t ∈ (0, 1], then |u|x,t =
(
u>
[
∇2f(x) + 1

t∇
2g(x)

]
u
)1/2

.

Exact oracles of the dual function dt: We can summarize the properties
of dt defined in (14) into the following proposition which we omit the proof.

Proposition 4.1 Under Assumption 2.2, ψt(·; y) defined by (15) and dt(·)
defined by (14) are standard self-concordant. Moreover, if the following primal
subproblem has optimal solution

x∗t (y) := argmin
x∈int(K)

{
ψt(x; y) :=

M2
t

4

[
g(x) + tf(x)− y>Ax

]}
, (17)

then its solution is unique. The optimality condition of this subproblem is

∇ψt(x∗t (y); y) ≡ M2
t

4

[
∇g(x∗t (y)) + t∇f(x∗t (y))−A>y

]
= 0, (18)

An Inexact Interior-Point Lagrangian Decomposition Algorithm 9

which is necessary and sufficient for x∗t (y) to be optimal to (17). The function
value and derivatives of dt in (14) can be evaluated as (see [22])

(Exact oracles):


dt(y) = −ψt(x∗t (y); y),

∇dt(y) =
M2
t

4 Ax∗t (y),

∇2dt(y) =
M4
t

16 A∇
2ψt(x

∗
t (y))−1A>.

(19)

Dual local norms: Since ∇2dt(y) � 0, we can define the following local
norms in the dual space:

‖u‖y,t :=
(
u>∇2dt(y)u

)1/2
and ‖v‖∗y,t :=

(
v>∇2dt(y)−1v

)1/2
. (20)

4.2 Inexact oracles of the smoothed dual function
When g and K are not trivial, solving the smoothed slave subproblem (17)
exactly is impractical. We can only approximately solve (17) or (18) up to a
given accuracy as defined in the following.

Definition 4.1 Let x∗t (y) be the exact solution of (17) at y ∈ Rn. We call
x̃∗t (y) a δ-(approximate) solution of (17) if δt(y) := |x̃∗t (y)− x∗t (y)|x̃∗

t (y),t ≤ δ,
where | · |x,t is defined by (16).

Given an inexact solution x̃∗t (y) of (17) as defined in Definition 4.1, we
define an inexact oracle of dt as follows:

(Inexact oracles):


d̃t(y) = −ψt(x̃∗t (y); y),

∇̃dt(y) =
M2
t

4 Ax̃∗t (y),

∇̃2dt(y) =
M4
t

16 A∇
2ψt(x̃

∗
t (y))−1A>.

(21)

Since ∇2ψt(·) is positive definite and A is full-row rank, ∇̃2dt(y) is positive
definite. Now we define the following local norms using inexact oracles:

|‖u|‖y,t :=
(
u>∇̃2dt(y)u

)1/2
and |‖v|‖∗y,t :=

(
v>∇̃2dt(y)−1v

)1/2
. (22)

We first prove some properties of inexact solution x̃∗t (y) and inexact oracles
of dt defined by (21) in the following proposition, whose proof can be found
in Appendix A.1.

Proposition 4.2 For any δ ∈ [0, 1), we have:

if |∇ψt(x̃∗t (y); y)|∗x̃∗
t (y),t ≤ δ

1+δ then δt(y) := |x̃∗t (y)−x∗t (y)|x̃∗
t (y),t ≤ δ. (23)

In addition, for dt and its derivatives defined by (19), and its inexact oracle
defined by (21), the following properties hold

0 ≤ ω
(

δt(y)
1+δt(y)

)
≤ dt(y)− d̃t(y) ≤ ω∗

(
δt(y)

1−δt(y)

)
,(

1− δt(y)
)2∇̃2dt(y) � ∇2dt(y) �

(
1− δt(y)

)−2∇̃2dt(y),

|‖∇̃dt(y)−∇dt(y)|‖∗y,t ≤ δt(y),

(24)

where ω(τ) := τ− ln(1+τ) for τ ≥ 0 and ω∗(τ) := −τ− ln(1−τ) for τ ∈ [0, 1).

10 Deyi Liu · Quoc Tran-Dinh

Discussion: The first estimate (23) shows that to obtain an approximate
solution x̃∗t (y) such that |x̃∗t (y)− x∗t (y)|x̃∗

t (y),t ≤ δ, we need to solve the slave
problem (17) such that

|∇g(x̃∗t (y)) + t∇f(x̃∗t (y))−A>y|∗x̃∗
t (y),t ≤

4δ

M2
t (1 + δ)

. (25)

This condition is implementable, e.g., when we apply a Newton-type method
to solve the nonlinear system (18). The estimates in (24) show us how the
inexact oracles in (21) approximate the exact ones in (19).

Approximate primal-dual solutions: Given an accuracy ε > 0, our goal
is to compute an ε-approximate primal-dual solution (x̃?, ỹ?) to (x?, y?) of (7)
in the following sense:

Definition 4.2 A pair (x̃?, ỹ?) is called an ε-approximate primal-dual solu-
tion to an exact primal-dual one (x?, y?) of (7) if

|A>ỹ? −∇g(x̃?)|∗x̃?,t ≤ ε (ε-primal optimality),

r ∈ ỹ? + ∂φ(Ax̃? + e) (ε-dual optimality),

x̃? ∈ int (K) (primal feasibility),

|‖e|‖∗ỹ?,t ≤ ε and |A>r|∗x̃?,t ≤ ε.

(26)

Here, the errors are measured through local norms in primal and dual spaces
defined in (16) and (22). These norms are computable since they are defined
through x̃? and ỹ?. In addition, since A is full-row rank, A>r = 0 if and only
if r = 0. Because x̃? ∈ int (K), we have NK(x̃?) = {0}. Therefore the first
line of (26) can approximate the first line of (7). Similarly, the second line of
(26) approximates the second line of (7), i.e. 0 ∈ y? + ∂φ(Ax?). Therefore,
Definition 4.2 is consistent with the optimality condition (7).

5 Inexact IPLD Method with Inexact Oracles
We develop an inexact interior-point Lagrangian decomposition method to
solve (2) by using the inexact oracles (21).

5.1 Inexact proximal-Newton method for (14)
The optimality condition of (14): Recall the smoothed dual problem (14),
its optimality condition is

0 ∈ ∇dt(y) + ∂ht(y) =
M2
t

4
Ax∗t (y) + ∂ht(y). (27)

Any y∗t satisfies (27) is an optimal solution of (14). The sequence {(x∗t (y∗t), y∗t)}t≥0

forms a central path, which converges to (x?, y?) a primal-dual solution of (2).
Exact Proximal Newton scheme: Suppose that we are currently at yk,
since dt is twice differentiable, we will apply proximal-Newton method to com-
pute ȳk+1, which leads to

0 ∈ ∇̃2dtk+1
(yk)(ȳk+1 − yk) + ∇̃dtk+1

(yk) + ∂htk+1
(ȳk+1). (28)

An Inexact Interior-Point Lagrangian Decomposition Algorithm 11

If we define

Qtk+1
(y) := 〈∇̃dtk+1

(yk), y − yk〉+
1

2
〈∇̃2dtk+1

(yk)(y − yk), y − yk〉+ htk+1
(y),

(29)

then we can write ȳk+1 := argmin
y
Qtk+1

(y). Introducing the notation prox∇̃
2dt

ht
(·),

we can write (28) in the following form (see [35] for a concrete definition)

ȳk+1 := prox
∇̃2dtk+1

(yk)

htk+1

(
yk − ∇̃2dtk+1

(yk)−1∇̃dtk+1
(yk)

)
. (30)

Inexact Proximal Newton scheme: Similarly, we can also approximately
solve (28) up to a given accuracy as.

yk+1 :≈ prox
∇̃2dtk+1

(yk)

htk+1

(
yk − ∇̃2dtk+1

(yk)−1∇̃dtk+1
(yk)

)
. (31)

Here, the approximation “:≈” is defined in the following sense:

Definition 5.1 For a given ε ≥ 0 and Qtk+1
defined by (29), a vector yk+1

given in (31) is said to be an ε-approximate solution to ȳk+1 of (28) if

Qtk+1
(yk+1)−Qtk+1

(ȳk+1) ≤ ε2

2
. (32)

Note that (32) implies |‖yk+1 − ȳk+1|‖yk,tk+1
≤ ε. There exists several convex

optimization methods to compute yk+1 in (31). For example, we can apply
accelerated proximal gradient methods such as FISTA [1,21] to compute this
point. We can also apply semi-smooth Newton-CG augmented Lagrangian
methods in [17,40] to solve this problem. We will discuss the computation of
yk+1 in detail in Section 6.
Generalized gradient mapping: Now let us define the following inexact
generalized gradient mapping

G̃t(y) := ∇̃2dt(y)
(
y − prox

∇̃2dt(y)
ht

(y − ∇̃2dt(y)−1∇̃dt(y)
)
. (33)

Using ∇̃2dt(·) defined by (21), we further define the following quantity:

λt(y) := |‖G̃t(y)|‖∗y,t = 〈∇̃2dt(y)−1G̃t(y), G̃t(y)〉1/2. (34)

We call λt(y) the inexact proximal-Newton decrement. In Subsection 5.4 we
can show that this quantity can be used to characterize the optimality condi-
tion (7).

5.2 The algorithm
From the above analysis, we can combine all the steps together and describe an
algorithm to solve (2) as in Algorithm 1. In this algorithm, we explicitly show
how to choose the accuracy of inexact oracles and inexact proximal-Newton
direction, and how to update the penalty parameter t.

Note that we have not specified how to find a starting point (x0, y0) to
guarantee (35) and how to set kmax in Algorithm 1. In Subsection 5.5, we will
show that such an (x0, y0) can be found in finite steps. In Subsection 5.4, we
show how to set kmax to get an ε-approximate primal-dual solution of (2).

12 Deyi Liu · Quoc Tran-Dinh

Algorithm 1 (Inexact Interior-Point Lagrangian Decomposition Algorithm)

1: Phase 1: Find an initial point. Given any value t0 ∈ (0, 1] and β ∈
(0, 1

10], find starting points y0 ∈ Rn and x0 ∈ Rp such that

|‖G̃t0(y0)|‖∗y0,t0 ≤ β and |∇ψt0(x0; y0)|∗x0,t0
≤ δ̃0

1+δ̃0
, (35)

by using Algorithm 2 below, for any predefined accuracy δ̃0 ∈ (0, β
100].

2: Phase 2: Main iteration. For k = 0 to kmax, perform

3: Update tk as tk+1 := σtk, where σ ∈ (0, 1) is defined by (45) below.

4: Solve approximately (18) at y = yk up to an accuracy δk ∈ (0, β
100] to get

xk+1 := x̃∗tk+1
(yk), i.e.:

|∇ψtk+1
(xk+1; yk)|∗xk+1,tk+1

≤ δk
1+δk

.

5: (Inexact oracles): Evaluate inexact gradient and Hessian of dt as ∇̃dtk+1
(yk) :=

M2
tk+1

4 Axk+1,

∇̃2dtk+1
(yk) :=

M4
tk+1

16 A∇2ψtk+1
(xk+1)−1A>.

(36)

6: (Inexact proximal-Newton step): Compute yk+1 up to an accuracy
εk ∈ (0, β

100], i.e.:

yk+1 :≈ prox
∇̃2dtk+1

(yk)

htk+1

(
yk − ∇̃2dtk+1

(yk)−1∇̃dtk+1
(yk)

)
.

7: End.

5.3 Convergence analysis

Our analysis consists of several steps and is organized as follows:

– Lemma 5.1 provides an estimate between λtk+1
(yk+1) and λtk+1

(yk) in (34).

– Lemma 5.2 bounds λtk+1
(yk) in terms of ∆̃tk , ∆̃tk+1

and λtk(yk), where

∆̃tk and ∆̃tk+1
measure the distances between x̃∗tk(yk) and x̃∗tk+1

(yk).

– Lemma 5.3 shows how to upper bound ∆̃tk and ∆̃tk+1
.

– The main result of this section is Theorem 5.1 which provides an update
rule of t to maintain the point yk in the neighborhood of the central path.
The proof of this theorem is obtained by combining all the above lemmas.

Firstly, we state the main estimate of the inexact Newton-type step at Step 6
of Algorithm 1 in Lemma 5.1, whose proof is given in Appendix A.2.1.

Lemma 5.1 Let
{
yk
}

be generated by Algorithm 1, and

|x̃∗tk+1
(yk+1)− x∗tk+1

(yk+1)|x̃∗
tk+1

(yk+1),tk+1
≤ δ̃k+1.

An Inexact Interior-Point Lagrangian Decomposition Algorithm 13

Then

λtk+1
(yk+1) ≤ δ̃k+1 + 1(

1 − δ̃k+1

)(
1−δk−λtk+1

(yk)−εk
)[3εk + δk

+
√

4δk − 2δ2
k

(
λtk+1

(yk) + εk
)

+

(
λtk+1

(yk)+ εk

)2(
1−λtk+1

(yk)−δk−εk
)]. (37)

In particular, if δ̃k+1 = 0, δk = 0, and εk = 0, then (37) reduces to

λtk+1
(yk+1) ≤

λtk+1
(yk)2

(1− λtk+1
(yk))2

. (38)

Note that if we solve both the slave problem at Step 4 and the master
problem at Step 6 exactly, then we could obtain the estimate (38), which is the
same as in standard interior-point path-following methods [19]. Next, we show
a relation between λtk+1

(yk) and λtk(yk), whose proof is in Appendix A.2.2.

Lemma 5.2 Let tk be updated as tk+1 := σtk for given σ ∈ (0, 1). Define ∆̃tk := |x̃∗tk+1
(yk)− x̃∗tk(yk)|x̃∗

tk
(yk),tk ,

∆̃tk+1
:= |x̃∗tk+1

(yk)− x̃∗tk(yk)|x̃∗
tk+1

(yk),tk+1
.

(39)

Then, the following estimate holds

λtk+1
(yk) ≤ ∆̃tk+1

+

[
1 +

√
1− 2σ(1− ∆̃tk)2 + σ

σ(1− ∆̃tk)

]
λtk(yk). (40)

The following lemma shows how to bound ∆̃tk and ∆̃tk+1
, the distances

between x̃∗tk(yk) and x̃∗tk+1
(yk), whose proof is given in Appendix A.2.3.

Lemma 5.3 Let ∆̃tk and ∆̃tk+1
be defined by (39), and tk+1 := σtk for some

σ ∈ (0, 1). We define the following quantities:
δ̂tk := |∇ψtk(x̃∗tk(yk); yk)|∗x̃∗

tk
(yk),tk

δ̂tk+1
:= |∇ψtk+1

(x̃∗tk+1
(yk); yk)|∗x̃∗

tk+1
(yk),tk+1

.
(41)

Then, we have
∆̃2
tk

1 + ∆̃tk
≤ ∆̃tk δ̂tk +

(
σδ̂tk+1

+ (1− σ)
√
νf

)
∆̃tk+1

∆̃2
tk+1

1 + ∆̃tk+1

≤ ∆̃tk+1
δ̂tk+1

+

(
δ̂tk
σ +

(
1−σ
σ

)√
νf

)
∆̃tk ,

(42)

14 Deyi Liu · Quoc Tran-Dinh

where νf is the barrier parameter of f . In particular, for fixed δ ∈ [0, 1), if we

choose δ̂tk ≤ δ and δ̂tk+1
≤ δ, then

∆̃2
tk

1 + ∆̃tk
≤ δ · ∆̃k + cν(σ) · ∆̃tk+1

∆̃2
tk+1

1 + ∆̃tk+1

≤ δ · ∆̃tk+1
+ cν(σ) · ∆̃tk ,

(43)

where cν(σ) := δ
σ +

(
1−σ
σ

)√
νf is a decreasing function of σ on (0, 1]. As a

consequence, we also have

∆̃tk ≤
δ + cν(σ)

1 − δ − cν(σ)
and ∆̃tk+1

≤ δ + cν(σ)

1 − δ − cν(σ)
. (44)

Utilizing the results of Lemma 5.1, Lemma 5.2 and Lemma 5.3, we can
prove the following main result on the iteration-complexity of Algorithm 1.

Theorem 5.1 Let us choose β ∈ (0, 1
10]. Suppose that we choose δ̃0, δk, δ̃k+1, εk ∈

[0, β
100] and update tk in Algorithm 1 as tk+1 := σtk with

σ := 1− 0.29β

0.3β +
√
νf
∈ (0, 1). (45)

In addition, if y0 ∈ Rn and x0 ∈ Rp satisfy (35), then for all k ≥ 0, we have

λtk(yk) ≤ β.

Consequently, the number of iterations to obtain tk ≤ ε̂ for a given ε̂ > 0 and
λtk(yk) ≤ β does not exceed:

kmax :=

⌊
ln
(
t0
ε̂

)
− ln(σ)

⌋
= O

(
√
νf ln

(
t0
ε̂

))
, (46)

where νf is the barrier parameter of f and t0 ∈ (0, 1].

Proof Let us first assume that λtk+1
(yk) ≤ 2.1β. Using δk, δ̃k+1, εk ∈ [0, 10−2β],

after a few elementary calculations, we can overestimate (37) in Lemma 5.1 as

λtk+1
(yk+1) ≤ β

100 +
0.04β+0.1

√
4β−0.02β2(2.11β)

(1−10−2β)(1−2.12β)

+ (2.11β)2

(1−10−2β
)

(1−2.12β)2

≤ β,

(47)

when β ∈ (0, 1
10]. Now, we prove that λtk+1

(yk) ≤ 2.1β is always satisfied.
Indeed, since

|∇ψtk(x̃∗tk(yk); yk)|∗x̃∗
tk

(yk),tk
≤ δ̃k

1+δ̃k
≤ β

100

|∇ψtk+1
(x̃∗tk+1

(yk); yk)|∗x̃∗
tk+1

(yk),tk+1
≤ δk

1+δk
≤ β

100 ,

An Inexact Interior-Point Lagrangian Decomposition Algorithm 15

we can choose δ in Lemma 5.3 to be β
100 . In addition, from σ := 1− 0.29β

0.3β+
√
νf

,

we can show that

cν(σ) :=
δ

σ
+

1− σ
σ

√
νf =

10−2β

σ
+

1− σ
σ

√
νf = 0.3β.

Next, using (44), we get

∆̃tk ≤
0.01β+0.3β

1−10−2β−0.3β ≤ 0.4493β and ∆̃tk+1
≤ 10−2β+0.3β

1−10−2β−0.3β ≤ 0.4493β.

Finally, combining these estimates and (40) we can show that

λtk+1
(yk) ≤ 0.4493β +

1 +
√

1− 2σ(1− 0.4493β)2 + σ

σ(1− 0.4493β)
β

(45)

≤ 2.1β,

when β ∈ (0, 1
10]. Since tk := σkt0 =

(
1− 0.29β

0.3β+
√
νf

)k
t0, to guarantee tk ≤ ε̂,

we impose σkt0 =
(

1− 0.29β
0.3β+

√
νf

)k
t0 ≤ ε̂. Note that − ln

(
1− 0.29β

0.3β+
√
νf

)
∼

0.29β
0.3β+

√
νf
∼ 1√

νf
, we have

k ≥

⌊
ln
(
t0
ε̂

)
− ln(σ)

⌋
= O

(
√
νf ln

(
t0
ε̂

))
,

as stated in (46). Here, ∼ means that two quantities can be approximated by
the same order. �

The worst-case iteration complexity: Theorem 5.1 shows that for any
ε̂ > 0, the number of iterations k to obtain yk such that λtk(yk) ≤ β and
tk ≤ ε̂ does not exceed

O
(
√
νf ln

(
t0
ε̂

))
,

which is the same as in standard interior-point methods [19,22] up to a con-
stant factor. It depends on

√
νf , where νf is the barrier parameter of f . Note

that the parameter β in Algorithm 1 represents the radius of the central path
neighborhood as in standard path-following methods. While the range of β

in standard exact path-following methods [19] is (0, 3−
√

5
2], it is [0, 1

10] in our
method. Clearly, the latter is much smaller than the former one. However,
this range was roughly estimated in our analysis and it is affected by the
inexactness in our algorithm.

As we will show in Subsection 5.4, the conditions λtk(yk) ≤ β and tk ≤ ε̂
imply an approximate solution of (2) and (6).

16 Deyi Liu · Quoc Tran-Dinh

5.4 Optimality certification

Our goal is to compute an approximate solution of the primal problem (2).
The following theorem shows how we can find this approximate solution for
both the primal and dual problem.

Theorem 5.2 Let {(xk+1, yk)} be the sequence generated by Algorithm 1.
Then, for tk+1 ∈ (0, 1] we have the following guarantees:

xk+1 ∈ int (K) ,

|A>yk −∇g(xk+1)|∗xk+1,tk+1
≤
(√

νf + δk
1+δk

)
tk+1,

rk ∈ yk + ∂φ(Axk+1 + ek),

|‖ek|‖∗yk,tk+1 ≤ tk+1λtk+1
(yk), and |A>rk|∗xk+1,tk+1

≤ tk+1λtk+1
(yk).

(48)

Consequently, the number of iterations to obtain an ε-primal-dual solution
(xk+1, yk) in the sense of Definition 4.2 does not exceed:

kmax := O
(
√
νf ln

(√
νf t0

ε

))
, (49)

where t0 ∈ (0, 1] and νf is the barrier parameter of f .

Proof From Step 4 of Algorithm 1, we can see that xk+1 := x̃∗tk+1
(yk) ∈ int (K).

Moreover, Step 4 also leads to

|∇g(xk+1)−A>yk|∗xk+1,tk+1
≤ |∇g(xk+1)−A>yk + tk+1∇f(xk+1)|∗xk+1,tk+1

+ tk+1|∇f(xk+1)|∗xk+1,tk+1

≤ δktk+1

1+δk
+ tk+1

∣∣∇f(xk+1)
∣∣∗
xk+1,tk+1

.

(50)

Next, for t ∈ (0, 1], it is obvious that ∇2ψt(x; y) =
M2
t

4

[
∇2g(x) + t∇2f(x)

]
=

∇2f(x) + 1
t∇

2g(x). Consequently, one has ∇2ψt(x; y) � ∇2f(x). Using this
fact, we can easily show that∣∣∇f(xk+1)

∣∣∗
xk+1,tk+1

≤ ‖∇f(xk+1)‖∗xk+1 ≤
√
νf .

Combining this inequality and (50), we obtain the second estimate of (48).
Now, from (28), we have

−∇̃2dtk+1
(yk)(ȳk+1 − yk)− ∇̃dtk+1

(yk) ∈ ∂htk+1
(ȳk+1).

Using (21) and the definition of ht, the last estimate becomes

−tk+1∇̃2dtk+1
(yk)(ȳk+1 − yk) ∈ Axk+1 − ∂φ∗(−ȳk+1).

If we define rk := yk − ȳk+1 and ek := tk+1∇̃2dtk+1
(yk)(ȳk+1 − yk), then the

last expression leads to

−ek ∈ Axk+1 − ∂φ∗(−yk + rk) ⇔ rk ∈ yk + ∂φ(Axk+1 + ek).

An Inexact Interior-Point Lagrangian Decomposition Algorithm 17

It is obvious to show that

|‖ek|‖∗yk,tk+1 = tk+1|‖yk − ȳk+1|‖yk,tk+1 = tk+1λtk+1
(yk),

which is the first statement in the last line of (48).

Now, from (36) and tk+1 ∈ (0, 1], we have ∇̃2dtk+1
(yk) = 1

t2k+1
A
(
∇2f(xk+1)+

1
tk+1
∇2g(xk+1)

)−1
A>. This implies that

λtk+1
(yk)2 = (ȳk+1 − yk)>∇̃2dtk+1

(yk)(ȳk+1 − yk)

= 1
t2k+1

(rk)>A
(
∇2f(xk+1) + 1

tk+1
∇2g(xk+1)

)−1
A>rk

= 1
t2k+1

(
|A>rk|∗xk+1,tk+1

)2
.

Therefore, we have |A>rk|∗xk+1,tk+1
= tk+1λtk+1

(yk), which proves the second

statement in the last line of (48).
From (48), to obtain an ε-primal-dual solution (xk+1, yk) in the sense of

Definition 4.2, we need to set
(√

νf + δk
1+δk

)
tk+1 ≤ ε and tk+1λtk+1

(yk) ≤ ε.

Since λtk+1
(yk) ≤ 2.1β (see the proof in Theorem 5.1) and δk ≤ β

100 , we can
set tk+1 ≤ ε̂ such that

ε ≥ ε̂(√νf + 1) ≥ ε̂max

{
√
νf +

0.01β

1 + 0.01β
, 2.1β

}
,

i.e., ε̂ ≤ ε
(1+
√
νf) . Combining this expression and (46), we can show that

the number of iterations to obtain an ε-primal-dual solution does not exceed

O
(√

νf ln
(√

νf t0
ε

))
, which is exactly (49). �

Discussion: Theorem 5.2 estimates the maximum iterations kmax to obtain
an ε-primal-dual solution (xk+1, yk) of (2) and (6). It shows that such a number
of iterations remains the same as in standard path-following methods [19] up
to a constant factor. Although the norms in (48) are local norms, but this is
the standard metric used in general interior-point methods [19,22].

5.5 Finding an initial point in Algorithm 1

We need to find (x0, y0) such that the condition (35) holds. As in stan-
dard interior-point methods, we need to perform a damped proximal-Newton
method. Such a method can be found in, e.g. [31,32], but since we use inexact
oracles, we need to customize this method in our context. More specifically,
we describe this routine in Algorithm 2.

We terminate Algorithm 2 if we find x0 := x̂jmax and y0 := ŷjmax such that
(35) holds. Since the constraint of x0 in (35) is always satisfied from Step 3 of
Algorithm 2, we only need to guarantee that λt0(y0) ≤ β.

The following theorem estimates the number of iterations to obtain (x0, y0)
satisfying (35).

18 Deyi Liu · Quoc Tran-Dinh

Algorithm 2 (Find an initial point x0, y0)

1: Initialization. Choose an initial point ŷ0 ∈ Rn and fix a value t0 ∈ (0, 1].
2: Main iteration. For j = 0 to jmax, perform

3: Solve approximately (18) at y = ŷj up to an accuracy δj ∈ (0, β
100] to get

x̂j := x̃∗t0(ŷj), i.e.:

|∇ψt0(x̂j ; ŷj)|∗x̂j ,t0 ≤
δj

1+δj
.

4: (Inexact oracles): Evaluate inexact gradient and Hessian of dt0 as ∇̃dt0(ŷj) :=
M2
t0

4 Ax̂j ,

∇̃2dt0(ŷj) :=
M4
t0

16 A∇
2ψt0(x̂j)−1A>.

(51)

5: (Inexact damped-step proximal-Newton step): Compute ŝj up to
an accuracy εj ∈ (0, β

100] and update ŷj , i.e.: ŝj :≈ sj := prox
∇̃2dt0 (ŷj)

ht0

(
ŷj − ∇̃2dt0(ŷj)−1∇̃dt0(ŷj)

)
ŷj+1 := (1− αj)ŷj + αj ŝ

j ,

where αj :=
(λ̂j−εj−δj)(1−δj)2(

(1−δj)(λ̂j−εj−δj)+1
)
λ̂j
∈ (0, 1) and λ̂j := |‖ŝj − ŷj |‖ŷj ,t0 .

6: End.

Theorem 5.3 Let us define λ̂j := |‖ŝj− ŷj |‖ŷj ,t0 and λj := |‖sj− ŷj |‖ŷj ,t0 . Let
{(x̂j , ŷj)} be the sequence generated by Algorithm 2, where we choose δj , εj ∈(
0, β

100

]
and the step-size

αj :=
(λ̂j − εj − δj)(1− δj)2[

1 + (1− δj)(λ̂j − εj − δj)
]
λ̂j
∈ (0, 1). (52)

Then, after at most finite number of iterations jmax as

jmax :=

⌊
Dt0(ŷ0)−Dt0(y∗t0)

ω (0.97β(1− 10−2β))

⌋
+ 1, (53)

we obtain y0 := ŷjmax and x0 := x̂jmax such that λt0(y0) ≤ β and (35) holds,
where y∗t0 is the optimal solution of (14) at t := t0.

Proof Note that at each iteration j of Algorithm 2, we always have λj > β.
By the triangle inequality and the choice of εj , we can easily show that

λ̂j ≥ |‖sj − ŷj |‖ŷj ,t0 − |‖s
j − ŝj |‖ŷj ,t0 ≥ λj − εj > (1− 10−2)β.

In addition, from Lemma A.2 in Appendix A.3, we have

Dt0(ŷj+1) ≤ Dt0(ŷj)− ω
(

(λ̂j − εj − δj)(1− δj)
)
,

An Inexact Interior-Point Lagrangian Decomposition Algorithm 19

where ω(τ) := τ − ln(1 + τ) ≥ 0. Using εj ≤ 10−2β, δj ≤ 10−2β, and λ̂j ≥
(1− 10−2)β in the above inequality, we get

Dt0(ŷj+1) ≤ Dt0(ŷj)− ω
(
0.97β(1− 10−2β)

)
.

Summing up this inequality from j = 0 to j = jmax, we obtain

jmaxω(0.97β(1− 10−2β)) ≤ Dt0(ŷ0)−Dt0(ŷjmax) ≤ Dt0(ŷ0)−Dt0(y?t0),

which implies jmax ≤
Dt0 (ŷ0)−Dt0 (y?t0

)

ω(0.97β(1−10−2β)) . Consequently, we obtain (53). �

Discussion: Theorem 5.3 shows that the number of iterations to obtain a
starting point (x0, y0) is finite even with inexact oracles and inexact proximal-
Newton methods. However, the convergence rate of Algorithm 2 is sublinear
in j. If t0 is large (i.e., close to 1), Algorithm 2 often requires a small number
of iterations. Another possibility is to apply a path-following procedure as in
[33] to obtain a new variant with linear convergence rate. Note that the per-
iteration complexity of Algorithm 2 is essentially the same as in Algorithm 1
since the computation of λ̂j is neglectable. In particular, if we choose εj =
δj = 0, the steps size αj will become the standard damped Newton step-size

1
1+λj

in the theory of self-concordant function [22].

6 Numerical Experiments
We provide two numerical examples to illustrate our algorithm and compare it
with some existing methods. We choose SDPT3 [30] as a common used conic
solver, and Chambolle-Pock’s (CP) primal-dual method [8] as one of the most
powerful first-order methods that can handle our problem. The first example is
the well-known network utility maximization (NUM) problem, and the second
one is the spectrum management problem for multi-user DSL networks studied
in [36]. Our method and the CP method are implemented in Matlab 2018b,
running on a Linux server with 3.4GHz Intel Xeon E5 and 16Gb memory.

6.1 Implementation remarks
We discuss how we implement two main steps of Algorithm 1 as follows.
First, we need to solve the slave problem at Step 4 up to a given accuracy
δk such that δk ≤ 10−2β. Solving this problem is equivalent to solving the
nonlinear equation ∇ψtk+1

(x; yk) = 0 in x. Since ψtk+1
(·; yk) is standard self-

concordant, we can apply a damped-step Newton method to solve it. Com-
bining this method and a warm-start strategy, we can solve this equation effi-
ciently. Second, if φ = δ{b} in (2) for a given b ∈ Rn, then the master problem

at Step 6 reduces to a positive definite linear system ∇̃2dtk+1
(yk)(y − yk) =

−∇̃dtk+1
(yk) + 0.25M2

tk+1
b, which can be efficiently solved by, e.g., precondi-

tioned conjugate gradient methods. However, since φ usually does not have
such a simple form, we need to apply iterative methods such as accelerated
proximal gradient method [1,19] to solve this problem which has a linear con-
vergence rate. Note that we can also apply a semi-smooth Newton-type meth-
ods as in [38] to solve this problem efficiently. In our numerical test, we use
FISTA which seems working well.

20 Deyi Liu · Quoc Tran-Dinh

6.2 Network Utility Maximization

Consider a network consisting of a finite set S of N nodes and a finite set E
of undirected capacitated edges. Let xij denote the rate of sending data from
node i to node j. We assume that such a flow fij from node i to node j is
fixed and unique (we usually choose fij to be the shortest path from i to j).

Assume that each node i is associated with a utility function ui(xi) :=
log
(
d>i xi + µi

)
, where xi := (xi1, · · · , xiN)>, di := (di1, · · · , diN)> and µi is

a scalar. Since we ignore self-links from node i to itself, we set dii = 0 and
fii = ∅. We further assume that the rate xij is constrained to lie in a given
interval [0,M], where the scalar M denotes the maximum capacity of flows.

Under this setting, we formulate the problem of interest into the following
constrained convex optimization problem called NUM:

max
x

{∑
i∈S

ln(d>i xi + µi)−
ρ

2
‖xi − ri‖2

}
s.t. Le ≤

∑
e∈fij

xij ≤ Ue, ∀e ∈ E ,

0 ≤ xij ≤M, ∀i, j ∈ S.

(54)

Here, Le and Ue are the lower bound and upper bound capacity of each edge,
respectively, rij is the initial designed rate from node i to node j and we do
not want to have the rate xij to be far away from our target rij , and ρ is
the corresponding penalty parameter to control the distance from xij to rij .
By defining g(x) := −

∑
i∈S ln(d>i xi + µi) + ρ

2‖xi − ri‖
2, Ax =

∑
e∈fij xij ,

φ(·) := δ[Le,Ue](·), and K := [0,M], we can reformulate (54) into (2). Clearly,
this problem satisfies Assumptions 2.1 and 2.2.

We implement Algorithm 1 using Algorithm 2 to find an initial point using
t0 := 0.25. We also implement the Chambolle-Pock method in [8] and use
SDPT3 to solve (54) as our competitors. Note that SDPT3 can directly handle
log-terms in g compared to other interior-point solvers such as SeDuMi, SDPA,
or Mosek. To avoid solving subproblems in the Chambolle-Pock method, we
reformulate (54) by introducing auxiliary variables zi := d>i xi + µi for i ∈ S.
Since the Chambolle-Pock method has two step-sizes τ and σ, we tune τ for
each run and let σ := 0.99/(τ‖K‖2), where K is the linear operator obtained
from reformulating (54) into a composite form. The best values of τ we found
are between 10−6 and 10−7 depending on problem.

All algorithms are terminated when both infeasibility and relative duality
gap reach 10−7 accuracy or the maximum number of iterations kmax := 20, 000
is exceeded. In the first case, we certify that the problem is “solved”, while
in the second case, we mark it by “*”. If problem is too big to solve by our
computer, we also mark it by “*”.

We use the “tech-router-rf” dataset from http://networkrepository.com/tech-
routers-rf.php from [28], where we have approximately 2000 nodes and 6000
edges. In this network, each node is either a router or a computer IP. Each
computer IP has to go through one or multiple routers to send data to an-
other computer IP. For larger networks, we use the “tech-pgp” dataset from

http://networkrepository.com/tech-routers-rf.php
http://networkrepository.com/tech-routers-rf.php

An Inexact Interior-Point Lagrangian Decomposition Algorithm 21

http://networkrepository.com/tech-pgp.php from [6], which is a social network
with approximately 11000 nodes and 24000 edges. Given a network struc-
ture, we generate the input data as follows. The initial designed rate ri are
generated from a uniform distribution U(0, 1) between 0 and 1. The upper
and lower bounds of capacity are generated as Le := (1 − U(0, 0.5))b̄ and
Ue := (1 + U(0, 0.5))b̄, where b̄ :=

∑
i∈S Airi. The maximum limit of rate

M is 1 and the penalty paramter ρ is chosen to be 0.01. Both di and µi are
generated randomly using U(0, 1). To have different problem instances, we use
different sub-networks of the original one.

We run three algorithms on 10 problems instances of different sizes. The
results are reported in Table 1, where n is the number of linear inequality
constraints, p is the number of variables in (54), IPLD is Algorithm 1, and CP
is the Chambolle-Pock method in [8].

Table 1 Numerical results of three solvers on 10 problem instances of (54).

Problem size CPU time [s] Feasibility violation Objective value f?

n p IPLD CP SDPT3 IPLD CP SDPT3 IPLD CP SDPT3
96 17,686 0.70 3.80 4.24 4.747e-09 9.986e-08 0.000e+00 -60.1375 -60.1375 -60.1375

188 29,502 1.31 4.44 9.59 5.126e-09 9.974e-08 0.000e+00 -116.8216 -116.8216 -116.8216
239 38,050 1.85 6.64 11.75 7.227e-10 9.983e-08 0.000e+00 -171.4066 -171.4066 -171.4066
306 53,048 2.43 9.45 227.32 2.266e-10 9.995e-08 0.000e+00 -228.6001 -228.6001 -228.6001
242 72,016 2.78 10.25 809.57 9.055e-09 9.982e-08 0.000e+00 -288.6970 -288.6970 -272.1732
324 125,848 5.61 26.98 * 1.107e-08 9.987e-08 * -569.2405 -569.2405 *
658 243,936 19.37 78.58 * 5.478e-09 9.987e-08 * -1133.8747 -1133.8747 *
833 432,218 47.86 203.95 * 8.007e-08 9.999e-08 * -2124.3265 -2124.3265 *

1,383 1,194,500 206.88 571.17 * 9.473e-08 9.983e-08 * -3236.1724 -3236.1724 *
1,619 2,389,000 556.34 1297.86 * 4.422e-09 9.994e-08 * -6474.3812 -6474.3812 *

From Table 1, we observe the following facts:

– IPLD can solve large-scale problems with huge variables and moderate num-
ber of couple linear inequality constraints relatively fast and accurate. IPLD
outperforms SDPT3 and CP in a majority of problems in terms of CPU
time and achieves the same accuracy in the objective value and constraint
violation.

– It is not surprising that CP can also achieve high accuracy but requires
very large number of iterations. The CP algorithm requires from 6500 to
15200 iterations to achieve our specified accuracy depending on problem.

– SDPT3 is quickly prohibited to handle larger instances due to the increase
of variables and constraints when transforming it into a conic and log form.
Therefore, the problem cannot be fit into our computer memory.

In summary, we believe that our method, IPLD, can potentially solve large-scale
convex problems of the form (2) as long as they satisfy Assumptions 2.1 and
2.2. It can often achieve high accuracy within reasonably computational effort
and can be easily parallelized. While primal-dual first-order methods require to
tune the step-size to obtain good performance, our method is relatively robust
to inexact oracles and inexact Newton-type methods as well as the choice of
parameter t0 ∈ (0, 1].

http://networkrepository.com/tech-pgp.php

22 Deyi Liu · Quoc Tran-Dinh

6.3 Spectrum management of multi-user DSL networks
We consider the spectrum management problem of multi-user DSL networks
studied in [36], which can be cast into the following constrained problem:

min
x∈Rm

{
g(x) := −

∑M
i=1

[
a>i xi − c>i ln(Hixi + gi)

]}
s.t.

∑M
i=1 xi ≤ b,

0 ≤ xi ≤ L, i = 1, · · · ,M.

(55)

where xi ∈ Rm, ai ∈ Rm, ci ∈ Rm+ , b ∈ Rm, L ∈ Rm++, gi ∈ Rm, and Hi ∈
Rm×m. Here, m is the number of users, and M is the number of channels. For
the detail explanation of this model, we refer the reader to [36]. Clearly, (55)

can be cast into (2), where g is self-concordant, Ax =
∑M
i=1 xi, φ := δ(−∞,b]

the indicator of (−∞, b], and K := [0, L]M .
Our goal in this example is to verify the performance of Algorithm 1 using

different accuracy levels both for inexact oracles and inexact proximal-Newton
method. For this purpose, we use two real datasets to test our algorithm. More
precisely, we first fix the tolerance δk of the inexact oracles at 10−5 and change
the tolerance εk of the inexact proximal-Newton method from 10−2 to 10−11.
Then, we fix the tolerance εk at 10−5 in the inexact proximal-Newton scheme
and vary δk in the inexact oracles between 10−2 and 10−8. In all these cases,
we terminate our algorithm whenever the feasibility violation is below 10−5

and the relative gap is below 10−6.
In the first test, we use a 7-user asymmetric ADSL downstream dataset,

where m = 7 and M = 224. Figure 1 shows how the number of iterations and
the normalized CPU time depend on the tolerances, where the normalized
CPU time is computed by (T − Tmin)/(Tmax − Tmin) with the time T .

We can see from the top row of Figure 1 that with δk = 10−5 fixed and
εk ≤ 10−4, the number of iterations is almost stable and the computational
time does not decrease significantly. This suggests that the accuracy εk = 10−4

is sufficiently for computing proximal-Newton direction in the dual problem. If
εk > 10−4, then the number of iterations and CPU time increase significantly.
Similarly, if we fix εk = 10−5 and increase δk from 10−8 to 10−2, then we
can observe from the bottom row of Figure 1 that δk ≤ 10−4 is sufficient to
accommodate the inexact oracles.

To confirm our above statement, we again test our algorithm with the
second dataset, 12-user VDSL upstream dataset, where n = 12 and M =
1147. Figure 2 provides the number of iterations and normalized CPU time
by rescaling it between [0, 1] as in Figure 1. We again observe very similar
behavior in both situations, but since the problem is relatively larger than
that of the first dataset, the computational time increases significantly when
we decrease the accuracy δk of the inexact oracles.

Acknowledgements This work was partly supported by the National Science Foundation
(NSF), awarded number: DMS-1619884.

A Appendix: The proof of technical results in the main text
We provide all the missing proofs in the main text.

An Inexact Interior-Point Lagrangian Decomposition Algorithm 23

10
-10

10
-8

10
-6

10
-4

10
-2

45

50

55

60

65

70

75

80

85

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

10
-10

10
-8

10
-6

10
-4

10
-2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
li
z
e
d
 C

P
U

 t
im

e

10
-8

10
-6

10
-4

10
-2

0

100

200

300

400

500

600

N
u
m

e
r

o
f
it
e
ra

ti
o
n
s

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
li
z
e
d
 C

P
U

 t
im

e

Fig. 1 The number of iterations and normalized CPU time of Algorithm 1 on the 7-users
dataset. The first row shows the number of iterations and normalized CPU time when δk
is fixed at 10−5 and εk changes from 10−12 to 10−2, while the second row is for the case
εk = 10−5 and δk changes from 10−8 to 10−2.

A.1 The proof of Proposition 4.2: Properties of inexact oracles.
Since x∗t (y) is the exact solution of (18), we have

∇ψt(x∗t (y); y) ≡ M2
t

4

[
∇g(x∗t (y)) + t∇f(x∗t (y))−A>y

]
= 0.

Therefore, using the standard self-concordance of ψt, we can show that

〈∇ψt(x̃∗t (y); y), x̃∗t (y)− x∗t (y)〉 = 〈∇ψt(x̃∗t (y); y)−∇ψt(x∗t (y); y), x̃∗t (y)− x∗t (y)〉

≥
|x̃∗t (y)−x

∗
t (y)|

2
x̃∗t (y),t

1 + |x̃∗t (y)−x
∗
t (y)|x̃∗t (y),t

.

By the Cauchy-Schwarz inequality, we have

〈∇ψt(x̃∗t (y); y), x̃∗t (y)− x∗t (y)〉 ≤ |∇ψt(x̃∗t (y); y)|∗x̃∗t (y),t|x̃
∗
t (y)− x∗t (y)|x̃∗t (y),t.

Combining the last two inequalities, we eventually get

|x̃∗t (y)− x∗t (y)|x̃∗t (y),t
1 + |x̃∗t (y)− x∗t (y)|x̃∗t (y),t

≤ |∇ψt(x̃∗t (y); y)|∗x̃∗t (y),t ≤
δ

1 + δ
.

This implies that |x̃∗t (y)− x∗t (y)|x̃∗t (y),t ≤ δ.
Next, using (19) and (21), we have dt(y)−d̃t(y) = ψt(x̃∗t (y); y)−ψt(x∗t (y); y). Therefore,

applying [19, Theorems 4.1.7 and 4.1.8] respectively, we obtain the first estimate of (24).

Note that since∇2dt(y) =
M4
t

16
A∇2ψt(x∗t (y); y)−1A> and ∇̃2dt(y) =

M4
t

16
A∇2ψt(x̃∗t (y))−1A>,

using [19, Theoryem 4.1.6], we obtain the second estimate of (24).

24 Deyi Liu · Quoc Tran-Dinh

10
-10

10
-8

10
-6

10
-4

10
-2

40

50

60

70

80

90

100

110

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

10
-10

10
-8

10
-6

10
-4

10
-2

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 C

P
U

 t
im

e

10
-8

10
-6

10
-4

10
-2

48

49

50

51

52

53

54

55

56

57

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

10
-8

10
-6

10
-4

10
-2

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 C

P
U

 t
im

e

Fig. 2 The number of iterations and normalized CPU time of Algorithm 1 on the 12-users
dataset. The first row shows the number of iterations and normalized CPU time when δk
is fixed at 10−5 and εk changes from 10−12 to 10−2, while the second row is for the case
εk = 10−5 and δk changes from 10−8 to 10−2.

Finally, since ∇dt(y)− ∇̃dt(y) =
M2
t

4
A(x∗t (y)− x̃∗t (y)), we have

[
|‖∇dt(y)− ∇̃dt(y)|‖∗y,t

]2
=

M4
t

16
(x∗t (y)− x̃∗t (y))A>

(M4
t

16
A∇2ψt(x̃∗t (y); y)−1A>

)−1
A(x∗t (y)− x̃∗t (y))

≤ M4
t

16
(x∗t (y)− x̃∗t (y))> 16

M4
t
∇2ψt(x̃∗t (y); y)(x∗t (y)− x̃∗t (y))

= |x∗t (y)− x̃∗t (y)|2
x̃∗t (y),t

.

In the last inequality, we use A>(AQ−1A>)−1A � Q for any symmetric positive definite
matrix Q and any full-row rank matrix A. Hence, we obtain the third estimate of (24). �

A.2 The technical proofs of Subsection 5.3: Convergence analysis

We provide the proof of technical results in Subsection 5.3.

A.2.1 The proof of Lemma 5.1: Key estimate of the inexact PN scheme (31).

For simplicity of presentation, we redefine t := tk, t+ := tk+1, y := yk, y+ := yk+1, and
ȳ+ := ȳk+1, where ȳk+1 is defined by (28) or (30). Using these new notations, we also

denote δ := δt+ (y), δ+ := δt+ (y+), ε := ‖|y+ − ȳ+‖|y,t+ , and λ̂ := |‖y+ − y|‖y,t+ to make
our analysis more clean.

An Inexact Interior-Point Lagrangian Decomposition Algorithm 25

If we define rt+ (y) := ∇̃2dt+ (y)(ȳ+ − y) + ∇̃dt+ (y), then from (28), we have

−rt+ (y) ∈ ∂ht+ (ȳ+),

which is equivalent to

ȳ+ − ∇̃2dt+ (y+)−1rt+ (y) ∈ ȳ+ + ∇̃2dt+ (y+)−1∂ht+ (ȳ+).

Utilizing the scaled proximal operator defined by (30), we can write the last statement as

ȳ+ = prox
∇̃2dt+ (y+)

ht+

(
ȳ+ − ∇̃2dt+ (y+)−1rt+ (y)

)
. (56)

Using the definition of G̃t(y) in (33) and of λt(y) in (34), we can derive

λt+ (y+) = |‖G̃t+ (y+)|‖∗y+,t+

=
∥∥∥∣∣∣∇̃2dt+ (y+)

[
y+ − prox

∇̃2dt+ (y+)

ht+

(
y+ − ∇̃2dt+ (y+)−1∇̃dt+ (y+)

)]∥∥∥∣∣∣∗
y+,t+

=
∥∥∥∣∣∣y+ − prox

∇̃2dt+ (y+)

ht+

(
y+ − ∇̃2dt+ (y+)−1∇̃dt+ (y+)

)∥∥∥∣∣∣
y+,t+

≤ |‖y+ − ȳ+|‖y+,t+ +
∥∥∥∣∣∣ȳ+ − prox

∇̃2dt+ (y+)

ht+

(
y+ − ∇̃2dt+ (y+)−1∇̃dt+ (y+)

)∥∥∥∣∣∣
y+,t+

(56)
= |‖y+ − ȳ+|‖y+,t+ +

∥∥∥∣∣∣prox
∇̃2dt+ (y+)

ht+

(
ȳ+ − ∇̃2dt+ (y+)−1rt+ (y)

)
− prox

∇̃2dt+ (y+)

ht+

(
y+ − ∇̃2dt+ (y+)−1∇̃dt+ (y+)

)∥∥∥∣∣∣
y+,t+

.

By the non-expansiveness of prox
∇̃2dt+
ht+

(·), see [32], we can further estimate this term as

λt+ (y+) ≤ |‖y+ − ȳ+|‖y+,t+ +
∥∥∥∣∣∣ȳ+ − y+ + ∇̃2dt+ (y+)−1

(
∇̃dt+ (y+)− rt+ (y)

)∥∥∥∣∣∣
y+,t+

≤ 2|‖y+ − ȳ+|‖y+,t+ + |‖∇̃dt+ (y+)− ∇̃dt+ (y)− ∇̃2dt+ (y)(ȳ+ − y)|‖∗y+,t+ .
(57)

Next, we decompose the following term Rt+ (y) as

Rt+ (y) := ∇̃dt+ (y+)− ∇̃dt+ (y)− ∇̃2dt+ (y)(ȳ+ − y)

=
[
∇̃dt+ (y+)−∇dt+ (y+)

]
−
[
∇̃dt+ (y)−∇dt+ (y)

]
−
[
∇̃2dt+ (y)−∇2dt+ (y)

]
(y+ − y)− ∇̃2dt+ (y)(ȳ+ − y+)

+
[
∇dt+ (y+)−∇dt+ (y)−∇2dt+ (y)(y+ − y)

]
.

(58)

Before we estimate the five terms of Rt+ (y), we recall the following inequalities, which will
be repeatedly used in our proof.

1

1− ‖y+ − y‖y,t+

(24)

≤
1

1− 1
1−δt+ (y)

|‖y+ − y|‖y,t+
=

1− δ
1− δ − λ̂

. (59)

|‖ · |‖∗y+,t+
(24)

≤
‖·‖∗y+,t+

1−δt+ (y+)
≤

‖·‖∗y,t+(
1−δt+ (y+)

)(
1−‖y+−y‖y,t+

) (59)

≤
(1−δ)‖·‖∗y,t+

(1−δ+)(1−δ−λ̂)
. (60)

Here, the second last inequality of (60) is from [19, Theoryem 4.1.6]. Note that (60) also
holds for |‖ · |‖y+,t+ and ‖ · ‖y,t+ .

Using (60), we have

|‖ · |‖∗y+,t+
(60)

≤
(1− δ)‖ · ‖∗y,t+

(1− δ+)(1− δ − λ̂)

(24)

≤
|‖ · |‖∗y,t+

(1− δ+)(1− δ − λ̂)
. (61)

26 Deyi Liu · Quoc Tran-Dinh

Note that (61) also holds for |‖ · |‖y+,t+ and |‖ · |‖y,t+ .
Now, we estimate the first term in Rt+ (y) of (58) as

|‖∇̃dt+ (y+)−∇dt+ (y+)|‖∗y+,t+
(24)

≤ δt+ (y+) = δ+. (62)

For the second term of (58), we have

|‖∇̃dt+ (y)−∇dt+ (y)|‖∗y+,t+
(61)

≤ 1

(1−δ+)(1−δ−λ̂)
|‖∇̃dt+ (y)−∇dt+ (y)|‖∗y,t+

(24)

≤
δt+ (y)

(1−δ+)(1−δ−λ̂)

= δ

(1−δ+)(1−δ−λ̂)
.

(63)

To estimate the third term of (58), let S(y) :=
[
∇̃2dt+ (y)−∇2dt+ (y)

]
(y+ − y). We have

|‖S(y)|‖∗y+,t+
(60)

≤
(1−δ)‖S(y)‖∗y,t+
(1−δ+)(1−δ−λ̂)

(64)

However, ‖S(y)‖∗y,t+ can be estimated as[
‖S(y)‖∗y,t+

]2
= (y+ − y)>[∇̃2dt+ (y)−∇2dt+ (y)

]
∇2dt+ (y)−1[∇̃2dt+ (y)−∇2dt+ (y)

]
(y+ − y)

= (y+− y)>∇̃2dt+ (y)∇2dt+ (y)−1∇̃2dt+ (y)(y+− y)

− 2(y+ − y)>∇̃2dt+ (y)(y+ − y) + (y+ − y)>∇2dt+ (y)(y+ − y)

(24)

≤
[

2
(1−δt+ (y))2

− 2

]
(y+ − y)>∇̃2dt+ (y)(y+ − y)

= 4δ−2δ2

(1−δ)2 |‖y+ − y|‖
2
y,t+

= 4δ−2δ2

(1−δ)2 λ̂
2

Using this estimate into (64), we finally get

|‖
[
∇̃2dt+ (y)−∇2dt+ (y)

]
(y+ − y)|‖∗y+,t+ ≤

1−δ
(1−δ+)(1−λ̂−δ)

√
4δ−2δ2

(1−δ) λ̂

=

√
4δ−2δ2λ̂

(1−δ+)(1−λ̂−δ)
.

(65)

For the fourth term ∇̃2dt+ (y)(ȳ+ − y+) of (58), we have

|‖∇̃2dt+ (y)(ȳ+ − y+)|‖∗y+,t+
(61)

≤ 1

(1−δ+)(1−λ̂−δ)
|‖∇̃2dt+ (y)(ȳ+ − y+)|‖∗y,t+

= 1

(1−δ+)(1−λ̂−δ)
|‖ȳ+ − y+|‖y,t+

= ε

(1−δ+)(1−λ̂−δ)
.

(66)

Finally, we estimate last terms T5 := |‖∇dt+ (y+) − ∇dt+ (y) − ∇2dt+ (y)(y+ − y)|‖∗y+,t+ .

Note that

T5
(60)

≤ 1−δ
(1−δ+)(1−δ−λ̂)

∥∥[∇dt+ (y+)−∇dt+ (y)−∇2dt+ (y)(y+ − y)
∥∥∗
y,t+

≤ 1−δ
(1−δ+)(1−δ+−λ̂)

(
‖y+−y‖2y,t+

1−‖y+−y‖y,t+

)
(59)

≤ (1−δ)2

(1−δ+)(1−δ−λ̂)2
‖y+ − y‖2y,t+

(24)

≤ λ̂2

(1−δ+)(1−δ−λ̂)2
,

(67)

An Inexact Interior-Point Lagrangian Decomposition Algorithm 27

where the second inequality follows from [35, Theorem 1].
Plugging (62), (63), (65), (66), and (67) into (58), we can estimate

|‖Rt+ (y)|‖∗y+,t+ ≤ δ+ + δ

(1−δ+)(1−λ̂−δ)
+

√
4δ−2δ2λ̂

(1−δ+)(1−λ̂−δ)

+ ε

(1−δ+)(1−λ̂−δ)
+ λ̂2

(1−δ+)(1−δ−λ̂)2
.

(68)

Note that

|‖y+ − ȳ+|‖y+,t+
(61)

≤
|‖y+ − ȳ+|‖y,t+

(1− δ+)(1− δ − λ̂)
=

ε

(1− δ+)(1− δ − λ̂)
.

Substituting this estimate and (68) into (57), we finally obtain

λt+ (y+) ≤ 3ε

(1−δ+)(1−δ−λ̂)
+ δ+ + δ

(1−δ+)(1−λ̂−δ)

+

√
4δ−2δ2λ̂

(1−δ+)(1−λ̂−δ)
+ λ̂2

(1−δ+)(1−δ−λ̂)2
.

(69)

However, from the definition of λt+ (y), we have

λt+ (y) :=
∥∥∥∣∣∣∇̃2dt+ (y)

(
y − prox

∇̃2dt+ (y)

ht+
(y − ∇̃2dt+ (y)−1∇̃dt+ (y)

)∥∥∥∣∣∣∗
y,t+

= |‖ȳ+ − y|‖y,t+
≥ |‖y+ − y|‖y,t+ − |‖y+ − ȳ+|‖y,t+
= λ̂− ε.

This implies λ̂ := |‖y+ − y|‖y,t+ ≤ λt+ (y) + ε. Substituting this estimate into (69), we
obtain (37). In particular, if δ = δ+ = ε = 0, then we can simplify (37) to obtain (38). �

A.2.2 The proof of Lemma 5.2: The relationship between λt+(y) and ∆̃.

We again redefine t := tk, t+ := tk+1, y := yk, y+ := yk+1, and ȳ+ := ȳk+1 as in Lemma

5.1. In addition, we also define ū := prox
∇̃2dt(y)
ht

(
y − ∇̃2dt(y)−1∇̃dt(y)

)
.

First, we show that λt+ (y) and λt(y) can be respectively expressed as

λt+ (y) :=
∥∥∥∣∣∣∇̃2dt+ (y)

(
y − prox

∇̃2dt+ (y)

ht+
(y − ∇̃2dt+ (y)−1∇̃dt+ (y)

)∥∥∥∣∣∣∗
y,t+

= |‖ȳ+ − y|‖y,t+ ,

λt(y) :=
∥∥∥∣∣∣∇̃2dt(y)

(
y − prox

∇̃2dt(y)
ht

(y − ∇̃2dt(y)−1∇̃dt(y)

)∥∥∥∣∣∣∗
y,t

= |‖ū− y|‖y,t.

(70)

If we denote by h̄(y) := φ∗(−y), then ht(y) =
M2
t

4
h̄(y). By the definition of ū and ȳ+, we

can write 
− 4
M2
t

[
∇̃2dt(y)(ū− y) + ∇̃dt(y)

]
∈ ∂h̄(ū),

− 4
M2
t+

[
∇̃2dt+ (y)(ȳ+ − y) + ∇̃dt+ (y)

]
∈ ∂h̄(ȳ+).

Using the monotonicity of ∂h̄(·), we can show that〈
4
M2
t
∇̃2dt(y)(ū− y)− 4

M2
t+

∇̃2dt+ (y)(ȳ+ − y) + 4
M2
t
∇̃dt(y)− 4

M2
t+

∇̃dt+ (y), ȳ+ − ū
〉
≥ 0.

28 Deyi Liu · Quoc Tran-Dinh

Rearranging this inequality, we obtain〈
4
M2
t
∇̃2dt(y)(ū− y)− 4

M2
t+

∇̃2dt+ (y)(ū− y) + 4
M2
t
∇̃dt(y)− 4

M2
t+

∇̃dt+ (y), ȳ+ − ū
〉

≥ 4
M2
t+

|‖ȳ+ − ū|‖2y,t+ .

By the Cauchy-Schwarz inequality, we can derive that

∥∥∥∣∣∣
T1︷ ︸︸ ︷

4
M2
t
∇̃2dt(y)(ū− y)− 4

M2
t+

∇̃2dt+ (y)(ū− y) +

T2︷ ︸︸ ︷
4
M2
t
∇̃dt(y)− 4

M2
t+

∇̃dt+ (y)
∥∥∥∣∣∣∗
y,t+

≥ 4
M2
t+

|‖ȳ+ − ū|‖y,t+ .

(71)

To estimate T1, we first show the relationship between ∇2ψt(x̃∗t (y)) and ∇2ψt+ (x̃∗t+ (y)).

Then, we use it to get the relationship between ∇̃2dt(y) and ∇̃2dt+ (y). Recall that∇2ψt(x) :=
M2
t

4

[
∇2g(x) + t∇2f(x)

]
. Moreover, if t ∈ [0, 1], then

M2
t

4
:= max

{
1, 1
t

}
= 1

t
. Therefore, we

can write

∇2ψt(x) =
1

t
∇2g(x) +∇2f(x) and ∇2ψt+ (x) =

1

t+
∇2g(x) +∇2f(x).

For any 0 ≤ t+ ≤ t ≤ 1, we have

∇2ψt(x) � ∇2ψt+ (x) �
1

t+
∇2g(x) +

t

t+
∇2f(x) =

t

t+
∇2ψt(x). (72)

In addition, using the self-concordance of ψt and (72), we also have

∇2ψt(x̃∗t (y)) � 1(
1 − |x̃∗t+ (y)−x̃∗t (y)|x̃∗t (y),t

)2∇2ψt(x̃∗t+ (y))

(72)

� 1
(1−∆̃)2

∇2ψt+ (x̃∗t+ (y)),

∇2ψt+ (x̃∗t+ (y))
(72)

� t
t+
∇2ψt(x̃∗t+ (y)) � t

t+

(
1 − |x̃∗t+ (y)−x̃∗t (y)|x̃∗t (y),t

)2∇2ψt(x̃∗t (y))

= t
t+(1−∆̃)2

∇2ψt(x̃∗t (y)).

(73)

If we take the inverse of both sides of (73), then we get
∇2ψt+ (x̃∗t+ (y))−1 � 1

(1−∆̃)2
∇2ψt(x̃∗t (y))−1,

∇2ψt(x̃∗t (y))−1 � t
t+(1−∆̃)2

∇2ψt+ (x̃∗t+ (y))−1.

Since ∇̃2dt(y) =
M4
t

16
A∇2ψt(x̃∗t (y))−1A> and ∇̃2dt+ (y) =

M4
t+

16
A∇2ψt+ (x̃∗t+ (y))−1A>,

the last inequalities imply

16
M4
t+

∇̃2dt+ (y) � 16
M4
t (1−∆̃)2

∇̃2dt(y) and 16
M4
t
∇̃2dt(y) � 16t

M4
t+
t+(1−∆̃)2

∇̃2dt+ (y),

which are respectively equivalent to

∇̃2dt+ (y) �
M4
t+

M4
t (1−∆̃)2

∇̃2dt(y) and ∇̃2dt(y) � M4
t t

M4
t+
t+(1−∆̃)2

∇̃2dt+ (y).

An Inexact Interior-Point Lagrangian Decomposition Algorithm 29

Since
M2
t

4
= 1

t
and

M2
t+

4
= 1

t+
, we obtain from the above inequalities that

∇̃2dt+ (y) � t2

t2+(1−∆̃)2
∇̃2dt(y) and ∇̃2dt(y) � t+

t(1−∆̃)2
∇̃2dt+ (y). (74)

Now we can estimate the first term T1 in (71) as[
|‖T1|‖∗y,t+

]2
=
[∥∥∣∣ 4

M2
t
∇̃2dt(y)(ū− y)− 4

M2
t+

∇̃2dt+ (y)(ū− y)
∥∥∣∣∗
y,t+

]2
=
[∥∥∣∣t∇̃2dt(y)(ū− y)− t+∇̃2dt+ (y)(ū− y)

∥∥∣∣∗
y,t+

]2
= (ū−y)>

([
t∇̃2dt(y)−t+∇̃2dt+ (y)

]
∇̃2dt+ (y)−1

[
t∇̃2dt(y)−t+∇̃2dt+ (y)

])
(ū−y)

= (ū− y)>
(
t2∇̃2dt(y)∇̃2dt+ (y)−1∇̃2dt(y)− 2tt+∇̃2dt(y) + t2+∇̃2dt+ (y)

)
(ū− y)

(74)

≤ (ū− y)>
(

t+t

(1−∆̃)2
− 2tt+ + t2

(1−∆̃)2
∇̃2dt(y)

)
(ū− y).

=
t2−2t+t(1−∆̃)2+tt+

(1−∆̃)2
|‖ū− y|‖2y,t.

(75)

To estimate the second term T2 of (71), by the definition of ∇̃dt, we have[
|‖T2|‖∗y,t+

]2
=
[∥∥∣∣ 4

M2
t
∇̃dt(y)− 4

M2
t+

∇̃dt+ (y)
∥∥∣∣∗
y,t+

]2
=
[∥∥∣∣Ax̃∗t (y)−Ax̃∗t+ (y)

∥∥∣∣∗
y,t+

]2
= (x̃∗t (y)− x̃∗t+ (y))>A>∇̃2dt+ (y)−1A(x̃∗t (y)− x̃∗t+ (y))

(21)
= 16

M4
t+

(x̃∗t (y)−x̃∗t+ (y))>A>
(
A∇2ψt+ (x̃∗t+ (y))−1A>

)−1
A(x̃∗t (y)− x̃∗t+ (y))

≤ 16
M4
t+

(x̃∗t (y)− x̃∗t+ (y))>∇2ψt+ (x̃∗t+ (y))(x̃∗t (y)− x̃∗t+ (y))

= 16
M4
t+

|x̃∗t (y)− x̃∗t+ (y))|2
x̃∗t+

(y),t+
= 16

M4
t+

∆̃2
+.

(76)
Here, we use the fact that A>(AQ−1A>)−1A � Q for any symmetric positive definite
matrix Q and any full-row rank matrix A.

Plugging (75) and (76) into (71), we get

4
M2
t+

|‖ȳ+ − ū|‖y,t+ ≤
4

M2
t+

∆̃+ +

√
t2 − 2t+t(1− ∆̃)2 + tt+

1− ∆̃
|‖ū− y|‖y,t.

This inequality is equivalent to

|‖ȳ+ − ū|‖y,t+ ≤ ∆̃+ +

√
(t
t+

)2 − 2 t
t+

(1− ∆̃)2 + t
t+

1− ∆̃
|‖ū− y|‖y,t. (77)

Finally, we can derive

λt+ (y)
(70)
= |‖ȳ+ − y|‖y,t+
≤ |‖ȳ+ − ū|‖y,t+ + |‖ū− y|‖y,t+

(77)

≤ ∆̃+ +

√
(t
t+

)2−2 t
t+

(1−∆̃)2+ t
t+

1−∆̃
λt(y) + |‖ū− y|‖y,t+

(74)

≤ ∆̃+ +

√
(t
t+

)2−2 t
t+

(1−∆̃)2+ t
t+

1−∆̃
λt(y) + t

t+(1−∆̃)
|‖ū− y|‖y,t

(70)

≤ ∆̃+ +

[√
(t
t+

)2−2 t
t+

(1−∆̃)2+ t
t+

+ t
t+

1−∆̃

]
λt(y),

(78)

30 Deyi Liu · Quoc Tran-Dinh

which is exactly (40) due to the update t+ := σt. �

In order to prove Lemma 5.3 we need the following auxiliary result.

Lemma A.1 Let a ∈ (0, 1) and b ∈ (0, 1) be two positive numbers such that a+ b < 1. Let

N (a, b) :=

{
(u, v) ∈ R2

+ |
u2

1 + u
≤ au+ bv,

v2

1 + v
≤ av + bu

}
.

Then, N (a, b) ⊆
{

(u, v) ∈ R2
+ | u ≤ a+b

1−a−b , v ≤
a+b

1−a−b

}
.

Proof Suppose (u, v) ∈ N (a, b) and u > a+b
1−a−b . Then, according to u2

1+u
≤ au+bv, we have

v ≥
1

b

(
u2

1 + u
− au

)
=
u

b

(
u

1 + u
− a
)
>
u

b

(
a+b

1−a−b

1 + a+b
1−a−b

− a
)

= u >
a+ b

1− a− b
. (79)

Therefore, we can show that

1

b

(
v2

1 + v
− av

)
=
v

b

(
v

1 + v
− a
)

(79)
>

v

b

(
a+b

1−a−b

1 + a+b
1−a−b

− a
)

= v. (80)

However, because v2

1+v
≤ av + bu, one can show that

u ≥
1

b

(
v2

1 + v
− av

)
(80)
> v.

This contradicts (79). Consequently, we must have u ≤ a+b
1−a−b . Use the symmetry between

u and v, we also have v ≤ a+b
1−a−b . �

A.2.3 The proof of Lemma 5.3: Upper bound on the solution difference ∆̃.

First, by the self-concordance of ψt, we have

∆̃2

1+∆̃
≤ 〈x̃∗t+ (y)− x̃∗t (y),∇ψt(x̃∗t+ (y))−∇ψt(x̃∗t (y))〉

≤ ∆̃|∇ψt(x̃∗t (y))|∗
x̃∗t (y),t

+ ∆̃+|∇ψt(x̃∗t+ (y))|∗
x̃∗t+

(y),t+
.

(81)

Next, since ∇ψt(x) = 1
t
∇g(x) +∇f(x) and ∇ψt+ (x) = 1

t+
∇g(x) +∇f(x), we have

∇ψt(x̃∗t+ (y)) =
t+

t
∇ψt+ (x̃∗t+ (y)) +

(t− t+)

t
∇f(x̃∗t+ (y)).

Therefore, we can bound

|∇ψt(x̃∗t+ (y))|∗
x̃∗t+

(y),t+
≤ t+

t
|∇ψt+ (x̃∗t+ (y))|∗

x̃∗t+
(y),t+

+
(t−t+)

t
|∇f(x̃∗t+ (y))|∗

x̃∗t+
(y),t+

.
(82)

Now, since ∇2ψt+ (x) � ∇2f(x), we can show that

|∇f(x̃∗t+ (y))|∗x̃∗t+ (y),t+
≤
[
∇f(x̃∗t+ (y))>∇2f(x̃∗t+ (y))−1∇f(x̃∗t+ (y))

]1/2
≤ √νf .

An Inexact Interior-Point Lagrangian Decomposition Algorithm 31

Substituting this and (82) into (81), and using the definition of δ̂+ and δ̂, we get

∆̃2

1 + ∆̃
≤ ∆̃δ̂ +

(
δ̂+t+

t
+

(t− t+)

t

√
νf

)
∆̃+.

Finally, using t+ = σt, we obtain the first estimate of (42) from the last inequality.
Similarly, by following the same argument as in the proof of the first estimate in (42),

we can show that
∆̃2

+

1 + ∆̃+

≤ ∆̃+δ̂+ +

(
δ̂t

t+
+

(t− t+)

t+

√
νf

)
∆̃,

which is the second estimate of (42).

Assume that we choose δ̂ ≤ δ and δ̂+ ≤ δ for some δ ∈ (0, 1). Since t+ = σt, if we denote

by cν(σ) := δ
σ

+
(1−σ)
σ

√
νf ∈ (0, 1). Assume further that δ + cν(σ) < 1. Then, it is clear

that
δ̂+t+
t

+
(t−t+)

t

√
νf ≤ cν(σ) and δ̂t

t+
+

(t−t+)

t+

√
νf ≤ cν(σ). Applying Lemma A.1, we

can see that (∆̃, ∆̃+) ∈ N (δ, cν(σ)). Hence, we have

∆̃ ≤
δ + cν(σ)

1− δ − cν(σ)
and ∆̃+ ≤

δ + cν(σ)

1− δ − cν(σ)
,

which proves (44). �

A.3 The proof of result in Subsection 5.5: Finding an initial point.

The proof of Theorem 5.3 requires the following key lemma.

Lemma A.2 Let {ŷj} be the sequence generated by Algorithm 2, where the step-size αj is

chosen such that αj ∈ (0, 1] and
αj λ̂j
1−δj

< 1. Then, the following estimate holds

Dt0 (ŷj+1) ≤ Dt0 (ŷj)− αj
[
λ̂2j − (εj + δj)λ̂j

]
+ ω∗

(
αj λ̂j

1− δj

)
, (83)

where Dt is defined in (14) and ω∗(τ) := −τ − ln(1 − τ). The optimal step-size αj that
minimizes the right-hand side of (83) is

αj :=
(λ̂j − εj − δj)(1− δj)2[

1 + (1− δj)(λ̂j − εj − δj)
]
λ̂j
∈ (0, 1). (84)

The corresponding estimate from (83) with this step-size is

Dt0 (ŷj+1) ≤ Dt0 (ŷj)− ω
(

(λ̂j − εj − δj)(1− δj)
)
. (85)

In particular, if we set δj = εj = 0, then we get the original damped-step proximal-Newton

step-size αj = 1
1+λj

and the estimate Dt0 (ŷj+1) ≤ Dt0 (ŷj)−ω(λj) for ω(τ) := τ−ln(1+τ).

Proof Firstly, from the self concordance of dt0 defined in (14) and ŷj+1 = (1− α)ŷj + αŝj ,
we can show that

dt0 (ŷj+1) + ht0 (ŷj+1) ≤ dt0 (ŷj) + 〈∇dt0 (ŷj), ŷj+1 − ŷj〉+ ω∗(‖ŷj+1 − ŷj‖ŷj ,t0)

+ (1− α)ht0 (ŷj) + αht0 (ŝj)

= dt0 (ŷj) + α〈∇dt0 (ŷj), ŝj − ŷj〉+ ω∗(α‖ŝj − ŷj‖ŷj ,t0)

+ (1− α)ht0 (ŷj) + αht0 (ŝj)

= (1− α)
(
dt0 (ŷj) + ht0 (ŷj)

)
+ ω∗(α‖ŝj − ŷj‖ŷj ,t0)

+ α
(
dt0 (ŷj) + ht0 (ŝj) + 〈∇dt0 (ŷj), ŝj − ŷj〉

)
.

(86)

32 Deyi Liu · Quoc Tran-Dinh

Next, we will prove that

dt0 (ŷj) +ht0 (ŝj) +
〈
∇dt0 (ŷj), ŝj − ŷj

〉
≤ dt0 (ŷj) +ht0 (ŷj)−

1

2
λ2j −

1

2
λ̂2j +

ε2j

2
+ δj λ̂j , (87)

where λj := |‖ŷj − sj |‖ŷj ,t0 .
Indeed, by the Cauchy-Schwarz inequality, we have

〈∇dt0 (ŷj)− ∇̃dt0 (ŷj), ŝj − ŷj〉 ≤ |‖∇dt0 (ŷj)− ∇̃dt0 (ŷj)|‖∗
ŷj ,t0

|‖ŝj − ŷj |‖ŷj ,t0
≤ δj λ̂j .

(88)

Since

ŝj :≈ sj := prox
∇̃2dt0 (ŷj)

ht0

(
ŷj − ∇̃2dt0 (ŷj)−1∇̃dt0 (ŷj)

)
,

we have

〈∇̃dt0 (ŷj), ŝj − ŷj〉+ ht0 (ŝj) ≤ 〈∇̃dt0 (ŷj), sj − ŷj〉+ ht0 (sj)

+ 1
2
|‖sj − ŷj |‖2

ŷj ,t0
− 1

2
|‖ŝj − ŷj |‖2

ŷj ,t0
+
ε2j
2

= 〈∇̃dt0 (ŷj), sj − ŷj〉+ ht0 (sj) + 1
2
λ2j −

1
2
λ̂2j +

ε2j
2
.

(89)

Using 0 ∈ ∇̃dt0 (ŷj) + ∇̃2dt0 (sj − ŷj) + ∂ht0 (sj), we can further estimate

〈∇̃dt0 (ŷj), sj − ŷj〉+ ht0 (sj) + 1
2
λ2j −

1
2
λ̂2j +

ε2j
2

= 〈−∇̃2dt0 (sj − ŷj)−∇ht0 (sj), sj − ŷj〉+ ht0 (sj) + 1
2
λ2j −

1
2
λ̂2j +

ε2j
2

= 〈∇ht0 (sj), ŷj − sj〉+ ht0 (sj)− 1
2
λ2j −

1
2
λ̂2j +

ε2j
2

≤ ht0 (ŷj)− 1
2
λ2j −

1
2
λ̂2j +

ε2j
2
,

(90)

where ∇ht0 (sj) ∈ ∂ht0 (sj). Combining (89) and (90), we get

〈∇̃dt0 (ŷj), ŝj − ŷj〉+ ht0 (ŝj) ≤ ht0 (ŷj)−
1

2
λ2j −

1

2
λ̂2j +

ε2j

2
. (91)

Now, we can prove (87) as follows:

dt0 (ŷj) + ht0 (ŝj) + 〈∇dt0 (ŷj), ŝj − ŷj〉

= dt0 (ŷj) + ht0 (ŝj) + 〈∇̃dt0 (ŷj), ŝj − ŷj〉+ 〈∇dt0 (ŷj)− ∇̃dt0 (ŷj), ŝj − ŷj〉
(88)

≤ dt0 (ŷj) + ht0 (ŝj) + 〈∇̃dt0 (ŷj), ŝj − ŷj〉+ δj λ̂j

(91)

≤ dt0 (ŷj) + ht0 (ŷj)− 1
2
λ2j −

1
2
λ̂2j +

ε2j
2

+ δj λ̂j .

Combining (86) and (87), and notice that ω∗(α‖ŝj − ŷj‖ŷj ,t0) ≤ ω∗(
αλ̂j
1−δj

) we can deduce

dt0 (ŷj+1) + ht0 (ŷj+1) ≤ dt0 (ŷj) + ht0 (ŷj)− α
(
λ2j

2
+
λ̂2j

2
−
ε2j

2
− δj λ̂j

)
+ ω∗

(
αλ̂j

1− δj

)
.

Using the fact that λj ≥ λ̂j − εj and the definition Dt0 := dt0 + ht0 , we obtain (83).

Next, if we maximize ζ(α) := α
[
λ̂2j − (εj + δj)λ̂j

]
− ω∗

(
αλ̂j
1−δj

)
, we have α? :=

(λ̂j−εj−δj)(1−δj)2

[1+(1−δj)(λ̂j−εj−δj)]λ̂j
as defined by (84). Plugging α? into ζ(α), we get

ζ(α?) =
(λ̂j − εj − δj)2(1− δj)2

1 + (1− δj)(λ̂j − εj − δj)
− ω∗

(
(λ̂j − εj − δj)(1− δj)

1 + (λ̂j − εj − δj)(1− δj)

)
.

An Inexact Interior-Point Lagrangian Decomposition Algorithm 33

Since x2

1+x
− ω∗

(
x

1+x

)
= ω(x), we finally have ζ(α?) = ω

(
(λ̂j − εj − δj)(1− δj)

)
, which

proves (85). If δj = εj = 0, then αj reduces to 1
1+λj

and we obtain Dt0 (ŷj+1) ≤ Dt0 (ŷj)−
ω(λj) from (85). �

References

1. A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding agorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

2. A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization: Analysis, algo-
rithms, and engineering applications, volume 3 of MPS/SIAM Series on Optimization.
SIAM, 2001.

3. D.P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: Numerical
methods. Prentice Hall, 1989.

4. J.R. Birge. Decomposition and Partitioning Methods for Multistage Stochastic Linear
Programs. Operations Research, 33(5):989–1007, 1985.

5. A. Bitlislioglu, I. Pejcic, and C. Jones. Interior-point decomposition for multi-agent
optimization. In 20th IFAC World Congress, number EPFL-CONF-228343, 2017.

6. Marián Boguñá, Romualdo Pastor-Satorras, Albert Dı́az-Guilera, and Alex Arenas.
Models of social networks based on social distance attachment. Physical Review E,
70(5):056122, 2004.

7. S. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge,
2004.

8. A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis., 40(1):120–145, 2011.

9. A.J. Connejo, R. Mı́nguez, E. Castillo, and R. Garćıa-Bertrand. Decomposition Tech-
niques in Mathematical Programming: Engineering and Science Applications. Springer-
Verlag, 2006.

10. G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.
11. O. Devolder, F.Glineur, and Y. Nesterov. First-order methods of smooth convex opti-

mization with inexact oracle. Math. Program., 146(1–2):37–75, 2014.
12. M. Fukuda and M. Kojima. Interior-point methods for Lagrangian duals of semidefinite

programs. Inst. of Technology, 2000.
13. M. Fukuda, M. Kojima, and M. Shida. Lagrangian dual interior-point methods for

semidefinite programs. SIAM J. Optim., 12:1007–1031, 2002.
14. S. Gros. A newton algorithm for distributed semi-definite programs using the primal-

dual interior-point method. In 53rd IEEE Conference on Decision and Control, pages
3222–3227. IEEE, 2014.

15. Bjarni V Halldórsson and Reha H Tütüncü. An interior-point method for a class of
saddle-point problems. Journal of Optimization Theory and Applications, 116(3):559–
590, 2003.

16. M. Kojima, N. Megiddo, S. Mizuno, and et al. Horizontal and vertical decomposition
in interior point methods for linear programs. Technical report., Information Sciences,
Tokyo Institute of Technology, Tokyo, 1993.

17. X. Li, D. Sun, and K.-C. Toh. A highly efficient semismooth Newton augmented La-
grangian method for solving Lasso problems. SIAM J. Optim., 28(1):433–458, 2018.

18. I. Necoara and J.A.K. Suykens. Interior-point Lagrangian decomposition method for
separable convex optimization. J. Optim. Theory and Appl., 143(3):567–588, 2009.

19. Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87
of Applied Optimization. Kluwer Academic Publishers, 2004.

20. Y. Nesterov. Barrier subgradient method. Math. Program., Ser. B, 127:31–56, 2011.
21. Y. Nesterov. Gradient methods for minimizing composite objective function. Math.

Program., 140(1):125–161, 2013.
22. Y. Nesterov and A. Nemirovski. Interior-point Polynomial Algorithms in Convex Pro-

gramming. Society for Industrial Mathematics, 1994.
23. Y. Nesterov and J.-Ph. Vial. Augmented self-concordant barriers and nonlinear opti-

mization problems with finite complexity. Math. Program., 99:149–174, 2004.

34 Deyi Liu · Quoc Tran-Dinh

24. S. K. Pakazad, A. Hansson, and M. S. Andersen. Distributed primal-dual interior-point
methods for solving loosely coupled problems using message passing. Optim. Method
Softw., 32(3):401–435, 2017.

25. D.P. Palomar and M. Chiang. A Tutorial on Decomposition Methods for Network
Utility Maximization. IEEE J. Selected Areas in Communications, 24(8):1439–1451,
2006.

26. R.T. Rockafellar. Convexity and Duality in Optimization, chapter Monotropic Pro-
gramming: A generalization of linear programming and network programming., pages
10–036. Springer-Verlag, 1985.

27. M. Shida. An interior-point smoothing technique for Lagrangian relaxation in large-scale
convex programming. Optimization, 57(1):183–200, 2008.

28. N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with rocketfuel.
In SIGCOMM, volume 32, pages 133–145, 2002.

29. T. Sun and Q. Tran-Dinh. Generalized Self-Concordant Functions: A Recipe for Newton-
Type Methods. Math. Program. (online first), pages 1–63, 2018.

30. K.-Ch. Toh, M.J. Todd, and R.H. Tütüncü. On the implementation and usage of
SDPT3 – a Matlab software package for semidefinite-quadratic-linear programming.
Tech. Report 4, NUS Singapore, 2010.

31. Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. An inexact proximal path-following algo-
rithm for constrained convex minimization. SIAM J. Optim., 24(4):1718–1745, 2014.

32. Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. Composite self-concordant minimization.
J. Mach. Learn. Res., 15:374–416, 2015.

33. Q. Tran-Dinh, A. Kyrillidis, and V. Cevher. A single phase proximal path-following
framework. Math. Oper. Res., 43(4):1326–1347, 2018.

34. Q. Tran-Dinh, I. Necoara, C. Savorgnan, and M. Diehl. An inexact perturbed path-
following method for Lagrangian decomposition in large-scale separable convex opti-
mization. SIAM J. Optim., 23(1):95–125, 2013.

35. Q. Tran-Dinh, T. Sun, and S. Lu. Self-concordant inclusions: A unified framework for
path-following generalized Newton-type algorithms. Math. Program. (oneline first),
pages 1–51, 2018.

36. P. Tsiaflakis, M. Diehl, and M. Moonen. Distributed spectrum management algorithms
for multi-user DSL networks. IEEE Transactions on Signal Processing, 56(10):4825–
4843, 2008.

37. M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakta, and M. Nakata.
Handbook on Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms,
Software and Applications, chapter Latest developments in the SDPA Family for solving
large-scale SDPs, pages 687–714. Springer-Verlag, New York, USA, 2011.

38. L. Yang, D. Sun, and K.-C. Toh. SDPNAL+: a majorized semismooth Newton-CG aug-
mented Lagrangian method for semidefinite programming with nonnegative constraints.
Math. Program. Comput., 7(3):331–366, 2015.

39. G. Zhao. A Lagrangian dual method with self-concordant barriers for multistage
stochastic convex programming. Math. Program., 102:1–24, 2005.

40. X.-Y. Zhao, D. Sun, and K.-C. Toh. A Newton-CG augmented Lagrangian method for
semidefinite programming. SIAM J. Optim., 20(4):1737–1765, 2010.

	1 Introduction
	2 Problem statement, basic assumptions, and dual formulation
	3 Generalized self-concordance and self-concordant barriers
	4 Barrier smoothing technique and inexact oracles
	5 Inexact IPLD Method with Inexact Oracles
	6 Numerical Experiments
	A Appendix: The proof of technical results in the main text

