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Abstract Representation formulas for faces and support functions of the values of maximal monotone

operators are established in two cases: either the operators are defined on uniformly Banach spaces with

uniformly convex duals, or their domains have nonempty interiors on reflexive real Banach spaces. Faces

and support functions are characterized by the limit values of the minimal-norm selections of maximal

monotone operators in the first case while in the second case they are represented by the limit values of any

selection of maximal monotone operators. These obtained formulas are applied to study the structure of

maximal monotone operators: the local unique determination from their minimal-norm selections, the local

and global decompositions, and the unique determination on dense subsets of their domains.
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1 Introduction

Faces and support functions are important tools in representation and analysis of closed convex sets (see [11,

Chapter V]). For a closed convex set, a face is the set of points on the given set which maximizes some

(nonzero) linear form while the support function is the signed distance from the origin point to the supporting

planes of that set. The face associated with a given direction can be defined via the value of the support
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function at this direction [10, Definition 3.1.3, p. 220]. Recently, this notion has been defined and studied

for the values of maximal monotone operators in [10, Sect. 3]. In this paper, the authors provided some

characterizations for the boundary and faces of the values of maximal monotones operators in Hilbert spaces.

Their work is motivated by the applications of these characterizations to the stability issues of semi-infinite

linear programming problems.

Motivated by the study of the structure of maximal monotone operators, our paper will investigate

the faces and support functions for the values of maximal monotone operators in reflexive real Banach

spaces. We aim to establish some representation formulas for the faces and support functions in two cases

regarding the uniform convexity of the given spaces and theirs duals, and the nonemptiness of the domains of

maximal monotone operators. For the first case, we will extend the characterizations of faces associated with

directions in [10, Theorem 3.2] from Hilbert spaces to uniformly convex ones with uniformly convex duals. In

comparison with previous work, where the authors used the properties of solutions of differential inclusions

governed by maximal monotone operators, the proof here is new, simpler and more directed since we only

use some basic properties of the Yosida approximation of maximal monotone operators. We formulate in

the context of uniformly convex spaces since our proof strongly depends on the single-valuedness the duality

mapping and its inverse, and the strong convergence of the trajectories generated by Yosida approximation.

The obtained characterizations and the graphical density of points of subdifferentiability of convex functions

allow us to get the representation formulas for support functions in uniformly convex spaces with uniformly

convex duals. For the second case, we will work with maximal monotone operators whose domains have

nonempty interiors in reflexive Banach spaces. Under the assumption that the domains of operators have

nonempty interiors and the local boundedness of maximal monotone operators we could refine the formulas

obtained in the first case. We show that the faces and support functions can be represented by the limit

values of any selection of maximal monotone operators.

Characterizations for faces and support functions allow us to investigate the structure of maximal mono-

tone operators. On uniformly convex spaces with uniformly convex duals, we show the local unique determi-

nation of maximal monotone operators from their minimal-norm selections, and their local decompositions

when their minimal-norm selections are locally bounded. On reflexive Banach spaces, we get some global

decompositions of maximal monotone operators when their domains have nonempty interiors. The global

decompositions allow us to prove the unique determination of maximal monotone operators on dense subset

of their domains.

The rest of this paper is structured as follows. In Sect. 2, we recall some basic notations of geometry

of reflexive real Banach spaces and monotone operator theory. We also collect preliminary results in this

section for the reader’s convenience. In Sect. 3, representation formulas for faces and support functions are

established in uniformly convex spaces with uniformly convex duals. Theses formulas help us to show the

local unique determination and to get the local decomposition of a maximal monotone operator provided that
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its minimal-norm selection is locally bounded. In Sect. 4, we will work with maximal monotone operators

whose domains have nonempty interiors in reflexive real Banach spaces. Under our assumptions, we could

refine the formulas for faces and support functions obtained in Sect. 3. The refined formulas allow us to

find some global decompositions of maximal monotone operators and to show their unique determination

on dense subsets of their domains.

2 Basic Definitions and Preliminaries

Let X be a real reflexive Banach space with norm ‖ ·‖ and X∗ its continuous dual. The value of a functional

x∗ ∈ X∗ at x ∈ X is denoted by 〈x∗, x〉. The open unit balls on X and X∗ are denoted, respectively, by

B and B
∗. For x ∈ X and r > 0, the open ball centered at x with radius r is denoted by B(x; r). We use

the symbol lim or → to indicate the strong convergence in X, and ⇀ for weak convergence in X and X∗.

Denote on X the set-valued mapping J : X ⇒ X∗

J(x) := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X.

The mapping J is called the duality mapping of the space X. The inverse mapping J−1 : X∗
⇒ X defined

by J−1(x∗) := {x ∈ X : x∗ ∈ J(x)} also satisfies

J−1(x∗) = {x ∈ X : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}.

Since X is reflexive, X = X∗∗ and so J−1 is the duality mapping of X∗. The properties of J are closely

related to the geometry of the spaces X and X∗. Recall that a real Banach space is uniformly convex iff

for every 0 < ε < 2 there is some δ > 0 so that for any two vectors with ‖x‖ = 1 and ‖y‖ = 1, the

condition ‖x−y‖ ≥ ε implies that ‖x+y‖ ≤ 2(1−δ). Clearly, uniformly convex Banach space is also strictly

convex, i.e., for any two distinct vectors with ‖x‖ = 1 and ‖y‖ = 1 we have ‖x + y‖ < 2. Moreover, the

Milman–Pettis theorem states that every uniformly convex Banach space is reflexive, while the converse is

not true.

Proposition 2.1 (see [2, Theorem 1.2]) If the dual space X∗ is strictly convex, then the duality mapping

J : X → X∗ is single-valued and demicontinuous. If the space X∗ is uniformly convex, then J is uniformly

continuous on every bounded subset of X.

The effective domain dom f of an extended real-valued function f : X → R := R ∪ {+∞} is the set of

points x where f(x) ∈ R. The function f is proper if domf 6= ∅. It is lower semicontinuous if

f(x) ≤ lim inf
y→x

f(y)

for all x ∈ X. The epigraph of f is defined by

epi f := {(x, r) : x ∈ domf, r ≥ f(x)}.
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Suppose now that f is a convex lower semicontinuous function, i.e. epi f is convex and closed in X × R. A

functional x∗ ∈ X∗ is said to be a subgradient of f at x ∈ X, if f(x) is finite and

f(y)− f(x) ≥ 〈x∗, y − x〉, ∀y ∈ X.

The collection of all subgradients of f at x is called the subdifferential of f at x, that is,

∂f(x) := {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉, ∀y ∈ X}.

The function f is said to be subdifferentiable at x if f(x) is finite and ∂f(x) 6= ∅. Clearly, ∂f(x) is convex and

weakly closed in X∗. The following result represents the graphical density of points of subdifferentiability

of f (see [4] and [9]).

Proposition 2.2 Let f be a proper lower semicontinuous convex function from X into R. Then for any

x̄ ∈ dom f and any ε > 0 there exists x ∈ X such that ∂f(x) 6= ∅ and

‖x− x̄‖+ |f(x)− f(x̄)| < ε.

Given a nonempty set S ⊂ X, intS is the interior of S, S is the closure of S and bd(S) is the boundary

of S with respect to strong topology on X. Suppose now that S is nonempty closed and convex. For every

x ∈ S, the tangent cone and the normal cone of S at x (see [3, Section 2.2.4] or [1, Section 4.2]) are defined

respectively as

T (x;S) :=
⋃

t>0

t−1(S − x), N(x;S) := {x∗ ∈ X∗ : sup
y∈S

〈x∗, y − x〉 ≤ 0}. (1)

The tangent cone can be expressed in terms of sequences [1, Proposition 4.2.1] as

T (x;S) = {v ∈ X : ∃ sequences tn ↓ 0, vn → v with x+ tnvn ∈ S for all n ∈ N} . (2)

By the bipolar theorem [3, Proposition 2.40] we have the following dual relationships

T (x;S) = {v ∈ X : sup
x∗∈N(x;S)

〈x∗, v〉 ≤ 0},

N(x;S) = {x∗ ∈ X∗ : sup
v∈T (x;S)

〈x∗, v〉 ≤ 0}.

The function IS : X → R defined by

IS(x) :=



















0 if x ∈ S,

+∞ otherwise,

(3)

is called the indicator function of S and its dual function σS : X∗ → R,

σS(x
∗) := sup{〈x∗, s〉 : s ∈ S}, ∀x∗ ∈ X∗, (4)

is called the support function of S (see [17, p. 79]).

Similarly, for a nonempty closed and convex set K ⊂ X∗ and x∗ ∈ K, we can define the normal cone

N(x∗;K) ⊂ X and the tangent cone T (x∗;K) ⊂ X∗ of K at x∗ as (1). The indicator function IK : X∗ → R
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and the support function σK : X → R are also defined similarly as (3) and (4) respectively. Since X is

reflexive, both σS and σK are lower semicontinuous and convex.

For the set-valued operator A : X ⇒ X∗, the domain of A is D(A) := {x ∈ X : Ax 6= ∅} and

G(A) := {(x, x∗) ∈ X×X∗ : x∗ ∈ Ax} is the graph of A. Recall that A ismonotone, iff for all (x, x∗), (y, y∗) ∈

G(A), one has 〈x∗ − y∗, x − y〉 ≥ 0, and maximally monotone iff A is monotone and A has no proper

monotone extension (in the sense of graph inclusion). The duality mapping, the subdifferential of a lower

semicontinuous proper convex function, the normal cone to a closed convex set are examples of maximal

monotone operators (see [16, Theorem A]). The maximal monotone operator A has closed convex values

and is demiclosed [2, Proposition 2.1], i.e., A satisfies

[

x∗
n ∈ Axn(∀n ∈ N), x∗

n → x∗, xn ⇀ x
]

=⇒
[

x∗ ∈ Ax
]

,

[

x∗
n ∈ Axn(∀n ∈ N), x∗

n ⇀ x∗, xn → x
]

=⇒
[

x∗ ∈ Ax
]

.

Since X is reflexive, D(A) is nearly convex (see [6, Corollary 3.4]), i.e., D(A) is convex. Moreover, if

intD(A) 6= ∅ then intD(A) = intD(A) (see [14, Theorem 27.1 and Theorem 27.3]) and A is locally bounded

at every x ∈ intD(A) (see [12, Theorem 2.28] or [15, Theorem 1]), i.e., there exist r > 0 and M > 0 such

that x+ rB ⊂ D(A) and

sup
y∗∈Ay

‖y∗‖ ≤ M, ∀y ∈ x+ rB.

Conversely, if x ∈ D(A) and A is locally bounded at x, then x ∈ intD(A) (see [13, Theorem 1.14] or [17,

Theorem 3.11.15]).

If X∗ is uniformly convex then for every x ∈ D(A), since Ax is nonempty closed and convex, there exists a

unique point x∗

min ∈ Ax such that

‖x∗

min‖ = min{‖x∗‖ : x∗ ∈ Ax}

(see [8, Exercise 3.32]). Therefore, the single-valued nonlinear operator

A◦ : D(A) ⊂ X → X∗, A◦x := x∗

min

is well-defined; it is called the minimal-norm selection of A. Let us end this section by recalling some results

related to the Yosida approximation of a maximal monotone operator (see [2, Proposition 2.2]).

Proposition 2.3 Suppose that both X and X∗ are reflexive and strictly convex, and A : X ⇒ X∗ is a

maximal monotone operator. For every x ∈ X and λ > 0, there exists a unique xλ ∈ X such that

0 ∈ J(xλ − x) + λA(xλ).

If x ∈ D(A) then xλ → x and λ−1J(x− xλ) ⇀ A◦(x) as λ → 0. Moreover, if X∗ is uniformly convex, then

λ−1J(x− xλ) → A◦(x) as λ → 0 for every x ∈ D(A).
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3 Representation Formulas in Uniformly Convex Spaces

In this section, we will establish representation formulas for faces and supports functions in uniformly convex

spaces with uniformly convex duals. First, we recall the notion of the face associated with direction of the

values of a maximal monotone operator.

Definition 3.1 Let X be a real reflexive Banach space and A : X ⇒ X∗ a maximal monotone operator.

For x ∈ D(A) and v ∈ X, we define the set

A(x; v) := {x∗ ∈ Ax : 〈x∗, v〉 = σAx(v)}.

If v 6= 0 then A(x; v) is called the face associated with direction v of the value Ax.

Remark 3.1 By the definition of the support function, x∗ ∈ A(x; v) if and only if v ∈ NAx(x
∗), i.e., x∗ ∈ Ax

and

〈y∗ − x∗, v〉 ≤ 0, ∀y∗ ∈ Ax.

Moreover, A(x; v) is the subdifferential of the convex function σAx at v (see [3, Proposition 2.121]) and so

it is closed and convex.

We give two examples of faces associated with directions of values of maximal monotone operators.

Example 3.1

– Let X = R and A : R ⇒ R a maximal monotone operator given by

Ax =



































{−1} if x < 0,

[−1, 1] if x = 0,

{1} if x > 0.

If x 6= 0 then A(x; v) = Ax for all v ∈ R (since Ax is singleton). Otherwise,

A(0;v) =



































{1} if v > 0,

[−1, 1] if v = 0,

{−1} if v < 0.

– Let X be a real reflexive Banach space and a maximal monotone operator Ax = N(x;B), i.e.,

Ax =



































R+J(x) if ‖x‖ = 1,

{0X∗} if ‖x‖ < 1,

∅ if ‖x‖ > 1.
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If x ∈ B then A(x; v) = Ax = {0X∗} for all v ∈ X. If x ∈ bd(B), i.e., ‖x‖ = 1, then

A(x; v) =







































⋃

ξ∈S

R+ξ if σJ(x)(v) = 0,

{0X∗} if σJ(x)(v) < 0,

∅ if σJ(x)(v) > 0,

where S := {ξ ∈ X∗ : ξ ∈ J(x), 〈ξ, v〉 = 0}.

Definition 3.2 Let X be a real reflexive Banach space and A : X ⇒ X∗ a maximal monotone operator.

For every x ∈ D(A) and v ∈ X we define the following sets

Lim sup
w→v,t↓0

A(x+ tw) :=
{

x∗ ∈ X∗ | ∃ sequences wn → v, tn ↓ 0 and x∗
n → x∗

with x∗
n ∈ A(x+ tnwn) for all n ∈ N

}

,

w − Limsup
w→v,t↓0

A(x+ tw) :=
{

x∗ ∈ X∗ | ∃ sequences wn → v, tn ↓ 0 and x∗
n ⇀ x∗

with x∗
n ∈ A(x+ tnwn) for all n ∈ N

}

.

Remark 3.2 Observe that we have the following inclusions

Lim sup
w→v,t↓0

A(x+ tw) ⊂ w − Limsup
w→v,t↓0

A(x+ tw) ⊂ A(x; v). (5)

The first inclusion follows from Definition 3.2 while the second one is proved similarly as in the proof

of [10, Theorem 3.2].

When the operator A is defined on a uniformly convex space with uniformly convex dual we obtain the

equalities in (5).

Theorem 3.1 Let X be a real Banach space such that X and X∗ are uniformly convex. Let A : X ⇒ X∗

be a maximal monotone operator. For every x ∈ D(A) and v ∈ X \ {0} we have

A(x; v) = Limsup
w→v,t↓0

A(x+ tw) = w − Limsup
w→v,t↓0

A(x+ tw). (6)

Proof From (5), to get (6) it suffices to check

A(x; v) ⊂ Limsup
w→v,t↓0

A(x+ tw). (7)

Suppose that x∗ ∈ A(x; v). Let J be the duality mapping on X. Since X and X∗ are uniformly convex, by

Proposition 2.1, both J and J−1 are single-valued and continuous with respect to strong topology on X

and X∗. Consider the operator B : X ⇒ X∗ given by

By := Ay − J(v)− x∗, ∀y ∈ X.

Clearly, B is maximal monotone and domB = domA. We first show that B◦x = −J(v). Indeed, since

x∗ ∈ A(x; v) we have x∗ ∈ Ax and so

−J(v) = x∗ − J(v)− x∗ ∈ Ax− J(v)− x∗ = Bx.
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Moreover, for every y∗ ∈ Ax we have 〈x∗ − y∗, v〉 ≥ 0 and

‖ − J(v)‖ = ‖v‖−1〈J(v), v〉

≤ ‖v‖−1〈J(v) + x∗ − y∗, v〉

≤ ‖v‖−1‖y∗ − J(v)− x∗‖‖v‖

= ‖y∗ − J(v)− x∗‖.

Applying Proposition 2.3 for the maximal monotone operatorB and x ∈ domB, we can construct a sequence

{xn} ⊂ X such that

0 ∈ J(xn − x) +
1

n
B(xn), (8)

lim
n→∞

xn = x, and lim
n→∞

[nJ(x− xn)] = −J(v). (9)

Consider the sequence {wn} ⊂ X given by wn := n(xn − x) for every n ∈ N. Then, by (8) and (9), we have

−J(wn) + J(v) + x∗ ∈ B(xn) + J(v) + x∗ = A(xn) = A(x+ (1/n)wn),

lim
n→∞

wn = lim
n→∞

[J−1J(n(xn − x))] = J−1[J(v)] = v,

lim
n→∞

[−J(wn) + J(v) + x∗] = x∗.

It follows that x∗ ∈ Limsup
w→v,t↓0

A(x+ tw) and so (7) holds. ✷

Remark 3.3

– Theorem 3.1 generalizes [10, Theorem 3.2] from Hilbert spaces to uniformly convex Banach spaces

having uniformly convex duals. Our proof is based on the properties of Yosida approximation of maximal

monotone operators and it is simpler than the proof of [10, Theorem 3.2] where the authors used the

properties of solutions of differential inclusions governed by maximal monotone operators.

– We formulate in the context of uniformly convex spaces since our proof strongly depends on the single-

valuedness and the strong continuity of the duality mapping and its inverse.

The formulas in (6) allow us to characterize the boundaries of the values of maximal monotone operators,

by means only of the values at nearby points, which are close enough to the reference point but distinct of

it (see [10, Theorem 3.1] in Hilbert setting).

Corollary 3.1 Let X be a real Banach space such that X and X∗ are uniformly convex. Let A : X ⇒ X∗

be a maximal monotone operator. Then, for every x ∈ D(A), we have

bd(Ax) = Limsup
y→x,y 6=x

A(y) :=
{

x∗ ∈ X∗ | ∃ sequences yn → x and y∗n → x∗with

yn 6= x and y∗n ∈ A(yn) for all n ∈ N

}

.

(10)
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Proof Let x ∈ D(A). Observe that Ax can be represented by its faces in the directions as

bd(Ax) =





⋃

v 6=0

A(x; v)



. (11)

Indeed, by the closeness of bd(Ax), the set on the right hand side of (11) is the subset of bd(Ax). Hence, we

only need to check the reverse inclusion in (11). If x∗ ∈ bd(Ax), since Ax = dom IAx, then x∗ ∈ dom IAx

and x∗ /∈ int(dom IAx). Therefore, by the maximal monotonicity of the subdifferential mapping, ∂IAx is not

locally bounded at x∗ [13, Theorem 1.14], i.e., we can find a sequence {x∗
n} ⊂ Ax such that x∗

n → x∗ and

N(x∗
n;Ax) = ∂IAx(x

∗
n) is not bounded for every n ∈ N. Let {vn} ⊂ X be such that vn ∈ N(x∗

n;Ax) \ {0}

for every n ∈ N. Then, x∗
n ∈ A(x; vn) with vn 6= 0 for every n ∈ N and so x∗ belongs the set on the right

hand side of (11).

Now we use (6) and (11) to get (10). We have,

bd(Ax) =





⋃

v 6=0

Limsup
w→v,t↓0

A(x+ tw)



 ⊂ Limsup
y→x,y 6=x

A(y) = Lim sup
y→x,y 6=x

A(y).

Suppose that x∗ ∈ Limsup
y→x,y 6=x

A(y). Then, there exist sequences {xn} ⊂ X and {x∗
n} ⊂ X∗ such that xn →

x, x∗
n → x∗ and xn 6= x, x∗

n ∈ Axn for every n ∈ N. By the maximal monotonicity of A, we have x∗ ∈ Ax.

We will show that x∗ ∈ bd(Ax). Suppose on the contrary that x∗ ∈ int(Ax). Then, for sufficiently large n,

we have x∗
n ∈ int(Ax) ⊂ Ax and so x∗

n ∈ A(x;xn − x) with xn − x 6= 0. By (11), for sufficiently large n,

x∗
n ∈ bd(Ax) which is a contradiction. ✷

Now, we use Theorem 3.1 to obtain a representation for the support function of the values of A via its

minimal-norm selection A◦. First, we consider a relationship of A(x; v) and A◦ when A(x; v) is nonempty.

Lemma 3.1 Suppose that X and X∗ are uniformly convex Banach spaces. Let A : X ⇒ X∗ be a maximal

monotone operator. If x ∈ D(A) and v ∈ X \ {0} such that A(x; v) 6= ∅ then

w − Limsup
w→v,t↓0

x+tw∈D(A)

A◦(x+ tw) :=
{

x∗ ∈ X∗ | ∃ sequences wn → v, tn ↓ 0 such that A◦(x+ tnwn) ⇀ x∗

and x+ tnwn ∈ D(A) for all n ∈ N

}

.

(12)

is a nonempty subset of A(x; v).

Proof By Theorem 3.1, the set in (12) is a subset of A(x; v) and since A(x; v) 6= ∅ we have

w − Limsup
w→v,t↓0

A(x+ tw) 6= ∅.

Let x∗ belong to this set. Then, there exist sequences tn ↓ 0, wn → v, x∗
n ⇀ x∗ with x∗

n ∈ A(x + tnwn)

for every n ∈ N. It follows that x + tnwn ∈ D(A) for every n ∈ N and {x∗
n} is bounded in X∗. Since

‖A◦(x + tnwn)‖ ≤ ‖x∗
n‖ , {A◦(x + tnwn)} is also bounded in X∗. Since X∗ is reflexive, the sequence

{A◦(x+ tnwn)} has a subsequence converging weakly to some x̄ ∈ X∗ and it belongs to the set in (12). ✷
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The next example shows that the following inclusion

w − Limsup
w→v,t↓0

x+tw∈D(A)

A◦(x+ tw) ⊂ A(x; v)

may be strict.

Example 3.2 Let X be a real Hilbert space and Ax = N(x;B). Let x0, v0 ∈ H be such that

‖x0‖ = ‖v0‖ = 1 and 〈x0, v0〉 = 0.

It is clear that w − Limsup
w→v0,t↓0

x0+tw∈D(A)

A◦(x0 + tw) = {0} (since A◦x = 0 for all x ∈ B) while

A(x0; v0) = Ax0 = R+x0

(since 〈v0, x
∗〉 = 0 for all x∗ ∈ Ax0).

Theorem 3.2 Suppose that X and X∗ are uniformly convex Banach spaces. Let A : X ⇒ X∗ be a maximal

monotone operator. For every x ∈ D(A) and v ∈ X \ {0}, we have

σAx(v) =























lim inf
w→v,t↓0

x+tw∈D(A)

〈A◦(x+ tw), w〉 if v ∈ T (x;D(A)),

+∞ otherwise.

(13)

Proof If v /∈ T (x;D(A)) then there exists x∗ ∈ N(x;D(A)) such that 〈x∗, v〉 > 0. Then, for every y∗ ∈ Ax

and t > 0, we have y∗ + tx∗ ∈ Ax + N(x;D(A)) = Ax by the maximal monotonicity of A. It follows that

σAx(v) ≥ 〈y∗, v〉+ t〈x∗, v〉. Taking t → +∞ in the latter inequality, we get σAx(v) = +∞.

Suppose now that v ∈ T (x;D(A)). It follows from (2) that there exist sequences tn ↓ 0, wn → v with

x+ tnwn ∈ D(A) for all n ∈ N. Let (tn) and (wn) be any such sequences. Then, we have

σAx(wn) ≤ 〈A◦(x+ tnwn), wn〉. (14)

Indeed, by the monotonicity of A, for every x∗ ∈ Ax, we have

〈A◦(x+ tnwn)− x∗, w〉 = t−1〈A◦(x+ tnwn)− x∗, x+ tnwn − x〉 ≥ 0.

Hence, 〈A◦(x+ tnwn), wn〉 ≥ 〈x∗, wn〉 for every x∗ ∈ Ax and so (14) holds. Taking n → ∞ in (14), by the

lower semicontinuity of σAx, we get

σAx(v) ≤ lim inf
n→∞

〈A◦(x+ tnwn), wn〉.

Hence,

σAx(v) ≤ lim inf
w→v,t↓0

x+tw∈D(A)

〈A◦(x+ tw), w〉. (15)

Now we establish the reverse inequality when σAx(v) < +∞. To do this, we only need to point out the

existence of the sequences tn ↓ 0, wn → v with x+ tnwn ∈ D(A) for every n ∈ N such that

〈A◦(x+ tnwn), wn〉 → σAx(v). (16)
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Applying Proposition 2.2 for the proper lower semicontinuous convex function σAx and v ∈ domσAx, we

can find a sequence (vn) ⊂ X such that vn → v, σAx(vn) → σAx(v) and A(x; vn) = ∂σAx(vn) 6= ∅. By

Lemma 3.1, for every n ∈ N, there exists sequences tnm ↓ 0, wn
m → vn as m → ∞ with x+ tnmwn

m ∈ D(A) for

every m ∈ N such that 〈A◦(x+ tnmwn
m), wn

m〉 → σAx(vn) as m → ∞. For every n ∈ N, choosing m such that

tnm ≤
1

n
, ‖wn

m − vn‖ ≤
1

n
,
∣

∣〈A◦(x+ tnmwn
m), wn

m〉 − σAx(vn)
∣

∣ ≤
1

n

and setting tn := tnm, wn := wn
m. Then, tn ↓ 0, wn → v with x + tnwn ∈ D(A) for every n ∈ N and

〈A◦(x+ tnwn), wn〉 → σAx(v). Hence, we have the equality in (15). ✷

Remark 3.4 It follows from (13) that (x, x∗) ∈ G(A) if and only if x ∈ D(A) and the following inequality

〈x∗ −A◦y, x− y〉 ≥ 0 (17)

holds for all y in some neighborhood of x. Indeed, by Theorem 3.2, if v ∈ T (x;D(A)) then

σAx(v) = lim inf
w→v,t↓0

x+tw∈D(A)

〈A◦(x+ tw), w〉

≥ lim inf
w→v,t↓0

x+tw∈D(A)

〈x∗, w〉

= 〈x∗, v〉.

Therefore, σAx(v) ≥ 〈x∗, v〉 for all v ∈ X and so (x, x∗) ∈ G(A).

The formula (13) helps us to establish a local reconstruction of a maximal monotone operator from its

minimal-norm selection.

Corollary 3.2 Suppose that X and X∗ are uniformly convex Banach spaces. Let A1 and A2 be maximal

monotone operators from X to X∗. If there exist x0 ∈ D(A1)∩D(A2) and r > 0 such that D(A1)∩B(x0; r) =

D(A2) ∩ B(x0; r) and A◦
1 = A◦

2 on D(A1) ∩ B(x0; r) then A1 = A2 on D(A1) ∩ B(x0; r). In particular, if

D(A1) = D(A2) and A◦
1 = A◦

2 then A1 = A2.

Proof Let x0 ∈ D(A1)∩D(A2) and r > 0 be such that D(A1)∩B(x0; r) = D(A2)∩B(x0; r) and A◦
1 = A◦

2 on

D(A1)∩B(x0; r). Let x ∈ D(A1)∩B(x0; r). By Theorem 3.2 and our assumptions, we obtain σA1x = σA2x.

Hence, we have

A1x = A1(x; 0) = ∂σA1x(0)

= ∂σA2x(0) = A2(x; 0) = A2x.

✷

The next corollary presents a local decomposition of maximal monotone operator provided that its

minimal-norm selection is locally bounded. As a consequence, if the minimal-norm selection of a maximal

monotone operator is bounded with some modulus around some interior point of the domain then the whole

values of the maximal monotone operator are also bounded with the same modulus around that point.



12 Bao Tran Nguyen, Pham Duy Khanh

Corollary 3.3 Let A be a maximal monotone operator from X to X∗ and x ∈ D(A). Suppose that there

exist r > 0 and ρ > 0 such that

‖A◦y‖ ≤ ρ, ∀y ∈ B(x; r) ∩D(A). (18)

Then, for every y ∈ B(x; r) ∩D(A), we have

Ay ⊂ N(y;D(A)) + ρB∗. (19)

In particular, if B(x; r) ⊂ D(A) then Ay ⊂ ρB∗ for every y ∈ B(x; r).

Proof Let y ∈ B(x; r) ∩D(A) and y∗ ∈ Ay. We first show that

〈y∗, z − y〉 ≤ ρ‖z − y‖, ∀z ∈ D(A). (20)

Indeed, for every z ∈ D(A) \ {y}, z − y ∈ T (y;D(A)) \ {0}, and by Theorem 3.2 and (18)

〈y∗, z − y〉 ≤ σAy(z − y)

= lim inf
w→z−y,t↓0
y+tw∈D(A)

〈A◦(y + tw), w〉

≤ lim inf
w→z−y,t↓0
y+tw∈D(A)

‖A◦(y + tw)‖‖w‖

≤ ρ‖z − y‖.

Hence, (20) holds and so y∗ ∈ N(y;D(A)) + ρB∗. Therefore, (19) is satisfied.

If B(x; r) ⊂ D(A) then N(y;D(A)) = {0} for every y ∈ B(x; r). By (19) we have Ay ⊂ ρB∗ for all y in

this set. ✷

4 Representation Formulas in Reflexive Spaces

In this section, we will work with maximal monotone operators having their domains with nonempty interiors

in reflexive Banach spaces. Under these assumptions, we could refine the formulas obtained in the previous

section. First, we show that the faces can be represented via the limit values of any selection of maximal

monotone operators.

Lemma 4.1 Let X be a reflexive real Banach space and A : X ⇒ X∗ a maximal monotone operator such

that int(D(A)) 6= ∅. Let D be dense subset of D(A) and Ã be a selection of A. For every x ∈ D(A), v ∈

int(D(A)− x), the following set

w − Limsup
w→v,t↓0
x+tw∈D

Ã(x+ tw) :=
{

x∗ ∈ X∗ | ∃ sequences wn → v, tn ↓ 0 such that Ã(x+ tnwn) ⇀ x∗

and x+ tnwn ∈ D for all n ∈ N

}

.

(21)

is a nonempty subset of A(x; v).
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Proof Let x ∈ D(A) and v ∈ int(D(A)− x). From (5), we have

ω − Limsup
w→v,t↓0

x+tw∈D

Ã(x+ tw) ⊂ ω − Limsup
w→v,t↓0

A(x+ tw) ⊂ A(x; v).

Since x + v ∈ int(D(A)), A is locally bounded around x + v , i.e., there exist r,M > 0 such that Ay 6= ∅

and Ay ⊂ MB for all y ∈ x+ v + 4rB. According to [5, Lemma 4.1], there exists K > 0 such that

∅ 6= Az ⊂ KB, ∀z ∈ (x, x+ v + 2rB], (22)

where

(x, x+ v + 2rB] := {λx+ (1− λ)z : λ ∈]0, 1], z ∈ x+ v + 2rB}.

Picking any sequences {tn} ⊂ R+ and {wn} ⊂ X converging to 0 and v, respectively, and satisfying

x + tnwn ∈ (x, x + v + rB] for all n ∈ N. Since D is dense on D(A), for each n ∈ N, we can find νn such

that x+ tn(wn + νn) ∈ D and

‖νn‖ ≤
1

n
, wn + νn ∈ v + 2rB. (23)

Combining (22) and (23), we arrive at wn + νn → v as n → +∞ and

Ã(x+ tn(wn + νn)) ∈ A(x+ tn(wn + νn)) ⊂ KB, ∀n ∈ N.

Since X∗ is reflexive, without loss of generality, we can assume that Ã(x+ tn(wn + νn)) ⇀ ξ as n → +∞

and so ξ ∈ w − Limsup
w→v,t↓0
x+tw∈D

Ã(x+ tw). ✷

Second, we use Lemma 4.1 to improve the representation formula (13) in Theorem 3.2.

Theorem 4.1 Let X be a reflexive real Banach space and A : X ⇒ X∗ a maximal monotone operator such

that int(D(A)) 6= ∅. Let D be dense subset of D(A) and Ã be a selection of A. For every x ∈ D(A) and

v ∈ X \ {0}

σAx(v) =







































〈ξ, v〉 if v ∈ int
(

T (x;D(A))
)

,

lim inf
w→v,t↓0
x+tw∈D

〈Ã(x+ tw), w〉 if v ∈ bd
(

T (x;D(A))
)

,

+∞ otherwise,

(24)

where ξ is any vector in the set w − Limsup
w→v,t↓0
x+tw∈D

Ã(x+ tw).

Proof Since D(A) has nonempty interior,D(A) is convex and int(D(A)) = int(D(A)) (see [14, Theorem 27.1

and Theorem 27.3]). Let x ∈ D(A) and v ∈ X \ {0}. We consider three cases of v.

Case 1. v /∈ T (x;D(A))

Repeating the first part of the proof of Theorem 3.2 we get σAx(v) = +∞.

Case 2. v ∈ int
(

T (x;D(A))
)
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By [1, Proposition 4.2.3], the interior of the tangent cone can be expressed as

int
(

T (x;D(A))
)

=
⋃

h>0

(

int(D(A))− x

h

)

=
⋃

h>0

(

int(D(A))− x

h

)

=
⋃

h>0

int(D(A)− x)

h
.

Hence, there exists h > 0 such that hv ∈ int(D(A) − x). Applying Lemma 4.1, the following sets are

nonempty and

w − Limsup
w→v,t↓0
x+tw∈D

Ã(x+ tw) = w − Limsup
w→hv,t↓0
x+tw∈D

Ã(x+ tw) ⊂ A(x;hv) = A(x; v).

Then, for every ξ ∈ w − Limsup
w→v,t↓0
x+tw∈D

Ã(x+ tw), we have σAx(v) = 〈ξ, v〉.

Case 3. v ∈ bd
(

T (x;D(A))
)

Since A is monotone, for every w ∈ X and t > 0 such that x+ tw ∈ D ⊂ D(A), we have

〈x∗, w〉 ≤ 〈Ã(x+ tw), w〉, ∀x∗ ∈ Ax.

This yields that

σAx(v) ≤ lim inf
w→v,t↓0

x+tw∈D

〈Ã(x+ tw), w〉. (25)

Picking v0 ∈ int
(

T (x;D(A))
)

. From Case 2., we have σAx(v0) < +∞. Consider the sequence {vn} given

by

vn :=
1

n
v0 +

n− 1

n
v, ∀n ∈ N.

On one hand, since σAx is convex, we have

σAx(vn) ≤
1

n
σAx(v0) +

n− 1

n
σAx(v)

Taking the superior limit both sides of the above inequality we get

lim sup
n→∞

σAx(vn) ≤ σAx(v).

Then, the lower semicontinuity of σAx implies that

lim
n→∞

σAx(vn) = σAx(v). (26)

On the other hand, the convexity of T (x;D(A)) implies that vn ∈ int
(

T (x;D(A))
)

for all n ∈ N. As in the

proof of Case 2., for every n ∈ N

∅ 6= w − Limsup
w→vn,t↓0
x+tw∈D

Ã(x+ tw) ⊂ A(x; vn).

Then, there exist sequences {tn} ⊂ R+, {wn} ⊂ X such that

tn ≤
1

n
, ‖wn − vn‖ ≤

1

n
, x+ tnwn ∈ D

and

|σAx(vn)− 〈Ã(x+ tnwn), wn〉| ≤
1

n
.
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for every n ∈ N . Clearly, tn ↓ 0, wn → v and by (26)

lim
n→∞

〈Ã(x+ tnwn), wn〉 = σAx(v).

Combining this and (25) we get

σAx(v) = lim inf
w→v,t↓0

x+tw∈D

〈Ã(x+ tw), w〉.

✷

Finally, we employ Theorem 4.1 and [5, Proposition 5.1] to get the global decompositions for maximal

monotone operators. Our proof follows the technique of [5, Theorem 5.2].

Corollary 4.1 Let X be a reflexive real Banach space and A : X ⇒ X∗ a maximal monotone operator such

that int(D(A)) 6= ∅. Let D be dense subset of D(A) and Ã be a selection of A. Then, for every x ∈ X,

Ax = co







⋃

v∈int(D(A))−x

w − Limsup
w→v,t↓0

x+tw∈D

Ã(x+ tw)







+N(x;D(A)) (27)

= co







w − Limsup
y

D
→x

Ãy







+N(x;D(A)). (28)

Proof By the maximal monotonicity of A, we have

co







⋃

v∈int(D(A))−x

w − Limsup
w→v,t↓0

x+tw∈D

Ã(x+ tw)







+N(x;D(A))

⊂ co







w − Limsup
y

D
−→x

Ãy







+N(x;D(A))

⊂ Ax+N(x;D(A)) = Ax.

Hence, we only need to show that

Ax ⊂ co







⋃

v∈int(D(A))−x

w − Limsup
w→v,t↓0

x+tw∈D

Ã(x+ tw)







+N(x;D(A)). (29)

We set

K := co







⋃

v∈int(D(A))−x

w − Limsup
w→v,t↓0

x+tw∈D

Ã(x+ tw)







.

It is clear that K ⊂ Ax. When x /∈ D(A), both side of (29) are empty sets, hence we can assume that

x ∈ D(A). We will use Theorem 4.1 to show that

σAx(v) ≤ σK(v), ∀v ∈ int(T
D(A)

)(x). (30)

Let v ∈ int(T
D(A)

)(x) \ {0}. By Theorem 4.1, there exist ξ ∈ w − Limsup
w→v,t↓0
x+tw∈D

Ã(x + tw) such that σAx(v) =

〈ξ, v〉. On the other hand, by the formula for the interior of tangent cone, there exist h > 0 such that

hv ∈ int(D(A)− x). This implies that ξ ∈ K since

w − Limsup
w→v,t↓0
x+tw∈D

Ã(x+ tw) = w − Limsup
w→hv,t↓0
x+tw∈D

Ã(x+ tw).
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Hence, (30) is satisfied. According to [5, Proposition 5.1], we get

Ax ⊂ K +N(x;D(A)).

Now we show that

K +N(x;D(A)) = K +N(x;D(A)).

Let x∗ ∈ K +N(x;D(A)). There exist {s∗n} ⊂ K, {ν∗
n} ⊂ N(x;D(A)) such that s∗n + ν∗

n → x∗. We will

show that both {s∗n} and {ν∗
n} are bounded. Suppose on the contrary that {ν∗

n} has a subsequence {ν∗
nk

}

such that ‖ν∗
nk

‖ → ∞. Without loss of generality, we assume that

ν∗
nk

‖ν∗
nk

‖
⇀ ξ∗ and

s∗nk

‖ν∗
nk

‖
⇀ −ξ∗.

Let x0 ∈ int(D(A)) and r > 0 be such that x0 + rB ⊂ int(D(A)). Then,

〈

ν∗
nk

‖ν∗
nk

‖
, x− x0

〉

≥ r, ∀k ∈ N.

Taking the limit both sides of the latter inequality, we get 〈ξ∗, x − x0〉 ≥ r. On the other hand, for some

x∗
0 ∈ Ax0, since s∗nk

∈ K ⊂ Ax, we have by the monotonicity of A that

〈

s∗nk

‖ν∗
nk

‖
, x− x0

〉

≥
〈x∗

0, x− x0〉

‖ν∗
nk

‖
, ∀k ∈ N.

Again, taking the limit both sides of the latter inequality we also get 〈−ξ∗, x−x0〉 ≥ 0 which is a contradic-

tion. Therefore, both {ν∗
n} and {s∗n} are bounded. Since X is reflexive, there exist subsequences {ν∗

nk
}, {s∗nk

}

of {ν∗
n} and {s∗n} respectively such that ν∗

nk
⇀ ν∗ ∈ K and s∗nk

⇀ s∗ ∈ N(x;D(A)). Hence, we have that

x∗ = ν∗ + s∗ ∈ K +N(x;D(A)).

✷

Remark 4.1 The formula (28) has a similar form to the representation formula in [5, Theorem 5.2]. The first

term on the right hand-side of the representation in [5, Theorem 5.2] is the closure convex hull of the limit

values of the given maximal monotone operator on a dense subset of its domain while the first term on the

right hand-side of (28) is only represented by the closure convex hull of the limit values of any selection of

that maximal monotone operator. One of the usefulness of this representation is to allow us to prove the

unique determination of maximal monotone operators on dense subsets of their domains and characterize

the Lipschitz continuity of a convex function.

Corollary 4.2 Let X be a reflexive real Banach space and A,B : X ⇒ X∗ be two maximal monotone

operator such that int(D(A)) = int(D(B)) 6= ∅. If there exists a dense subset D of D(A) such that

Ax ∩Bx 6= ∅ ∀x ∈ D, (31)

then A = B.
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Proof Since int(D(A)) = int(D(B)), we have

D(A) = int(D(A)) = int(D(B)) = D(B).

From (31), we can find selections Ã of A and B̃ of B such that Ã = B̃ on D. Applying Corollary 4.1, for

every x ∈ X, we have

Ax = co







w − Limsup
y

D
→x

Ãy







+N(x;D(A))

= co







w − Limsup
y

D
→x

B̃y







+N(x;D(B))

= Bx.

✷

We end this section by the following example.

Example 4.1 Let X be a reflexive real Banach space and f : X → R a lower semicontinuous convex function.

Suppose that there exist a dense subset D of X and ℓ ≥ 0 such that

∂f(x) ∩ ℓB∗ 6= ∅, ∀x ∈ D.

Then, f is ℓ−Lipschitz continuous on X, i.e.,

|f(x)− f(y)| ≤ ℓ‖x− y‖, ∀x, y ∈ X.

Indeed, under our assumptions, it follows from (28) that

∂f(x) ⊂ ℓB∗, ∀x ∈ X,

which implies that f is ℓ−Lipschitz continuous on X.

5 Conclusions

We have provided representation formulas for faces and support functions for the values of maximal mono-

tone operators in reflexive Banach spaces. The obtained representation formulas help us to prove the local

unique determination of a maximal monotone operator from its minimal-norm selection or on a dense subset

of its domain. Some local and global decompositions for maximal monotone operators are also established.

Further developments will be devoted to extending our results to arbitrary Banach spaces.
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