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Abstract Motivated by a growing list of nontraditional statistical estimation problems of the piece-

wise kind [16], this paper provides a survey of known results supplemented with new results for the

class of piecewise linear-quadratic programs. These are linearly constrained optimization problems

with piecewise linear-quadratic (PLQ) objective functions. Starting from a study of the represen-

tation of such a function in terms of a family of elementary functions consisting of squared affine

functions, squared plus-composite-affine functions, and affine functions themselves, we summarize

some local properties of a PLQ function in terms of their first and second-order directional deriva-

tives. We extend some well-known necessary and sufficient second-order conditions for local opti-

mality of a quadratic program to a PLQ program and provide a dozen such equivalent conditions for

strong, strict, and isolated local optimality, showing in particular that a PLQ program has the same

characterizations for local minimality as a standard quadratic program. As a consequence of one

such condition, we show that the number of strong, strict, or isolated local minima of a PLQ pro-
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gram is finite; this result supplements a recent result about the finite number of directional stationary

objective values. Interestingly, these finiteness results can be uncovered by invoking a very powerful

property of subanalytic functions; our proof is fairly elementary, however. We discuss applications

of PLQ programs in some modern statistical estimation problems. These problems lead to a special

class of unconstrained composite programs involving the non-differentiable ℓ1-function, for which

we show that the task of verifying the second-order stationary condition can be converted to the

problem of checking the copositivity of certain Schur complement on the nonnegative orthant.

Keywords piecewise linear-quadratic programming ¨ directional stationarity ¨ second-order local

optimality theory ¨ second-order directional, semi- and sub-derivatives ¨ statistical estimation

problems ¨ matrix copositivity

Mathematics Subject Classification (2010) 90C20 ¨ 90C26 ¨ 68Q25

1 Introduction

The subject of quadratic programming is as old as that of linear programming. The monograph

[26] provides a valuable reference collecting in one source the fundamental theory of quadratic pro-

gramming. A piecewise linear-quadratic (PLQ) function is a continuous function whose domain is

the union of finitely many polyhedral sets on each of which the function is quadratic. A piecewise

linear-quadratic program is an optimization problem with a PLQ objective and linear constraints. It

appears that the Ph.D. thesis [44] is the first systematic study of a PLQ program; this is followed

by the published paper [45] which studies the class of convex PLQ functions and establishes many

structural properties of such piecewise functions. Like a quadratic function/program that provides a

bridge between a linear function/program to a nonlinear one, a PLQ function/program provides an

important gateway to a general piecewise smooth function/program from a piecewise affine func-

tion/program. Formal definitions of all these piecewise functions will be reviewed in Section 2. A

wealth of basic properties of PLQ functions/programs has been obtained in the treatise [39], some

of which are succinctly summarized in the most recent article [9] and employed in the convergence

analysis of Newton and quasi-Newton methods for convex composite programs. In addition, there

are scattered studies of PLQ functions/programs such as the recent one [15] which shows among

other things that the set of directional stationary values of the objective function of a PLQ program

is finite, in spite of the possible continuum of local minima of such a problem. In spite of the abun-

dance of results in the existing studies, there are some open questions about a PLQ function/program

that deserve to be answered.

Motivated by a growing list of applications in several areas, this paper puts together in one place

some modern realizations of PLQ functions/programs, surveys known results to date about these

programs, and supplements the old results by new ones. The new results aim at addressing some nat-

ural questions arising from existing results for quadratic programs and piecewise affine functions. In

the process, we also clarify some second-order properties of piecewise smooth functions. We pro-

vide here the background for the new results that we will detail in Section 2.

‚ On one hand, it is an elementary linear-algebraic fact that a quadratic function is equal to the

difference of two sums of squares of affine functions plus a separate affine function, by the eigen-

decomposition of the quadratic form. On the other hand, it is known from [2,41] that a piecewise

affine function admits a max-min representation in terms of affine functions. This representation is



A Study of Piecewise Linear-Quadratic Programs 3

of an algebraic flavor and is different from the structural properties of a PLQ function as summarized

in [39, Lemma 2.50]; see also [9, Theorem 6.1]. Prior results for convex PLQ functions can be found

in [44,45] as mentioned above. In spite of these known results, there is an absence of an algebraic

representation of a PLQ function that unifies those of a quadratic function and a piecewise affine

function. Part of the contributions of this paper is to provide one such algebraic representation for

a PLQ function, refining the proof of [33, Proposition 11] that provides a difference-of-convex rep-

resentation of piecewise functions with a convex domain equal to the union of finitely many closed

convex pieces on each of which the function gradients are Lipschitz continuous.

‚ The study of optimality conditions for constrained optimization problems dates back five decades

to the beginning years of nonlinear programming [19] under twice continuous differentiability of the

defining functions. In the early 1980’s, such conditions are extended to directionally differentiable

problems using one-sided directional derivatives [3,4,5,10]. The study of optimality conditions con-

tinues to the modern era of variational analysis [39] and generalized differentiation [29] where the

treatment is based on some robust concepts of first-order subgradients and second-order subderiva-

tives. In particular, results from variational analysis [39, Theorems 10.1 and 13.24] establish the

necessity of the second-order conditions for local optimality and the necessity and sufficiency of the

strengthened second-order conditions for strong local optimality for general nonsmooth functions in

terms of such subgradients and subderivatives. Since the early days of quadratic programming [12,

27], it is known that the second-order necessary conditions are indeed sufficient for local optimality

and the second-order sufficient conditions are necessary for strong local optimality. These results

are extended in [8] to convex constrained quadratic programs. Another contribution of this paper is

to extend these results in classical quadratic programming to the class of linearly constrained PLQ

programs, thus closing the gap of the local minimality characterizations for this class of nonsmooth

optimization problems.

‚ Due to the piecewise structure of a PLQ function, it is natural to establish the local minimal-

ity of a PLQ in terms of its “pieces” which are standard quadratic programs. In the case of strong

local minimality, we provide, via the theory of isolated solutions of affine variational inequalities

[17, Section 3.3], a dozen necessary and sufficient conditions among which are the equivalence of

strong, strict, and isolated local minima [37] and a matrix-theoretic characterization pertaining to the

pieces. Interestingly, the latter characterization enables us to show that the number of such minima

is finite. This finiteness result complements similar results for the objective values of directional

stationary solutions; see [15]. As it turns out, these finiteness results for quadratic problems can be

derived by invoking (through additional arguments) a very powerful property of subanalytic sets [6]

whose proof requires advanced mathematical concepts and abstract analysis. In contrast, our proof

in Proposition 12 makes use of simple arguments and highlights one consequence of the necessity of

the second-order sufficient conditions for such minima. The connection between the abstract result

in [6] and our proof also sheds light on the technical difficulty in extending these results to general

piecewise quadratic programs whose pieces can be quite arbitrary.

In addition to these theoretical contributions, we present a host of modern statistical estimation

problems that can be formulated as PLQ optimization problems, and discuss a class of unconstrained

composite programs involving the non-differentiable absolute-value function. For this special prob-

lem, we show that the task of verifying the second-order stationary condition can be converted to the

problem of checking the copositivity of certain Schur complement on the nonnegative orthant.



4 Ying Cui et al.

2 Preliminaries and Background Results

Divided into five subsections, this section collects the concepts and background results about direc-

tional derivatives and their role in the optimality conditions of nonsmooth functions as well as the

second-order optimality theory for quadratic programs. These are summarized here as a review and

also for ease of later reference. Subsection 2.1 introduces the first- and second-directional derivatives

and related definitions. Subsection 2.2 reviews piecewise functions and their local properties and

state the max-min representation of a piecewise affine function. Subsection 2.3 discusses the class

of semismoothly differentiable (SC 1) functions which contain the piecewise smooth functions. Sub-

section 2.4 defines various local minimizers and first- and second-order stationary points in terms of

certain first and second-order necessary and sufficient conditions. We also connect these conditions

to an abstract result for a general nonsmooth problem. Subsection 2.5 summarizes the optimality

results for standard quadratic programs.

2.1 Directional derivatives

The following definitions of directional derivatives can all be found in [39]. Let f : Ω Ñ R be a

given function defined on the open set Ω Ď R
n. The (first-order) subderivative d f pxqpvq and one-

sided directional derivative f 1px; vq at a point x P Ω along the direction v P R
n are defined by,

respectively.

d f pxqpvq fi liminf
v1Ñv
τÓ0

f px ` τ v1q ´ f pxq
τ

and f 1px; vq fi lim
τÓ0

f px ` τ vq ´ f pxq
τ

.

The function f is directionally differentiable at x if f 1px; vq exists for all v P R
n; f is semidifferen-

tiable at x [39, Definition 7.20] if the “liminf” giving d f pxq coincides with the “limsup”; i.e., if the

limit

lim
v1Ñv
τÓ0

f px ` τ v1q ´ f pxq
τ

(1)

exists for all v P R
n; in this case, we have

d f pxqpvq “ lim
v1Ñv
τÓ0

f px ` τ v1q ´ f pxq
τ

“ f 1px; vq, @ v P R
n.

The function f is B(ouligand) differentiable at x if it is directionally differentiable at x and locally

Lipschitz continuous near x; the latter means that f is Lipschitz continuous in a neighborhood of

x. It is easy to see that if f is B-differentiable at x, then the limit (1) exists and equals f 1px; vq for

all v; moreover, in this case, the directional derivative f 1px; ‚q is Lipschitz continuous on R
n; see

[42]. Thus if f locally Lipschitz continuous near x, then semidifferentiability at x is equivalent to

directional differentiability at x.

Extending the first-order directional derivative concepts, we define the second-order directional

derivative of f at a point x P Ω along the direction v P R
n as

1
2

f p2qpx; vq fi lim
τÓ0

f px ` τ vq ´ f pxq ´ τ f 1px; vq
τ2

, (2)
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if the limit exists; the second-order subderivative [39, Definition 13.3] at x for v,w P R
n is defined

as

1
2

d2 f px | vqpwq fi liminf
w1Ñw
τÓ0

f px ` τw 1q ´ f pxq ´ τ vT w 1

τ2
.

Clearly, f p2qpx; ‚q and d2 f px | vqp‚q are both positively homogeneous functions of degree 2. Unlike

the directional derivative f 1px; ‚q which is a Lipschitz function when f is locally Lipschitz at x, the

second-order directional derivative f p2qpx; ‚q is not necessarily continuous; see the PQ function (18).

Based on the first-order subderivative d f pxqp‚q, the following second-order subderivative (without

mentioning v) can be defined:

1
2

d2 f pxqpwq fi lim inf
w 1Ñw
τÓ0

f px ` τw 1q ´ f pxq ´ τ d f pxqpw 1q
τ2

.

We say that f is twice directionally differentiable at x if it is directionally differentiable at x and

the limit f p2qpx; vq exists for all v P R
n. According to [39, Definition 13.6], f is said to be twice

semidifferentiable at x if it is semidifferentiable at x and the limit

lim
w 1Ñw
τÓ0

f px ` τw 1q ´ f pxq ´ τ d f pxqpw 1q
τ2

(3)

exists for all w P R
n. If f is twice semidifferentiable at x, then for all w P R

n,

1
2
d2 f pxqpwq “ lim

x 1Ñx
τÓ0

"
f px 1q ´ f pxq ´ f 1px; x 1 ´ xq

τ2
:

x 1 ´ x

τ
Ñ w

*
“ 1

2
f p2qpx; wq.

Moreover, in this case, d2 f pxqp‚q, and thus f p2qpx; ‚q, is continuous, by [39, Exercise 13.7].

2.2 Piecewise functions

We recall that a function f is PC k on an open subsetΩ of Rn for a positive integer k if it is continuous

and there exist finitely many C k (for k-times continuously differentiable) functions t fi uI
i“1

such

that f pxq P t fipxq uI
i“1

for all x P Ω. For a given x P Ω, let Apxq Ď t1, ¨ ¨ ¨ , Iu be the index

set consisting of indices i such that f pxq “ fipxq. For each i “ 1, ¨ ¨ ¨ , I, the pair p fi, Ω
iq, where

Ω i fi tx P Ω | f pxq “ fipxqu is a called a piece of f . Occasionally, we will also call each function fi
and set Ω i separately a piece of f .

Of particular interest in this paper are several classes of piecewise functions. We say that a

continuous function f : D Ñ R defined on a set D Ď R
n is piecewise quadratic (PQ) if there exist

finitely many quadratic functions t qi uI
i“1

such that f pxq P t qipxq uI
i“1

for all x P D. The continuous

function f : D Ñ R is piecewise linear-quadratic (PLQ) [39, Chapters 10.E and 11.D] if there

exist finitely many quadratic functions tqiuI
i“1

and the same number of polyhedra tP iuI
i“1

whose

union is D such that f pxq “ qipxq for all x P P i; thus D is a closed set. In the terminology of the

cited reference, D is called the domain of the PLQ function f and is denoted dom f . We call a set

S Ď R
n piecewise polyhedral if it is the union of finitely many polyhedra each of which is called

a (polyhedral) piece of S . Thus the domain of a PLQ function is piecewise polyhedral. Piecewise
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quadratic functions need not be piecewise linear-quadratic because there is no requirement for the

existence of a family of polyhedral decomposition of the domain as required by a PLQ function. A

piecewise affine (PA) function is a PLQ function such that the quadratic element functions qi are all

affine functions.

It is known that PC 1, and thus PQ, functions are B-differentiable; see e.g. Lemma 4.6.1 in [17].

Moreover, the directional derivative f 1px; dq is equal to ∇ fipxqT d for every index i P A 1px; dq,

where A 1px; dq, called the directionally active set at x in the direction d, consists of those indices i 1

for which there exists a sequence of positive scalars tτgu converging to zero such that fi 1 px `τgdq “
f px ` τgdq for all g. Implicit in this result is the fact that ∇ fipxqT d “ ∇ f jpxqT d for any two indices

i and j in A 1px; dq. Thus the directional derivative f 1px; ‚q of a PC 1 function is a piecewise linear

function on R
n. A generalization of this result is proved for PC 2 functions in Proposition 8 that

extends the result below for PLQ functions; a remark following the latter proposition highlights the

difference between twice directional differentiability and twice semidifferentiability. In the following

result and subsequently, T px̄; S q denotes the tangent cone of a closed set S at a point x̄ P S ; i.e.,

v P T px̄; S q if and only if there exist a sequence of vectors txku Ă S converging to x̄ and a sequence

of positive scalars tτku Ó 0 such that v “ lim
kÑ8

xk ´ x̄

τk

.

Proposition 1 [39, Proposition 13.9] Let f : D Ď R
n Ñ R be a PLQ function with the domain

D being the union of the polyhedral pieces tP iuI
i“1

; associated with each of such piece P i is the

quadratic function qi for i “ 1, ¨ ¨ ¨ , I. At any point x̄ P dom f , f 1px̄; ‚ q “ d f px̄q, which is piecewise

linear with dom d f px̄q “ T px̄; dom f q. In particular, for i P Apx̄q and v P T px̄; P iq,

f 1px̄; vq “ ∇qipx̄qT v.

In addition, f p2qpx̄; ‚ q “ d2 f px̄q is piecewise linear-quadratic given by

f p2qpx̄; vq “ d2 f px̄qpvq “
#

vT∇2qipx̄qv if v P T px̄; P iq
`8 otherwise.

Moreover, there exists a neighborhood N of x̄ such that

f pxq “ f px̄q ` f 1px̄; x ´ x̄q ` f p2qpx̄; x ´ x̄q, @ x P dom f X N .

As noted in [9, Proposition 4.2], no convexity on f is needed in the above statements. l.

According to [2,41], every PA function with domain R
n has a max-min representation. Specif-

ically, if f : R
n Ñ R is PA, then there exist finitely many affine functions

!
p fi jqJi

j“1

)I

i“1
such

that

f pxq “ max
1ďiďI

min
1ď jďJi

fi jpxq, x P R
n. (4)

From this representation, it is easy to deduce that if f is PA, then

f px 1q “ f pxq ` f 1px; x 1 ´ xq, @ x 1 near x.
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From the representation (4), we may deduce that every PA function is a difference-of-convex (dc)

function with the following difference-max-affine representation:

f pxq “ max
1ďiďI1

`
xT ai ` αi

˘
loooooooooomoooooooooon

convex in x

´ max
1ďiďI2

`
xT bi ` βi

˘
loooooooooomoooooooooon

convex in x

(5)

for some positive integers I1 and I2, n-vectors taiuI1

i“1
and tbiuI2

i“1
, and scalars tαiuI1

i“1
and tβiuI2

i“1
.

In view of the two algebraic representations (4) and (5), it is natural to ask whether a PLQ function

has similar representations using quadratic functions. This question easily has a negative answer

as illustrated by the squared plus function; i.e., t2
`, where t` fi maxpt, 0q. Incidentally, the latter

representation (5) is key to the statistical estimation problem using a PA model; see [16]. By a result

in the recent paper [33], which we rephrase below, it follows that that every piecewise quadratic

function with a convex domain is a dc function. A function is LC 1 if it is differentiable with a

Lipschitz gradient. No convexity of the function θ is required in the proposition.

Proposition 2 [33, Proposition 11] Let θpxq be a continuous function on a convex set S fi

Iď

i“1

S i

where each S i is a closed convex set in R
N . Suppose there exist LC 1 functions tθipxquI

i“1
defined

on an open set O containing S such that θpxq “ θipxq for all x P S i and that each difference

function θ jipxq fi θ jpxq ´ θipxq has dc gradients on S. It holds that θ is dc on S with the following

representation:

θpxq “ min
1ďiďI

"
θipxq ` dist2px; S iq max

1ď jďI
}∇θ jipxq}2 ` 3 Li

2

“
dist2px; S iq

‰2

*
@ x P S, (6)

where dist2px; S iq fi minimum
yPS i

} y ´ x }2 is the Euclidean distance from x to the set S i and the

constant Li fi max
1ď jďI

L ji with each L ji being a Lipschitz constant of ∇θ ji. l

This result is the starting point to derive an algebraic representation of a PLQ function in terms

of some elementary functions.

2.3 Semismoothly differentiable functions

Piecewise C k functions are a subclass of the class of semismooth functions formally defined as

follows. A vector function Φ : Ω Ñ R
m defined on the open set Ω Ď R

n is semismooth [17,25,28,

36] at w̄ P Ω if Φ is B-differentiable near w̄ and

lim
w̄‰wÑw̄

HPBΦpwq

Φ1pw̄; w ´ w̄q ´ H p w ´ w̄ q
} w ´ w̄ } “ 0,

where BΦpwq denotes the (generalized) Clarke Jacobian [11] of Φ at w. A continuous real-valued

function ψ : Ξ Ď R
m Ñ R defined on the open set Ξ is semismoothly differentiable (SC 1) at z̄ P Ξ
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if it is once differentiable near z̄ and its gradient is semismooth at z̄. By [17, Proposition 7.4.10;

expression (7.4.14) more precisely], it holds that if ψ is SC 1 at z̄ with semismooth gradient Ψ , then

lim
dÑ0

ψpz̄ ` dq ´ ψpz̄q ´ Ψpz̄qT d ´ 1
2

d TΨ 1pz̄; dq
} d }2

“ 0. (7)

The next result shows in particular that a SC 1 function must be twice semidifferentiable. This result

adds a new local property of a SC 1 function. See Section 7 for an application of the result.

Proposition 3 Let f : Ξ Ď R
m Ñ R be SC 1 near Φpw̄q P Ξ and Φ : Ω Ď R

n Ñ Ξ be locally

Lipschitz and twice semidifferentiable near w̄ P Ω. The composite function ϕ fi f ˝ Φ : Ω Ñ R is

twice semidifferentiable at w̄; moreover, with Fpyq fi ∇ f pyq

ϕ p2qpw̄; vq “ Φ 1pw̄; vqT F 1pΦpw̄q;Φ 1pw̄; vqq ` FpΦpw̄qqTΦp2qpw̄; vq, for all v P R
n. (8)

Proof. It suffices to show that

lim
v 1Ñv
τÓ0

ϕpw̄ ` τ v 1q ´ ϕpw̄q ´ τ ϕ 1pw̄; v 1q
τ2

“ Φ 1pw̄; vqT F 1pΦpw̄q;Φ 1pw̄; vqq ` FpΦpw̄qqTΦp2qpw̄; vq.

Since ϕ 1pw̄; v 1q “ FpΦpw̄qqTΦ 1pw̄; v 1q, writing dΦ fi Φpw̄ ` τ v 1q ´ Φpw̄q, we have

ϕpw̄ ` τ v 1q ´ ϕpw̄q ´ τ ϕ 1pw̄; v 1q
τ2

“
f pΦpw̄ ` τ v 1qq ´ f pΦpw̄qq ´ FpΦpw̄qqT dΦ ´ 1

2
dΦT F 1pw̄; dΦq

}Φpw̄ ` τ v 1q ´ Φpw̄q }2

}Φpw̄ ` τ v 1q ´ Φpw̄q }2

τ2

` 1
2

rΦpw̄ ` τ v 1q ´ Φpw̄q sT
F 1pw̄;Φpw̄ ` τ v 1q ´ Φpw̄qq
τ2

` FpΦpw̄qqT rΦpw̄ ` τ v 1q ´ Φpw̄q ´ τΦ 1pw̄; v 1q s
τ2

.

Since

lim
v 1Ñv
τÓ0

Φpw̄ ` τ v 1q ´ Φpw̄q
τ

“ Φ 1pw̄; vq and lim
v 1Ñv
τÓ0

Φpw̄ ` τ v 1q ´ Φpw̄q ´ τΦ 1pw̄; v 1q
1
2
τ2

“ Φp2qpw̄; vq,

combining these limits with (7) applied to f with gradient F at Φpw̄q, we easily obtain the desired

formula (8) for ϕ p2qpw̄; vq. l
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2.4 Local minimizers and stationarity

Consider the optimization problem:

minimize
xPX

f pxq, (9)

where X is a polyhedral set (unless otherwise specified) in R
n and f is a locally Lipschitz continuous

function defined on an open set containing X. We say that x̄ P X is a

‚ local minimizer of f on X if there exists an (open) neighborhood N of x̄ such that f pxq ě f px̄q
for all x P X X N ;

‚ strict local minimizer of f on X if there exists an (open) neighborhood N of x̄ such that f pxq ą
f px̄q for all x P X X N and x ‰ x̄;

‚ isolated local minimizer of f on X if there exists an (open) neighborhood N of x̄ such that x̄ is

the only local minimizer in N of f constrained by X;

‚ strong local minimizer of f on X if there exist a scalar c ą 0 and an (open) neighborhood N of

x̄ such that f pxq ě f px̄q ` c} x ´ x̄ }2 for all x P X X N .

Clearly every strong local minimizer must be strict; so is every isolated local minimizer. It is

known that the converse of these statements are not valid for a general nonlinear program. Stated for

a proper extended-valued function, i.e., f ı 8, the following theorem provides a general result for

the local optimality based on the first and second-order subderivatives.

Theorem 1 [39, Theorem 10.1 & 13.24] Let f : R
n Ñ p´8,`8s be a proper extended-valued

function. The following two statements (a) and (b) hold for the program:

minimize
xPRn

f pxq,

(a) If x̄ is a local minimum, then d f px̄qpvq ě 0 and d2 f px̄ | 0qpvq ě 0 for any v P R
n.

(b) x̄ is a strong local minimum solution if and only if d f px̄qpvq ě 0 and d2 f px | 0qpvq ą 0 for all

v ‰ 0. l

To apply the above theorem to the problem (9), one needs to employ the indicator function of the

constraint set X, defined as δXpxq “
"

0 if x P X

8 otherwise,
and form the extended-valued function pf pxq “

f pxq`δXpxq. With the goal of exposing the constraint set X in the optimality conditions and avoiding

the definition of second-order tangent sets [39, Section 11.C] [7, Section 3.2.1], which incidentally

may not be needed because of the polyhedrality of X, we bypass this extended-valued maneuver and

present the following variant of Theorem 1. We offer a detailed proof of the implication (b3) ñ (b1)

in the proposition because we cannot identify a result in the literature that we cite directly.

Proposition 4 Let f : Ω Ñ R be locally Lipschitz continuous near a given x̄ P X and twice

semidifferentiable at x̄, where X is a polyhedron contained in the open set Ω. Consider two sets of

statements for the program (9) at x̄ P X.

(a1) x̄ is a local minimizer;

(a2) d f px̄qpvq “ f 1px̄; vq ě 0 for all v P T px̄; Xq, and d2 f px̄qpvq ě 0 for all v P T px̄; Xq such that

d f px̄qpvq “ 0;

(a3) d f px̄qpx ´ x̄q “ f 1px̄; x ´ x̄q ě 0 for all x P X, and d2 f px̄qpx ´ x̄q ě 0 for all x P Xztx̄u such
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that d f px̄qpx ´ x̄q “ 0;

(b1) x̄ is a strong local minimizer;

(b2) d f px̄qpvq ě 0 for all v P T px̄; Xq, and d2 f px̄qpvq ą 0 for all nonzero v P T px̄; Xq such that

d f px̄qpvq “ 0;

(b3) d f px̄qpx´ x̄q ě 0 for all x P X, and d2 f px̄qpx´ x̄q ą 0 for all x P Xztx̄u such that d f px̄qpx´ x̄q “
0.

It holds that (b1) ô (b2) ô (b3) ñ (a1) ñ (a2) ô (a3).

Proof. (b1) ñ (b2). By the polyhedrality of X, it follows that for every v P T px̄; Xq, x̄ ` τv P X

for all τ ą 0 sufficiently small. Hence the claimed implication is immediate from the equality

d2 f px̄qpvq “ f p2qpx̄; vq.

(b2) ô (b3). This is easy because X is polyhedral.

(b3) ñ (b1). This is nontrivial yet not difficult part of the result. Assume by way of contradiction

that x̄ P X is not a strong local minimizer. It then follows that there exists a sequence txku Ă X

converging to x̄ such that

f px̄q ą f pxkq ´ 1

k
} x̄ ´ xk }2, @ k. (10)

This implies in particular that xk ‰ x̄ for all k. With no loss of generality, we may assume that

the normalized sequence

"
xk ´ x̄

} xk ´ x̄ }

*
converges to a limit v which must be nonzero. Thus, by the

continuity of f 1px̄; ‚q, it follows that f 1px̄; vq ě 0. By the local Lipschitz continuity of f , we have

lim
kÑ8

f pxkq ´ f px̄q
} xk ´ x̄} “ f 1px̄; vq.

Hence (10) yields f 1px̄; vq ď 0. Thus, f 1px̄; vq “ 0. It follows that d2 f px̄qpvq ą 0 because x̄`τv P X

for all τ ą 0 sufficiently small by the polyehdrality of X. Since

1
2

d2 f px̄qpvq “ lim
kÑ8

f pxkq ´ f px̄q ´ f 1px̄; xk ´ x̄q
} xk ´ x̄ }2

,

it follows that for some constant c ą 0,

f pxkq ě f px̄q ` f 1px̄; xk ´ x̄q ` c } xk ´ x̄ }2 ě f px̄q ` c } xk ´ x̄ }2.

But this contradicts (10).

The remaining implications (b1) ñ (a1) ñ (a2) ô (a3) are all fairly easy. l

Remark 1 Notice that the implication (a3) ñ (a1) is left out in Proposition 4. Inspired by classic

results for standard quadratic programs, it is natural to ask whether for the program (9) such a

reverse implication will be valid if the objective function f is PLQ. Completing the equivalence of

(a1), (a2), and (a3) for a PLQ program is a contribution of this paper. l

Based on the above result, we define two types of second-order stationary solutions for the prob-

lem (9) with a twice semidifferentiable function f and a polyhedral X using d2 f px̄q “ f p2qpx̄; ‚q.

Specifically, we say that x̄ P X
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‚ is a (directional) stationary point, or equivalently, satisfies the (first-order directional) station-

arity condition if d f px̄qpvq “ f 1px̄; vq ě 0 for all v P T px̄; Xq, or equivalently, d f px̄qpx ´ x̄q ě 0

for all x P X;

‚ is an isolated (or locally unique) stationary point if there exists an (open) neighborhood N of x̄

such that x̄ is the only stationary point in N ;

‚ satisfies the second-order necessary condition if it is a stationary point and d2 f px̄qpvq ě 0 for all

v P T px̄; Xq such that d f px̄qpvq “ 0;

‚ satisfies the second-order sufficient condition if it is a stationary point and d2 f px̄qpvq ą 0 for all

nonzero v P T px̄; Xq such that d f px̄qpvq “ 0.

Like the first-order stationarity conditions, we also call the second-order necessary and sufficient

conditions second-order stationarity conditions. Clearly, a local minimizer that is an isolated station-

ary point must be an isolated local minimizer. If x̄ is a (directional) stationary point of (9), we call

f px̄q is (directional) stationary value of this problem.

2.5 Quadratic programs

Consider the standard quadratic program:

minimize
xPP

qpxq, (11)

where qpxq “ 1
2

xT Qx ` cT x ` α is a quadratic function with the matrix Q P R
nˆn being symmetric

and the pair pc, αq P R
n`1, and P fi tx P R

n | Ax ě bu for some matrix A P R
mˆn and m-vector

b is a polyhedral set. We recall that the critical cone, denoted Cpx̄; q; Pq, of this problem at a given

x̄ P P is by definition the polyhedral cone: Cpx̄; q; Pq fi T px̄; Pq X ∇qpx̄qK, where aK denotes the

orthogonal complement of the vector a consisting of all vectors v perpendicular to a. There is an

equivalent definition of the critical cone when the base vector x̄ is a stationary solution of (11) in

terms of the constraint multipliers [17, Section 3.3.1]. Specifically, for such a stationary solution x̄,

let Λpx̄q denote the set of multipliers λ P R
m
` such that the following Karush-Kuhn-Tucker (KKT)

conditions hold:
0 “ ∇qpx̄q ´ ATλ

0 ď λ K Ax̄ ´ b ě 0,

where the K notation here denote the complementary slackness property between the constraint

multiplier λ and the (nonnegative) slack variable s ě Ax̄ ´ b. Let supppλq denote the support of the

vector λ; i.e., supppλq consists of all the indices i P t1, ¨ ¨ ¨ ,mu such that λi ą 0. We then have

Cpx̄; q; Pq “ t v P T px̄; Pq | Dλ P Λpx̄q such that A i‚v “ 0 for all i P supppλq u ,

where A i‚ denotes the ith row of A. The following result about local minimizers is classical in the

theory of quadratic programs.

Proposition 5 A feasible vector x̄ P P of the quadratic program (11)is a local minimizer if and only

if it satisfies the second-order necessary condition; this is equivalent to x̄ being a stationary point and

Q being copositive on Cpx̄; q; Pq; i.e., vT Qv ě 0 for all v P Cpx̄; q; Pq. l
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Theorems 3 in [8] offers an extension of the above proposition to a non-polyhedral feasible set

P; in the sufficiency part, it requires the polyhedrality of the tangent cone T px̄; Pq.

The next proposition about strong local minimizers collects various known results from the lit-

erature and put them in one place for clarity and also for ease of later reference; there are a few parts

that are not particularly well known but are needed to complete the proof of all the equivalences. The

K notation in part (a5) denotes the orthogonality of the two vectors v and Qv; Cpx̄; q; Pq˚ denotes

the dual of the critical cone.

Proposition 6 The following statements are equivalent for a feasible vector x̄ P P of the quadratic

program (11).

(a1) x̄ is a stationary point and Q is strictly copositive on Cpx̄; q; Pq;

(a2) x̄ is a stationary point, Q is copositive on Cpx̄; q; Pq, and the implication below holds:

r Cpx̄; q; Pq Q v K Qv P Cpx̄; q; Pq˚ s ñ v “ 0; (12)

(a3) x̄ is both a local minimizer and an isolated stationary point;

(a4) x̄ is an isolated local minimizer;

(a5) x̄ is a strict local minimizer;

(a6) x̄ is a strong local minimizer.

Proof. The proof follows the implications below which are either easy or known;

(a1) ñ (a2) ñ (a3) ñ (a4) ñ (a5) ô (a6) ô (a1).

See [26, Chapter 3] for the equivalences between (a5), (a6), and (a1); indeed the equivalence of the

former two conditions is through (a1); see [17, Proposition 3.3.7] regarding the connection between

copositivty in (a2) and isolated stationarity which yields the implication (a2) ñ (a3). l

Theorems 1 in [8] offers an extension of the equivalence of the conditions (a6) and (a1) to a

non-polyhedral convex feasible set P. For the implication (a6) ñ (a1) to be valid in this extended

case, the tangent cone T px̄; Pq in the definition of the critical cone is replaced by the smaller feasible

cone of P at x̄.

3 Algebraic Representation of PLQ Functions

In [44,45], Sun explored the structure of convex PLQ functions and obtained a number of funda-

mental structural results. Apart from these early papers, the treatise [39] has extensive discussion

exploring variational properties of PLQ functions; see for instance Proposition 12.30 and Exam-

ple 12.31 in the latter reference and also [9, Theorem 6.1]. Our goal in this section is different:

we plan to examine the extension of the max-min representation (4) of PA functions to (not neces-

sarily convex) PLQ functions by starting with the difference-of-convex representation of piecewise

functions in Proposition 2. We are also motivated by the elementary representation of a quadratic

function as sums and differences of squared affine functions plus an affine function. Namely, for a
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symmetric matrix Q “ PT DP where D is a diagonal matrix with diagonal entries tdiun
i“1

and P is

an n ˆ n matrix with rows tPi‚un
i“1

, then

qpxq “ 1
2

xT Qx ` cT x ` α “ 1
2

«
ÿ

i : di ą0

di p Pi‚x q2 ´
ÿ

i : di ă0

| di | p Pi‚x q2

ff
` cT x ` α (13)

expresses the quadratic function qpxq as described. Thus, quadratic functions are composed of two

simple classes of convex functions: squares of linear functions and affine functions, combined to-

gether by addition and subtraction. Using solely squares of affine functions as the “building func-

tions” and relying on addition and subtraction only are not enough to yield all PLQ funtions. The

simple squared plus function t 2
` suggests that we need to expand the affine functions to include the

most basic PA function, i.e., the plus function; further, the representation (4) suggests that we need

to include the pointwise max-min operation.

The elementary building functions. We call the composition of the plus function with an

affine function a Plus-Composite-Affine (or in short, PCA) function; this is a function of the form

maxpaT x ` α, 0q for some vector a and scalar b. One immediate difference between the family of

PCA functions and the family of affine functions is that the latter family is closed under addition and

subtraction whereas the former is not. For our purpose, we are also interested in the squared PCA

functions. Let F consist of two families of functions: squares of affine functions and squares of PCA

functions. Each member function in F is nonnegative, convex, and differentiable.

We begin with a lemma about the distance function to a closed set. Worthy of note about this

lemma is that we employ a polyhedral norm to define the distance function. To be specific, we

employ the 1-norm: for a closed set S Ď R
n, let

dist1px; S q fi minimum
sPS

} s ´ x }1.

We should note that a result [39, Proposition 12.31 part (c)] related to the one below employs the

squared Euclidean-norm distance function to characterize a polyhedral set. The lemma characterizes

a piecewise polyhedral set in terms of the 1-norm distance function defined above.

Lemma 1 A closed set S Ď R
n is piecewise polyhedral if and only if dist1px; S q is a piecewise

affine function on R
n.

Proof. “Only if”. In general, if a closed set S is the union of finitely many closed sets tS iuI
i“1

,

then dist1px, S q “ min
1ďiďI

dist1px, S iq. Thus the “only if” statement follows readily because the 1-

norm distance function to a polyhedron is the value function of a parametric linear program, thus is

piecewise affine by well-known linear programming theory.

“If”. By the max-min representation (4) and the nonnegativity of the distance function, it follows

that there exist affine functions t fi jpxquJi

j“1
for some positive integer Ji and for all i “ 1, ¨ ¨ ¨ , I for

some positive integer I such that

dist1px; S q “ max
1ďiďI

min
1ď jďJi

fi jpxq`, x P R
n.

Since S is the zero set of the distance function, we deduce that

S “
č

1ďiďI

"
x P R

n | min
1ď jďJi

fi jpxq` “ 0

*
“

č

1ďiďI

ď

1ď jďJi

t x P R
n | fi jpxq ď 0 ulooooooooooooomooooooooooooon

denoted S i j

,



14 Ying Cui et al.

by the nonnegativity of fi jpxq`. Since each S i j is a halfplane, it follows readily that S is the union

of finitely many polyhedra. l

In the following result, we keep the quadratic functions that define the pieces of the PLQ function

in its representation; each such quadratic function has the elementary decomposition (13) into sums

and differences of squared affine functions plus an affine function that can be employed in (14) to

refine this decomposition.

Proposition 7 Let f : dom f Ñ R be a PLQ function on a polyhedral dom f that is the union of

finitely many polyhera tP iuI
i“1

; on each such polyhedral piece P i is a quadratic function qi such that

f pxq “ qipxq for all x P P i. Then there exists finitely many functions t f
ipkupKi

pk“1
for i “ 1, ¨ ¨ ¨ , I, each

given by

f
ipkpxq “

J
`

ipkÿ

j“1

f `

ipk j
pxq ´

J
´

ipkÿ

j“1

f ´

ipk j
pxq, pk “ ¨ ¨ ¨ , pKi,

where each f ˘

ipk j
P F such that

f pxq “ min
1ďiďI

„
qipxq ` max

1ďpkďpKi

f
ipkpxq


for all x P dom f , (14)

and the zero set of the function pφipxq fi max
1ďpkďpKi

f
ipkpxq coincides with P i.

Proof. We first remark that the 2-norm in (6) can be replaced by the 1-norm; this replacement results

in the following representation of f pxq for all x P dom f ,

f pxq “ min
1ďiďI

"
qipxq ` dist1px; P iq max

1ď jďI
}∇q jpxq ´ ∇qipxq}1 ` 3 Li

2

“
dist1px; P iq

‰2

*
. (15)

The proof of this identity follows that of (6). In fact, with

φ2ipxq fi dist2px; P iq max
1ď jďI

}∇q jpxq ´ ∇qipxq}2 ` 3 Li

2

“
dist2px; P iq

‰2
,

the proof of (6) hinges on two things: φ2ipxq “ 0 if and only if x P P i, and qipxq ` φ2ipxq ě f pxq
for all x P dom f zP i. Clearly, these two properties of the functions φ2ipxq remain valid if we replace

them by:

pφipxq fi dist1px; P iq max
1ď jďI

}∇q jpxq ´ ∇qipxq}1 ` 3 Li

2

“
dist1px; P iq

‰2
,

because }a}1 ě }a}2 for any vector a P R
n. Hence we obtain the 1-norm representation (15) of f .

The advantage of the latter representation over the former one is that we have

pφipxq “ max
1ď jďI

dist1px; P iqlooooomooooon
denoted fipxq

»
———– }∇q jpxq ´ ∇qipxq}1 ` 3 Li

2
dist1px; P iq

loooooooooooooooooooooooomoooooooooooooooooooooooon
each denoted g jipxq

fi
ffiffiffifl ,
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which is the pointwise maximum of finitely many products each of two nonnegative, convex, PA

functions. Next, we examine each such product fipxqg jipxq. By [39, Theorem 2.49], we can write

fipxq “ max
1ďkďKi

maxp ℓkipxq, 0 q and g jipxq “ max
1ďkďK ji

maxp ℓk jipxq, 0 q,

where ℓkipxq and ℓk jipxq are affine functions. We have

fipxq g jipxq “ max
1ďkiďKi

max
1ďk jiďK ji

“
maxp ℓkiipxq, 0 q maxp ℓk ji jipxq, 0 q

‰

“ 1
2

max
1ďkiďKi

max
1ďk jiďK ji

»
–
“

maxp ℓkiipxq, 0 q ` maxp ℓk ji jipxq, 0 q
‰2

´ r maxp ℓkiipxq, 0 q s2 ´
“

maxp ℓk ji jipxq, 0 q
‰2

fi
fl

“ 1
2

max
1ďkiďKi

max
1ďk jiďK ji

»
—–

max
! “

maxp ℓkiipxq ` ℓk ji jipxq, 0 q
‰2
, ℓkiipxq2, ℓk ji jipxq2

)

´ r maxp ℓkiipxq, 0 q s2 ´
“

maxp ℓk ji jipxq, 0 q
‰2

fi
ffifl .

Since for any scalar t, we have t2 “ maxpt, 0q2 ` maxp´t, 0q2, we deduce that pφipxq is equal to the

pointwise maximum function:

max
1ď jďI

max
1ďkiďKi

max
1ďk jiďK ji

»
–max

! “
maxp ℓkiipxq ` ℓk ji jipxq, 0 q

‰2
, ℓkiipxq2, ℓk ji jipxq2

)

´ r maxp ℓkiipxq, 0 q s2 ´
“

maxp ℓk ji jipxq, 0 q
‰2

fi
fl

“ max
1ď jďI

max
1ďkiďKi

max
1ďk jiďK ji

max

$
’’’&
’’’%

pfi jkik ji
pxq,

r maxp ´ℓkiipxq, 0 q s2 ´
“

maxp ℓk ji jipxq, 0 q
‰2
,

“
maxp ´ℓk ji jipxq, 0 q

‰2 ´ r maxp ℓkiipxq, 0 q s2

,
///.
///-
,

where

pfi jkik ji
pxq fi

“
max

`
ℓkiipxq ` ℓk ji jipxq, 0

˘ ‰2 ´ r maxp ℓkiipxq, 0 q s2 ´
“

maxp ℓk ji jipxq, 0 q
‰2

from which the claimed representation (14) follows readily. l

Remark 2 The above proof provides the following necessary and sufficient representation of a PLQ

function. Namely, a function f : R
n Ñ R is a PLQ function on a piecewise polyhedral dom f if

and only if there exist a family of quadratic functions tqiuI
i“1

and two families of piecewise affine

functions tphipxquI
i“1

and trhipxq uI
i“1

such that dom f Ď
Iď

i“1

tx P R
n | f pxq “ qipxqu;

f pxq “ min
1ďiďI

”
qipxq ` phipxqrhipxq

ı
, @ x P dom f

and tx P dom f | f pxq “ qipxqu “ tx P dom f | phipxq “ 0u for each i “ 1, ¨ ¨ ¨ , I. l
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4 Second-Order Properties of Piecewise Quadratic Functions

In this session, we discuss the second-order directional properties of PC 2 functions. The results

herein are not surprising and yet seemingly new.

Proposition 8 Let f be a PC2 function on an open set Ω Ď R
n. Then f is twice directionally

differentiable on Ω. Moreover, for every pair px, dq P Ω ˆ R
n, f p2qpx; dq is equal to d T∇2 fipxqd for

any i P A 1px; dq.

Proof. The proof follows the line of proof of Lemma 4.6.1 in [17] cited above. As in this lemma, it

suffices to show that d T∇2 fipxqd “ d T∇2 f jpxqd for any two indices i and j in A 1px; dq. Assume

the contrary. Let ī and j̄ be two indices in A 1px; dq such that d T∇2 fīpxqd ‰ d T∇2 f j̄pxqd. Since fī
and f j̄ are C 2 functions, fīpxq “ f j̄pxq, and ∇ fīpxqT d “ ∇ f j̄pxqT d, it follows that a scalar εī j̄ ą 0

exists such that fīpx ` τdq ‰ f j̄px ` τdq for all τ P p 0, εī j̄ s. At this point, the same proof of

Lemma 4.6.1 in [17] can be applied to derive a contradiction; in essence, this argument relies solely

on the compactness of the line segment rx, x ` ε d s, where ε ą 0 is a suitable scalar derived from

the εī j̄, appropriately reduced if necessary to ensure that Apx ` τdq Ď Apxq for all τ P r0, εs. We

omit the details. l

Remark 3 Although the deficiencies of the second directional derivative f p2qpx; dq have been very

well noted in [39, Section 13.B], Proposition 8 suggests that twice directional differentiability is a

weaker requirement than twice semidifferentiability in that the derivative f p2qpx; dq may exist while

the second-order limit (3) does not. As asserted by Proposition 8, a PC2 function is always twice

directionally differentiable; but it may not be twice semidifferentiable. One counterexample is given

in [39, Example 13.10], where f pxq “ maxp|x ` a|2, 1q with |a| “ 1 is a univariate PQ function that

fails to be twice semidifferentiable at x “ 0. An example at the end of this section further illustrates

the difference between these two second-order differentiability concepts. l

It is interesting to compare Propositions 8 with 1. In the latter proposition (for PLQ functions),

we obtained the second directional derivative f p2qpx̄; vq for all v P T px̄; P iq, whereas in the former

proposition (for PC 2 functions), it is not difficult to see that i P A 1px; dq if and only if d P Rpx; P iq,

which is the so-called “radial cone” of the (not necessarily polyhedral) piece P i that is a subset of

the tangent cone T px; P iq. Thus Proposition 8 gives the second directional derivative f p2qpx; dq for

all d P Rpx; P iq. The two cones Rpx; P iq and T px; P iq coincide when P i is polyhedral. If P i is

convex for i P Apxq, then P i Ď x ` Rpx; P iq.

The next proposition generalizes the result of Proposition 1 on the local exactness of the quadratic

expansion of a PQ function restricted to directions in the radial cones at a point.

Proposition 9 Let f be a PQ function on a domain D Ď R
n. Then, for every x̄ P D and every piece

P i of f containing x̄, it holds that for all x P x̄ ` Rpx̄; P iq,

f pxq “ f px̄q ` f 1px̄; x ´ x̄q ` 1
2

f p2qpx̄; x ´ x̄q, (16)

Thus f p2qpx̄; ‚q is continuous when restricted to the cone Rpx̄; P iq.

Proof. If x P x̄ `Rpx̄; P iq, then i P A 1px̄; x ´ x̄q. This implies that f 1px̄; x ´ x̄q “ ∇ fipx̄qT px̄; x ´ x̄q
Lemma 4.6.1 in [17] and that f p2qpx; x ´ x̄q “ px ´ x̄qT∇2 fipx̄qpx̄; x ´ x̄q by Proposition 8. Since for

the quadratic function fi, we have

fipxq “ fipx̄q ` ∇ fipx̄qpx̄; x ´ x̄q ` 1
2

px ´ x̄qT
∇

2 fipx̄qpx̄; x ´ x̄q, (17)
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(16) follows readily. The last statement of the proposition is obvious. l

Remark 4 If P i is convex, then (16) holds for all x P P i. Thus, if f is PQ with convex pieces, then

(16) holds for all x near x̄. This raises a question that we will formally pose in the next subsection

and for which we do not have an answer presently. Nevertheless, the next proposition gives a partial

answer to this question. l

If a PQ function is continuously differentiable, then it is also a PLQ function. This seems to be a

new result in the literature of PQ functions.

Proposition 10 Let f : Ω Ñ R be a C 1 function defined on the open set Ω containing x̄. The

following three statements are equivalent.

(a) f is piecewise quadratic near x̄;

(b) ∇ f is a piecewise affine near x̄;

(c) f is piecewise linear-quadratic near x̄.

Proof. (a) ñ (b). This follows from [38, Lemma 2].

(b) ñ (c). Write Fpxq fi ∇ f pxq. Let tAix ` biuI
i“1

and tP iuI
i“1

be the affine pieces of F in

a neighborhood N of x̄ that we may assume to be polyhedral such that Fpxq “ Aix ` bi for all

x P N X P i, where each Ai P R
nˆn, bi P R

n and P i is a polyhedral set. We may assume without loss

of generality that this neighborhood N is such that

Fpxq “ Fpx̄q ` F 1px̄; x ´ x̄q, @ x P N .

Since PA functions are semismooth [17, Definition 7.4.2], it follows that f is SC 1 at x̄ [17, Sec-

tion 7.4.1]. From expression (7.4.14) in [17] for a SC 1 function, we deduce

lim
τÓ0

f px̄ ` τvq ´ f px̄q ´ τ∇ f px̄qT v ´ τ2

2
vT F 1px̄; vq

τ2
“ 0,

which readily yields that f p2qpx̄; vq “ vT F 1px̄; vq for all v P R
n. Since F 1px̄; ‚q is a PA function

on R
n, it follows from [17, Proposition 4.2.1] that there exists a “polyhedral subdivision” Ξ of Rn

such that F 1px̄; ‚q coincides with one of the linear function tAivuI
i“1

on each polyhedron inΞ. Letting

tpP juJ
j“1

be the polyhedra in the subdivisionΞ, we deduce that f p2qpx̄; ‚q is a (homogenous) quadratic

function on each pP j. More precisely, for each j “ 1, ¨ ¨ ¨ , J, there exists i j P t1, ¨ ¨ ¨ , Iu such that

f p2qpx̄; vq “ vT Ai j v for all v P pP j. By showing that (16) holds for all x in N , it will imply that f

is piecewise linear-quadratic near x̄. For a fixed but arbitrary x P N , define the univariate function

ψptq fi f px̄ ` tpx ´ x̄qq ´ f px̄q ´ t∇ f px̄qT px ´ x̄q for t P r0, 1s. This function is differentiable with

derivative

ψ 1ptq “ r Fpx̄ ` tpx ´ x̄qq ´ Fpx̄q sT px ´ x̄q “ t F 1px̄; x ´ x̄qT p x ´ x̄ q.

Hence,
f pxq ´ f px̄q ´ ∇ f px̄qT px ´ x̄q “ ψp1q ´ ψp0q

“
ż 1

0

ψ 1ptq dt “ 1
2

F 1px̄; x ´ x̄qT p x ´ x̄ q,
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which is the desired equality (16).

(c) ñ (a). This is obvious. l

The example below illustrates many of the results establish above.

Example 1 Consider the following piecewise quadratic function:

f pxq “ 1
2

“
max

`
} x }2

2, 1
˘

´ xT Qx
‰
, x P R

n, (18)

where Q is a symmetric matrix, which is not necessarily positive semidefinite. One piece of this

function is the exterior of the unit ball, thus not convex. It is not difficult to verify the following

directional derivatives of the first and second order: for every pair px, dq P R
n ˆ R

n,

f 1px; dq “

$
’&
’%

xT d ´ xT Qd if } x }2 ą 1

´xT Qd if } x }2 ă 1

max
`

xT d, 0
˘

´ xT Qd if } x }2 “ 1;

d2 f pxqpdq “ f p2qpx; dq “
#

} d }2
2

´ d T Qd if } x }2 ą 1 or [ } x }2 “ 1 and xT d ě 0 ]

´d T Qd if } x }2 ă 1 or [ } x }2 “ 1 and xT d ă 0 ].

(19)

Both second-order directional derivatives f p2qpx; dq “ d2 f pxqpdq exist for all px, dq and yet are

discontinuous in neither variable while the other is fixed. Thus this PQ function f is not twice

semidifferentiable. l

4.1 Some open questions

The results in this section and Section 3 have added to the understanding of PLQ and PQ functions.

Yet, there remain several questions whose answers we do not know at this time and which seem

worthwhile to ask for future research. The main question is whether we can characterize a PQ func-

tion to be PLQ in terms of several properties of the latter. The following are some specific questions:

‚ If the domain of a PQ function is the union of finitely many closed convex sets on each of which

the function is quadratic, does it follow that the PQ function is PLQ?

‚ If a PQ functions is twice semidifferentiable, is it necessarily a PLQ function?

‚ Is there a “simpler” representation of a PLQ function in terms of the family of functions in F

introduced prior to Proposition 9 than the one (14) in this proposition?

‚ Is the class of functions with the representation (14) equal to the class of PQ functions?

5 Second-Order Optimality Conditions

Our goal in this section is to extend the optimality results in Subsection 2.5 to a linearly constrained

piecewise linear-quadratic program. For simplicity, in both Theorems 2 and 3, we take the objective

f to be a PLQ function on the entire Rn. As such, f is twice semidifferentiable on R
n. The first result

concerns a local minimizer that extends Proposition 5.
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Theorem 2 Let f : R
n Ñ R be a PLQ function with polyhedral pieces tP iuI

i“1
and associated

quadratic functions t qi uI
i“1

. Let X be a polyehedral set in R
n. Let rP i fi X X Pi. The following four

statements are all equivalent at a given vector x̄ P X:

(a1) x̄ is a local minimizer of f on X;

(a2) for every i P Apx̄q, x̄ is a local minimizer of qi on rP i;

(b1) x̄ is a d-stationary point of (9) and satisfies the second-order necessary condition;

(b2) for every i P Apx̄q, x̄ is a stationary point of f (or equivalently, qi) on rP i and ∇2qipx̄q is

copositive on Cpx̄; qi; rP iq.

Proof. (a1) ñ (a2): Let N be a neighborhood of x̄ such that Apxq Ď Apx̄q for all x P N . We

claim that for any i P Apx̄q, x̄ is a minimizer of f on N X rP i. Indeed, for any such i, we have

qipxq “ f pxq ě f px̄q “ qipx̄q for any x P N X rP i.

(a2) ñ (a1): Choose a neighborhood N of x̄ satisfying two conditions: (i) x̄ is a minimizer of qi

on N X rP i for every i P Apx̄q, and (ii) Apxq Ď Apx̄q for every x P N . Let x P X X N be arbitrary.

For every i P Apxq, we have

f pxq “ qipxq ě qipx̄q “ f px̄q,
where the equalities hold by the choice of i and the local minimizing property of x̄ for qi on each

piece rP i.

(b1) ñ (b2): This holds because v P T px̄; rP iq for some i P Apx̄q implies v P T px̄; XqXT px̄; P iq,

which, by Proposition 1, further yield

f 1px̄; vq “ ∇qipx̄qT v and f p2qpx; vq “ vT
∇

2qipx̄qv. (20)

(b2) ñ (b1): This holds because for any v P T px̄; Xq, if v P T px̄; rP iq for some i P Apx̄q, then

v P T px̄; P iq and thus (20) holds.

(a2) ô (b2): by Proposition 5. l

Remark 5 While the proof is not difficult, the implication (b1) ñ (a1) is missing in the literature

till now. Thus Theorem 2 gives a complete set of necessary and sufficient conditions for the local

optimality of PLQ programs in terms of the second-order necessary conditions and the copositivity

condition (b2). l

Employing [8, Theorem 3], we can deduce that Theorem 2 remains valid for a non-polyhedral

constraint set X provided that the tangent cone T px̄; Xq is polyhedral. We omit the details. We next

extend Proposition 6 to a PLQ program. The extension relies on the equivalence of the piecewise

program locally to the pieces that contain the point x̄ in question, similar to the equivalence of (a1)

to (a2) in the above Proposition 2. Once such a local equivalence is establish, all the other equivalent

conditions follow readily from the previous results for a QP.

Theorem 3 Let f : R
n Ñ R be a PLQ function with polyhedral pieces tP iuI

i“1
and associated

quadratic functions t qi uI
i“1

. Let X be a polyhedral set in R
n. Let rP i fi X X Pi. The following

statements are all equivalent at a given vector x̄ P X:

(a1) x̄ is a strong local minimizer of f on X;

(a2) x̄ is a strict local minimizer of f on X;
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(a3) x̄ is an isolated local minimizer of f on X;

(a4) x̄ is an isolated stationary point and a local minimizer of f on X;

(b1) for every i P Apx̄q, x̄ is a strong local minimizer of f (or equivalently qi) on rP i;

(b2) for every i P Apx̄q, x̄ is a strict local minimizer of f (or equivalently qi) on rP i;

(b3) for every i P Apx̄q, x̄ is an isolated local minimizer of f (or equivalently qi) on rP i;

(b4) for every i P Apx̄q, x̄ is an isolated stationary point and a local minimizer of f (or equivalently

qi) on rP i;

(c) d f px̄qpx ´ x̄q ě 0 for all x P X and d2 f px̄qpx ´ x̄q ą 0 for all x P Xztx̄u with d f px̄qpx ´ x̄q “ 0;

(d1) x̄ is a d-stationary point of (9) and satisfies the second-order sufficient condition;

(d2) for every i P Apx̄q, x̄ is a stationary point of qi on rP i and ∇2qipx̄q is strictly copositive on

Cpx̄; qi; rP iq.

Proof. We may proceed as in the proof of Theorem 2 to show the equivalence of the individual

statements (a1) through (a4) for the problem (9) with the corresponding statements (b1) through

(b4) for the piecewise programs. The inter-equivalences among the statements (b1) through (b4)

and their equivalences with (d1) and (d2) are through Proposition 6 for a standard QP. Finally, the

equivalence with (c) is by Proposition 4. l

Remark 6 Similar to the previous Theorem 2, Theorem 3 gives a complete set of necessary and

sufficient conditions for the (strong, strict, isolated) local optimality in a PLQ program in terms of

the second-order sufficient conditions and the strict copositivity condition (d2) on the pieces. Many

implications in Theorem 3 remain valid for a PC 2 function with convex pieces. Without the PLQ

property, however, it is not possible to apply Proposition 6 to establish the complete equivalences; in

particular, to show the necessity condition (d2) under either (a1) or (a2). l

Example 2 We use the function in Example 1 to illustrates two important points.

‚ For a piecewise quadratic (as opposed to piecewise linear-quadratic) program, a stationary point

satisfying the f p2qpx; ‚q (or even d2 f pxqp‚q) based second-order necessary condition is not neces-

sarily a local minimizer; in other words, for a PQ program, such a second-order necessary condition

is not in general sufficient for local optimality. Hence the linear-quadratic property of the objective

function is essential for such sufficiency to hold as established in Theorem 2.

‚ The second-order sufficient condition in terms of the second directional derivative f p2qpx; ‚q or

the second semiderivative d2 f pxqp‚q (which are equal for this example) is not sufficient for a lo-

cal minimizer when the domain of some piece is not convex. This confirms that the second-order

sufficient condition based on either one of these second derivatives is weaker than that based on

d2p f ` δXqpx|0qpvq as established in Theorem 1, the latter offers an elegant yet abstract necessary

and sufficient condition for strong local optimality of a general nonsmooth, nonconvex program

without exposing the set X.

We first characterize the second-order stationarity conditions based on f p2qpx; ‚q. Let x̄ P R
n

with }x̄}2 “ 1 be arbitrary. The following two statements hold for the function

‚ x̄ is an unconstrained (directional) stationary point of f if and only if x̄ is a normalized eigenvector

of the matrix Q corresponding to an eigenvalue β P r0, 1s;
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‚ if 0 and 1 are not eigenvalues of Q, then x̄ satisfies the second-order necessary condition of f if

and only if it is stationary and

x̄T d “ 0 ñ d T Qd ď } d }2
2. (21)

Proof. By the expression (19) of f 1px̄; dq, we deduce that x̄ is an unconstrained stationary point of

f if and only if

max
`

x̄T d, 0
˘

´ x̄T Qd ě 0, @ d P R
n.

In turn, this is equivalent to two implications:

x̄T d ě 0 ñ p x̄ ´ Qx̄ qT d ě 0

x̄T d ď 0 ñ x̄T Qd ď 0.

It is not difficult to show that these inequalities are equivalent to the existence of a scalar β P r0, 1s
such that Qx̄ “ βx̄, which is equivalent to the claimed eigenvalue characterization of x̄. Further,

if x̄ is an unconstrained stationary point of f and d is such that f 1px̄; dq “ 0, then we must have

x̄T d “ 0. Hence if 0 and 1 are not eigenvalues of Q, then by the expression of f p2qpx̄; dq, it follows

that x̄ satisfies the second-order necessary condition of f if and only if x̄ is a normalized eigenvector

of the matrix Q corresponding to an eigenvalue β P p0, 1q and the implication (21) holds. l

In the rest of the discussion of the example, we let n “ 2 and Q be a 2 ˆ 2 positive diagonal

matrix with diagonal elements Q11 and Q22 satisfying: 0 ă Q22 ă Q11 ă 1. We also fix x̄ “ p0,´1q.

Then x̄ is a normalized eigenvalue of Q corresponding to Q22. Hence x̄ is a directional stationary

point of the function f given by (18). Moreover, since the eigenvalues of Q are both less than unity,

it follows that x̄ satisfies the second-order necessary condition. We show however that x̄ is not an

unconstrained local minimizer of f by considering the points

xpεq fi

¨
˚̊
˝

gfffe
2 ε

1 ` Q11

Q22

, ´
?

1 ´ ε

˛
‹‹‚, for all ε ą 0 sufficiently small.

We have

f pxpεqq “ 1
2

»
——–max

¨
˚̊
˝

2 ε

1 ` Q11

Q22

` 1 ´ ε, 1

˛
‹‹‚´

¨
˚̊
˝

2 ε

1 ` Q11

Q22

˛
‹‹‚Q11 ´ p 1 ´ ε q Q22

fi
ffiffifl

“ 1
2

»
——– 1 ´ Q22 ´ ε

$
’’&
’’%

¨
˚̊
˝

2

1 ` Q11

Q22

˛
‹‹‚Q11 ´ Q22

,
//.
//-

fi
ffiffifl

“ 1
2

»
——– 1 ´ Q22 ´ εQ22

1 ` Q11

Q22

ˆ
Q11

Q22

´ 1

˙
fi
ffiffifl ă 1

2
p1 ´ Q22q “ f px̄q.
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Thus, x̄ satisfies the second-order necessary condition but is not an unconstrained local minimizer of

the bivariate function f px1, x2q “ 1
2

“
maxpx2

1
` x2

2
, 1q ´ Q11 x2

1
´ Q22 x2

2

‰
.

Notice that f 1px̄; dq “ 0 if and only if d2 “ 0, then the second order sufficient condition

f p2qpx̄; dq “ p1 ´ Q11q d2
1 ą 0 @d ‰ 0 such that d2 “ 0,

actually holds at x̄. This indicates that the second-order conditions defined by f p2qpx; ‚ q may be

unfavourable for general PQ programs.

As a comparison, one can derive from the formula of [39, Example 13.16] that

d 2 f px̄ | 0qpdq “ max
λ

 
λ}d}2 ´ dT Qd | λx̄ “ Qx̄, λ P r0, 1s

(
.

Then for any 0 ‰ d P R
2 with d2 “ 0, one has

d 2 f px̄ | 0qpdq “ max
λ

 
λ d 2

1 ´ Q11d 2
1 | λ “ Q22 P p0, 1q

(
“ pQ22 ´ Q11q d2

1.

Since Q22 ă Q11, the second-order necessary condition defined by d 2 f px̄ | 0qpdq ě 0 for all d

satisfying f 1px̄; dq “ 0 fails at x̄. l

We give below another easy result that is seemingly new too. A realization of this result is given

by the problem (31) arising from a log-likelihood piecewise affine estimation problem.

Proposition 11 Let f “ φ ˝ ψ be the composite of a convex function φ and a PA function ψ. With

X being a closed convex set, any (directional) stationary solution of (9) is a local minimizer.

Proof. Let x̄ be a (directional) stationary solution of (9) and x P X be arbitrary. We have

f pxq “ φpψpxqq
ě φpψpx̄qq ` φ 1pψpx̄q;ψpxq ´ ψpx̄qq, by convexity of φ

“ φpψpx̄qq ` φ 1pψpx̄q;ψ 1px̄; x ´ x̄qq, for all x near x̄, by the PA property of ψ

“ f px̄q ` f 1px̄; x ´ x̄q,
where the last equality is by the directional derivative formula of composite functions. l

5.1 Finite number of strong local minima

In this subsection, we establish the interesting result that the number of strong local minima of a

quadratic program is finite, from which the same conclusion holds for a PLQ in view of the equiva-

lence between (a1) and (b1) in Theorem 3 and the fact that there are only finitely many QP pieces

of a PLQ program. We will subsequently connect the result with an advanced theory of subanalytic

functions.

Proposition 12 For the quadratic program

minimize
xPRn

1
2

xT Qx ` cT x

subject to Ax ď b,
(22)

the set of its isolated (equivalently, strict, strong) local minima is finite.
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Proof. Denote

F fi

"
β Ď t1, . . . ,mu

ˇ̌
ˇ̌ there exists an isolated local minimizer

with a multiplier λ such that supppλq “ β

*
.

It suffices to show that for any β̄ P F , the corresponding isolated local minimizer x̄ with a multiplier

λ̄ satisfying supppλ̄q “ β̄ is unique. Based on the KKT optimality condition of (22) at x̄, we deduce

Qx̄ ` c `
ÿ

iPβ̄

λ̄i pAi ‚ qT “ 0. (23)

If there exists another isolated local minimizer px P R
n with a multiplier pλ such that suppppλq “ β̄, we

also have

Qpx ` c `
ÿ

iPβ̄

pλi pAi ‚ qT “ 0. (24)

Multiplying both sides of (23) by px̄ ´ pxqT and those of (24) by ppx ´ x̄qT , and by noting that Ai ‚ x̄ “
Ai ‚ px “ bi, we may derive

ppx ´ x̄qT Qppx ´ x̄q “ 0.

Denote Ipx̄q fi ti | Ai ‚ x̄ “ biu. We may write the critical cone of the problem (22) at x̄ based on

the multiplier λ̄ as

Cpx̄q fi t v P R
n | Ai ‚ v ď 0, @ i P Ipx̄q; Ai ‚ v “ 0, @ i P β̄ u .

Since for any i P Ipx̄q, Ai ‚ px ď bi and Ai ‚ x̄ “ bi, and for any i P β̄, Ai ‚ px “ Ai ‚ x̄ “ bi, we deduce

that 0 ‰ px ´ x̄ P Cpx̄q. This leads to a contradiction with the second order sufficient condition at the

isolated local minimizer x̄. Therefore, the set of all isolated local minima of (22) is finite because the

family F is finite. l

As mentioned before, part (a) the following corollary is immediate. Part (b) is a result recently

proved in [15]. Note that a directional stationary value is derived from a first-order directional sta-

tionary point that is not necessarily a local minimizer of the problem.

Corollary 1 Let f be a PLQ function on R
n and X be a polyhedral set. The following two statements

hold for the program (9):

‚ it has a finite number of isolated (strict, strong) local minima;

‚ it has a finite number of directional stationary values. l

The two conclusions in Corollary 1 can be obtained by invoking a very powerful finite-connected-

component property of globally subanalytic sets [6]. This can be argued by first verifying, with a

small effort, that the set of stationary solutions of a PLQ program is globally subanalytic. By the

said property, it follows readily that the set of isolated stationary points must be finite. To advance

this finiteness result to the same for strong, strict, and isolated local minima is then immediate due

to their equivalence and the fact that they must be isolated stationary points for PLQ problems. Our

proof in Proposition 12 is elementary, however, and highlights one consequence of the necessity

of the second-order sufficient conditions for such minima. It is known [20, Lemma 1.1] that a PQ

function on a semialgebraic set is a semialgebraic function; thus it follows from [6] that a linearly

constrained PQ program (9) with the objective f being a PQ function defined on the entire space

must have finitely many isolated stationary points. However, it is not clear if this is sufficient to yield

that this problem must have finitely many strong, strict, or isolated local minima. Again, the PLQ

property seems needed for the latter finiteness result to hold.



24 Ying Cui et al.

5.2 Testing copositivity: One negative eigenvalue

Theorems 2 and 3 have shown that the (strong) local minimality of a PLQ program can be verified

via the matrix (strict) copositivity on the pieces. The latter property can be posed in the context of

the following homogeneous quadratic program:

minimize
vPC

1
2

vT Qv, (25)

where C is a polyhedral cone in R
n and Q is a symmetric matrix. The copositive of Q on C then

becomes the question of where the optimal objective value of (25) is equal to zero or unbounded

below. Since the classic work [40,21], it is known that a general indefinite quadratic program is NP-

complete [46]. This problem remains NP-hard even when the matrix Q has only a single negative

eigenvalue [35]. In the transformations provided in these references, the right-hand side constant in

the constraint and the linear term vector in the objective are both nonzero; this is in contrast to the

problem (25) above which is a homogeneous problem. Interestingly, the homogeneity of the prob-

lem turns the hardness result in the latter reference into a computationally tractable problem. In this

subsection, we discuss the problem (25) when Q has only one negative eigenvalue and show that

the resolution of the unboundedness of this QP can be accomplished by solving 2 convex quadratic

programs, provided that an eigen-decomposition of Q is available. As the second-order stationarity

condition of a QP, this case is related to the quasi-convexity of the objective function; this connection

is due to the known fact in generalized convexity that the Hessian matrix of a twice differentiable

quasi-convex function has only one negative eigenvalue [14]. In spite of this known fact, the deriva-

tion below, although easy, does not seem to exist in the vast literature on this subject.

We begin by factoring the matrix Q “ P´1DP where P is an orthogonal matrix whose columns

are the normalized eigenvectors of Q, and D is a diagonal matrix of eigenvalues which we denote σi,

for i “ 1, ¨ ¨ ¨ , n. Without loss of generality, we assume min
1ďiďn´1

σi ě 0 ą σn. With the substitution

of variables x “ Pv, the QP (25) is equivalent to:

minimize
x, v

1
2

xT Dx “ 1
2

n´1ÿ

i“1

σi x2
i

loooomoooon
(+)ve sum of squares

´ 1
2

|σn | x2
n

subject to v P C and x “ Pvlooooooooooooomooooooooooooon
remains a polyhedral cone in px, vq-space

.

(26)

Consider two related convex quadratic programs:

$
’’&
’’%

minimize
y,pv

1
2

n´1ÿ

i“1

σi y2
i ´ 1

2
|σn |

subject to pv P C, y “ Ppv, and yn “ 1;

(27)

$
’’&
’’%

minimize
y,pv

1
2

n´1ÿ

i“1

σi y2
i ´ 1

2
|σn |

subject to pv P C, y “ Ppv, and yn “ ´1.

(28)
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Notice that the objective functions of (27) and (28) are bounded below on the respective feasible

sets, which may be empty. Hence if either one of these programs is feasible, then it must attain an

optimal solution. We have the following result that connects the nonconvex QP (26) with these two

convex QPs (27) and (28).

Proposition 13 Suppose that Q has only one negative eigenvalue. The non-convex (25) is un-

bounded below if and only if either (27) or (28) is feasible and attains a negative optimal objective

value.

Proof. Suppose (25) is unbounded below. Then there exists a feasible pair px, vq such that the objec-

tive value of the QP (26) is negative. Clearly xn ‰ 0. If xn ą 0, then py,pvq fi
1

xn

px, vq is feasible

to (27) and its minimum objective value must be attained and is negative. Similarly for xn ă 0.

Conversely, if either (27) and (28) has a negative optimum objective value, then the corresponding

optimal solution provides a feasible solution to (26) with a negative objective value. Scaling this

solution shows that (26) is unbounded below. l

Discussion. Admittedly, the materials in this subsection are so easy that we find it surprising not

being able to locate the procedure in the existing literature. The closest result is in the reference

[24] where the author considered the “standard” copositivity problem on the nonnegative orthant

and derived two convex “quadratic programs” over the second-order (Lorentz) cone whose solutions

would resolve the copositivity decision problem. In theory, the test in the reference can be applied

to any polyhedral cone provided that the generators of the cone are known, or possibly by a direct

extension without invoking such generators; neither approach is discussed, however. Moreover, the

former procedure would not be practically viable except for special polyhedral cones. In contrast,

our procedure requires solving two standard convex quadratic programs with linear constraints and

does not require any information about the generators of the cone. Furthermore, the procedure in

Subsection 5.2 can be extended to matrices with exactly two negative eigenvalues, by the use of

parametric convex quadratic programming [13] via its linear complementarity formulation. Never-

theless the complexity of such a parametric scheme is expected to be exponential as suggested by

the case of parametric linear programming [30]. This is significantly different from the case of just

one negative eigenvalue that can be resolved by solving 2 convex quadratic programs, subject to the

eigen-decomposition of the matrix in the quadratic form. At this time, it appears that there is no

practically efficient procedure for testing matrix-copositivity, thus the second-order necessary and

sufficient conditions for PLQ programs, except via the general method of copositive programming;

further research is needed.

6 Statistical Optimization Problems

In this section, we present some modern statistical estimation problems defined by various estima-

tion, loss, and sparsity functions and ascertain that the objective function of the resulting optimiza-

tion problem is PLQ. This leads to the special class of problems (34) that we will study in greater

detail in the remaining sections. For more details of this unified treatment of the statistical estimation

problems, see [16].

Piecewise affine statistical model. Extending the traditional linear statistical estimation model, a

piecewise affine model has recently been proposed in [23] and algorithms for solving the model
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have been developed in [16]:

y “ mpx;Θq ` error , where mpx;Θq “ max
1ďiďk1

`
p ai qT x ` αi

˘
´ max

1ďiďk2

`
p bi qT x ` βi

˘
, (29)

for some positive integers k1 and k2. The parameters to be estimated are contained in the tuple

Θ fi

!`
ai, αi

˘k1

i“1
,
`

bi, βi

˘k2

i“1

)
P R

pk1`k2qpd`1q where each pair
`

ai, αi

˘
and

`
bi, βi

˘
are of

dimension d ` 1. The PA model (29) includes as a special case the training of 1-layer neural network

by a piecewise affine activation function [32,22] that corresponds to the following statistical model:

with the vector w and scalar α being the unknown coefficients:

y “ σpwT x ` αq ` error

where σ is a univariate piecewise affine function such as the rectified linear unit (ReLU) which is

simply the plus-function.

Loss functions. Deviating from the least-squares and other differentiable loss functions, the follow-

ing loss function may not be twice differentiable or convex.

‚ The Huber loss: for some truncation scalar K ą 0,

ℓ H
K ptq fi

#
t2 if | t | ď K

K2 ` 2 K r | t | ´ K s if | t | ě K.

The first derivative of this function is piecewise affine:

p ℓ H
K q 1ptq fi

#
2 t if | t | ď K

2 K signptq if | t | ě K
“ 2 r max p 0, ´K ´ t q ´ max p ´t, ´K q s .

This function ℓ H
K

is convex, C 1, and PLQ.

‚ A loss function with margin: for some ε ą 0,

ℓptq fi max p | t | ´ ε, 0 q ,
employed in support vector machines with soft margins. This function is convex and PA.

‚ A truncated hinge loss function for binary classification [47,48]: for some scalar s ď 0,

ℓptq fi max p 1 ´ t, 0 q ´ max p s ´ t, 0 q “

$
’&
’%

0 if t ě 1

1 ´ t if s ď t ď 1

1 ´ s if t ď s.

This function is neither convex (when s ă 0) nor differentiable, but is piecewise affine.

Sparsity functions. As classified in [1], these functions are of two kinds: exact and surrogate. The

exact sparsity functions have the property that their zeros coincide with the K-sparse vectors for some

positive integer K; i.e., vectors with no more than K nonzero components. In contrast, the surrogate

sparsity functions are formed from univariate approximation of the discontinuous step function | t |0.

A prominent exact sparsity function is

PrKspwq fi

mÿ

i“1

| wi | ´
Kÿ

k“1

| wrks |,
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where | wrks | is the kth largest of the absolute values of the components of the m-vector w arranged in

non-increasing order: max
1ďiďm

|wi| fi |wr1s| ě |wr2s| ě ¨ ¨ ¨ ě |wrms| fi min
1ďiďm

|wi|, which is piecewise

linear, non-separable in its arguments, and of the form } w }1 ´ hpwq, where h is convex piecewise

linear.

Unlike the above exact sparsity function, the surrogate sparsity functions are separable and can

be written as Ppwq “
nÿ

i“1

pipwiq, where each piptq “ αi | t | ´ hiptq for some scalars αi ą 0 with

hi being a convex function that is either differentiable with a piecewise affine derivative or is itself

a piecewise affine function. Examples of these functions include the SCAD [18] and MCP [49]

functions, both of which are univariate C 1 PLQ; see the cited references for their expressions.

An example of a PA surrogate sparsity function is the capped (or truncated) ℓ1 function given by

pτptq fi min

ˆ
1,

| t |
τ

˙
“ | t |

τ
´ max

ˆ | t |
τ

´ 1, 0

˙
for some positive scalar τ ą 0.

Composite objectives in statistical estimation. Using any one of the above loss functions to-

gether with the standard least-squares loss function, we obtain the following estimation problem:

given N data points pxi, yiq P R
d`1, the optimization problem is

minimize
Θ

fN pΘq fi
1

N

Nÿ

i“1

ℓpyi ´ mpxi;Θqq, (30)

where the objective function fN is the composite of the function pt1, ¨ ¨ ¨ , tNq ÞÑ 1

N

Nÿ

i“1

ℓptiq with

the vector PA function Θ ÞÑ
`

y1 ´ mpx1;Θq, ¨ ¨ ¨ , yN ´ mpxN ;Θq
˘
. With the loss function ℓ being

PLQ and the statistical model mpx; ‚q being PA, the composite objective function fN is PLQ. An

alternative optimization problem derived from the log-likelihood maximization of a one-parameter

exponential family of density functions can be formulated as:

minimize
Θ

f b
NpΘq fi

1

N

Nÿ

i“1

“
yi mpxi;Θq ` bpmpxi;Θqq

‰
, (31)

where examples of the univariate convex function bptq include: the square function t2, the logarithmic

function logp1 ` etq, and the exponential function et corresponding to a Gaussian, Bernouilli, and

a Poisson random variable, respectively. Since f b
N

is the composite of a convex function with a PA

function, Proposition 11 is applicable to (31).

When a PLQ surrogate sparsity function is added to a composite loss function, the resulting

objective remains PLQ. To illustrate, consider the following optimization problem for a given scalar

γ ą 0,

minimize
w; α

1

N

Nÿ

i“1

ℓ
`
yi ´ σpwT xi ` αiq

˘
` γ

mÿ

i“1

»
——– αi | wi | ´ hipwiqloooooooomoooooooon

surrogate sparsity function

fi
ffiffifl , (32)

where σ is a univariate piecewise affine activation function, and each hipwiq is a univariate convex

PLQ function. In this case, the objective function is the sum of a weighted ℓ1-norm plus the function
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below:

p w, α q ÞÑ 1

N

Nÿ

i“1

ℓ
`
yi ´ σpwT xi ` αiq

˘
´ γ

mÿ

i“1

hipwiq, (33)

which is the composite of the separable function pt1, ¨ ¨ ¨ , tN , v1, ¨ ¨ ¨ , vmq ÞÑ 1

N

Nÿ

i“1

ℓptiq ´ γ

mÿ

i“1

hipviq

with the PA function:

p w, α q ÞÑ
`

yi ´ σpwT x1 ` α1q, ¨ ¨ ¨ , yN ´ σpwT xN ` αNq, w1, ¨ ¨ ¨ , ¨ ¨ ¨ ,wm

˘
.

7 A Class of Unconstrained Composite Programs

Motivated by the statistical estimation problem (30) augmented by a sparsity function such as (32),

we consider in this section a class of unconstrained composite optimization problems and study their

second-order optimality conditions:

minimize
wPRn

θpwq fi f pΦpwqqlooomooon
denoted ϕpwq

`
nÿ

i“1

αi | wi | (34)

where f is a C 1 PLQ function defined on R
m for some positive integer m; Φ is a m-dimensional

vector PA function; and each αi is a nonnegative scalar. For simplicity, we assume that the gradient

Fpzq fi ∇ f pzq is piecewise affine with affine pieces
 

A jz ` p j
(J

j“1
for some positive integer J,

matrices A j P R
mˆm, and vectors e j P R

m; we further assume that Φ is PA with affine pieces 
B kw ` q k

(K

k“1
for some positive integer K. This setting allows us to focus on the nondifferentiable

piecewise function Φ and the absolute-value function. For a given w̄, write z̄ fi Φpw̄q. Let

PFpz̄q fi
 

j | Fpz̄q “ A jz̄ ` p j
(

and PΦpw̄q fi
 

k | Φpw̄q “ B kw̄ ` q k
(

denote the active pieces of F and Φ at z̄, and w̄, respectively. By Proposition 3, we have, for every

v P R
n,

θ 1pw̄; vq “ Fpz̄qTΦ 1pw̄; vq `
ÿ

i | w̄i“0

αi | vi | `
ÿ

i | w̄i‰0

αi vi signpw̄iq

and θ p2qpw̄; vq “ f p2qpz̄;Φ 1pw̄; vqq “ Φ 1pw̄; vqT F 1pz̄;Φ 1pw̄; vqq.
Since F1pz̄; ‚q andΦ 1pw̄; ‚q are PL functions, it follows, by [17, Lemma 4.6.1], that for every u P R

m

and v P R
n, there exist subsets pPFpz̄; uq and pPΦpw̄; vq of PFpz̄q and PΦpw̄q, respectively, such that

F 1pz̄; uq “ A ju @ j P pPFpz̄; uq

and Φ 1pw̄; vq “ B kv @ k P pPΦpw̄; vq.

These index sets pPFpz̄; uq and pPΦpw̄; vq contain the directionally active indices like A 1px; dq for

a general PA function. The following result is an immediate consequence of Theorem 3, giving

necessary and sufficient conditions for w̄ to be a (strong, isolated, strict) local minimizer of (34) in

terms of the second-order conditions (a), (b), and (c).
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Proposition 14 Consider the following three conditions:

(a) Fpz̄qT B kv `
ÿ

i : w̄i‰0

αi vi signpw̄iq `
ÿ

i : w̄i“0

αi | vi | ě 0 for all v P R
n and all k P pPΦpw̄; vq;

(b) for all v P R
n and all pairs p j, kq P pPFpz̄; uq ˆ pPΦpw̄; vq where u “ Φ 1pw̄; vq,

«
Fpz̄qT B kv `

ÿ

i : w̄i‰0

αi vi signpw̄iq `
ÿ

i : w̄i“0

αi | vi | ď 0

ff
ñ vT

“
p B k qT A jB k

‰
v ě 0;

(c) for all v P R
n and all pairs p j, kq P pPFpz̄; uq ˆ pPΦpw̄; vq where u “ Φ 1pw̄; vq,

«
v ‰ 0 and Fpz̄qT B kv `

ÿ

i : w̄i‰0

αi vi signpw̄iq `
ÿ

i : w̄i“0

αi | vi | ď 0

ff

ñ vT
“

p B k qT A jB k
‰

v ą 0.

It holds that

‚ conditions (a) and (b) combined are necessary and sufficient for w̄ to be a local minimizer of (34);

‚ conditions (a) and (c) combined are necessary and sufficient for w̄ to be a strong (equivalently,

strict or isolated) local minimizer of (34);

‚ the number of strong (strict, or isolated) local minimizers is finite;

‚ the number of directional stationary values is finite. l

Unlike the sets PFpz̄q and PΦpw̄q which are completely determined, respectively, by the vectors

z̄ and w̄ alone, elements of the sets pPFpz̄; uq and pPΦpw̄; vq cannot be totally identified based only

on the pairs pz̄, uq and pw̄, vq, respectively. Indeed, pPFpz̄; vq consists of all indices j P PFpz̄q such

that Fpz̄ ` τguq “ A jpz̄ ` τguq ` e j for a sequence of positive scalars tτgu Ó 0. A similar de-

scription applies to the elements in pPΦpw̄; vq. Thus if either PFpz̄q or PΦpw̄q is not a singleton, the

verification of the second or third condition in Proposition 14 does not appear to be easy without

enumeratively checking all pairs of indices in these index sets. This is the combinatorial aspect of

the non-smoothness of the composite function ϕpwq.

8 A Homogeneous Singly Absolute-Value Constrained QP

Consider the simplified situation of (34) where both PFpz̄q and PΦpw̄q are singletons. This motivates

the investigation of an indefinite quadratic optimization problem (35) with a single absolute-value

constraint that aims to address the two second-order conditions in (b) and (c) in Proposition 14. We

show that the resolution of the problem (35) is equivalent to testing the copositivity of a certain

matrix on a nonnegative orthant, and thus is in general NP-hard [31,46].

Let Q P R
nˆn be a symmetric indefinite matrix, b P R

n be arbitrary, and α P R
n be a nonnegative,

nonzero vector. Consider the quadratic program (QP) with a homogeneous objective:

minimize
vPRn

1
2

vT Qv subject to bT v `
nÿ

i“1

αi | vi | ď 0, (35)



30 Ying Cui et al.

where the constraint is such that the reverse inequality holds for all vectors v P R
n; thus b and α

satisfy:

r bi vi ` αi | vi | ě 0, @ vi P R s @ i “ 1, ¨ ¨ ¨ , nloooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
this is the inequality in part (a) of Proposition 14 for one index k

,

which is equivalent to |bi| ď αi for all i “ 1, ¨ ¨ ¨ , n. Based on this observation, we can derive the

following lemma which shows in particular that the constraint set of (35) is the Cartesian product

of four types of 1-dimensional rays: t0u (a degenerate ray); the entire real line, the nonnegative, or

nonpositive real axis.

Lemma 2 Let b and α be n-vectors such that |bi| ď αi for all i “ 1, ¨ ¨ ¨ , n. A vector v P R
n satisfies

(35) if and only if the following three conditions hold for all i “ 1, ¨ ¨ ¨ , n,

‚ |bi| ă αi implies vi “ 0

‚ |bi| “ αi ą 0 implies either vi “ 0 or signpviq “ ´signpbiq;

‚ bi “ αi “ 0 implies vi free.

Proof. We can write:

bT v `
nÿ

i“1

αi | vi | “
ÿ

i : |bi|ăαi

p bi vi ` αi | vi | q `
ÿ

i : |bi|“αią0

p bi vi ` αi | vi | q `
ÿ

i : bi“αi“0

p bi vi ` αi | vi | q

“
ÿ

i : |bi|ăαi

p bi vi ` αi | vi | q `
ÿ

i : |bi|“αią0

p bi vi ` | bi vi | q .

Thus, bT z `
nÿ

i“1

αi | vi | ď 0 if and only if each of the summands on the right-hand side is equal to

zero. This readily yields the desired equivalence. l

Before proceeding further, we mention that although this section has focused on the QP (35) with

one single convex absolute-value constraint, it is easy to generalize the analysis to arbitrary linear

constraints. The end result is that we can obtain similar characterizations of the second-order condi-

tions for PLQ programs in terms of certain matrix-copositivity properties of Schur complements on

the nonnegative orthant.

Under the assumption that |bi| ď αi for all i “ 1, ¨ ¨ ¨ , n, the problem (35) is thus equivalent to

minimize
zPRn

1
2

vT Qv subject to

$
’’’’&
’’’’%

vi “ 0 if | bi | ă αi

vi ě 0 if ´bi “ αi ą 0 index set denoted I`

vi ď 0 if bi “ αi ą 0 index set denoted I´

vi free if bi “ αi “ 0 index set denoted I f .

(36)

This homogeneous program is either unbounded below or has a zero optimum objective value.

The latter happens if and only if the matrix

»
———–

QI`I`
´QI`I´

| QI`I f

´QI´I`
QI´I´

| ´QI´I f

|
QI fI`

´QI f I´
| QI f I f

fi
ffiffiffifl (37)
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is copositive on the “mixed cone”R
|I‰0|
` ˆR

|I f |, where I‰0 fi I` YI´. In what follows, we perform

matrix operations to remove the subspace R|I f | and convert this copositivity condition on the mixed

cone into the copositivity of a matrix of reduced order on the nonnegative orthant R
|I‰0|
` . We begin

by noting that a necessary condition for the copositivity of the matrix (37) on the mixed cone is that

the submatrix QI f I f
is positive semidefinite. As such, there exist an orthogonal matrix PI f I f

of order

|I f | of normalized eigenvectors of QI f I f
and a diagonal matrix of ΞI f

with nonnegative diagonals

such that
“

PI f I f

‰T
QI f I f

“
PI fI f

‰
“ ΞI f

. It is not difficult to show that the matrix (37) is copositive

on R
|I‰0|
` ˆ R

|I f | if and only if QI f I f
is positive semidefinite and the matrix

»
————–

QI`I`
´QI`I´

| QI`I f
PI fI f

´QI´I`
QI´I´

| ´QI´I f
PI f I f

|
“

PI fI f

‰T
QI f I`

´
“

PI fI f

‰T
QI fI´

| ΞI f

fi
ffiffiffiffifl

(38)

is copositive on the same cone. We may partition the index set I f into the union of two comple-

mentary index subsets I`
f

and I0
f

such that ΞI f
“

«
Ξ
I

`

f

0

0 0

ff
where Ξ

I
`

f

is a diagonal matrix with

positive diagonals. These preparatory manipulations lead to the following reduction result for the

quadratic form vT Qv to be nonnegative on the feasible set of (35) under the given stipulation of the

coefficients bi and αi.

Proposition 15 Suppose |bi| ď αi for all i “ 1, ¨ ¨ ¨ , n. A necessary and sufficient condition for the

quadratic program (35) to have a zero optimum objective value is for the three conditions below to

hold:

‚ the principle submatrix QI f I f
is positive semidefinite with eigen-decomposition“

PI f I f

‰T
QI f I f

“
PI f I f

‰
“ ΞI f

;

‚
„

QI`I f

QI´I f


PI fI

0
f

“ 0;

‚ the Schur complement

«
QI`I`

´QI`I´

´QI´I`
QI´I´

ff
´
«

QI`I f
P
I fI

`

f

´QI´I f
P
I f I

`

f

ff ”
Ξ
I

`

f

ı´1

«
QI`I f

P
I f I

`

f

´QI´I f
P
I fI

`

f

ffT

is copositive on R
|I‰0|
` .

Proof. “Necessity”. The matrix (38) can be written in further partitioned form:
»
——————————–

QI`I`
´QI`I´

| QI`I f
P
I fI

`

f

QI`I f
PI fI

0
f

´QI´I`
QI´I´

| ´QI´I f
P
I f I

`

f

´QI`I f
PI f I

0
f

|
”

P
I fI

`

f

ıT

QI f I`
´
”

P
I f I

`

f

ıT

QI fI´
| Ξ

I
`

f

0

”
PI fI

0
f

ıT

QI f I`
´
”

PI f I
0
f

ıT

QI fI´
| 0 0

fi
ffiffiffiffiffiffiffiffiffiffifl

. (39)
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For the latter symmetric matrix to be copositive on the mixed cone R
|I‰0|
` ˆ R

|I f |, it is necessary

that

„
QI`I f

QI´I f


PI fI

0
f

“ 0. To prove the copositivity of the Schur complement, let vI`
and vI´

be

arbitrary nonnegative vectors. Let

v
I

`

f

fi ´
”
Ξ
I

`

f

ı´1
"”

P
I fI

`

f

ıT

QI f I`
vI`

´
”

P
I fI

`

f

ıT

QI f I´
vI´

*
.

We then have

0 ď

¨
˚̊
˝

vI`

vI´

v
I

`

f

˛
‹‹‚

T

»
——————–

QI`I`
´QI`I´

| QI`I f
P
I fI

`

f

´QI´I`
QI´I´

|́ QI´I f
P
I f I

`

f

|
”

P
I fI

`

f

ıT

QI f I`
´
”

P
I f I

`

f

ıT

QI fI |́ Ξ
I

`

f

fi
ffiffiffiffiffiffifl

¨
˚̊
˝

vI`

vI´

v
I

`

f

˛
‹‹‚

“
˜

vI`

vI´

¸T «
QI`I`

´QI`I´
| QI`I f

P
I f I

`

f

´QI´I`
QI´I´

| ´QI´I f
P
I fI

`

f

ff
¨
˚̊
˝

vI`

vI´

v
I

`

f

˛
‹‹‚.

Substituting the definition of the vector v
I

`

f

easily the completes the proof of the necessity of the

third condition.

“Sufficiency”. This can be proved by reversing the above arguments. l
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