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Abstract The paper deals with a Bolza optimal control problem for a dynam-
ical system which motion is described by a delay differential equation under an
initial condition defined by a piecewise continuous function. For the value func-
tional in this problem, the Cauchy problem for the Hamilton-Jacobi-Bellman
equation with coinvariant derivatives is considered. Minimax and viscosity so-
lutions of this problem are studied. It is proved that both of these solutions
exist, are unique and coincide with the value functional.
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1 Introduction

In optimal control problems for dynamical systems which motions are de-
scribed by ordinary differential equations, studies of infinitesimal properties of
a value function lead to a Hamilton-Jacobi-Bellman (HJB) equation, which is
a particular case of Hamilton-Jacobi (HJ) equations with partial derivatives.
In the case when an optimal control problem is considered on a finite time
interval and has a cost functional of Bolza type, a value function satisfies the
corresponding natural terminal condition, which, together with the HJB equa-
tion, determine the Cauchy problem. Since in many cases Cauchy problems
for HJ equations do not have a classical (continuously differentiable) solution,
various approaches to a notion of a generalized solution were developed. The
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main of them are minimax and viscosity approaches. The minimax approach
[1,2,3] originates in the positional differential game theory [4,5]. According to
this approach, a generalized (minimax) solution is a function that satisfies the
pair of stability conditions with respect to characteristic differential inclusions.
In infinitesimal form, these conditions reduce to the pair of inequalities for di-
rectional derivatives. In the viscosity approach [6,7], a HJ equation is replaced
by the pair of inequalities for sub- and supergradients, and a generalized (vis-
cosity) solution is a function satisfying these inequalities. In investigations of
minimax and viscosity solutions of Cauchy problems for HJB equations, it was
shown (see, e.g., [3,8,9,10]) that both of these solutions exist, are unique and
coincide with the value function in the corresponding optimal control prob-
lems. The goal of the paper is to obtain the similar result in the case when a
motion of a dynamical system is described by delay differential equations.

The first investigations of control problems for time-delay systems showed
(see [11,12] and also [13,14,15]) that an analogue of a value function in such
problems is a value functional on a space of motion histories. It raises natural
questions about the suitable notion of the differentiability of such functionals,
the corresponding notions of directional derivatives, sub- and supergradients,
and definitions of generalized solutions of the corresponding HJB equations.

The viscosity solution theory for HJ equations with Frechet derivatives
began with [16,17]. In these papers, the definition of the viscosity solution
in terms of inequalities for Frechet sub- and supergradients was given, and
existence and uniqueness of such solution were proved. After that, a lot of in-
vestigations (see, e.g., [18,19,20,21,22]) dealt with applications of the viscosity
approach to control problems for abstract evolution systems in Hilbert or Ba-
nach spaces. In particular, in [19,20], for Bolza optimal control problems for
evolution systems, modified definitions of viscosity solutions of Cauchy prob-
lem for HJB equations were given, their existence, uniqueness and coincidence
with the value functional were shown. Note that the conditions in these papers
allow to interpret some class of time-delay systems as evolution systems, how-
ever, this class is not general enough, since it does not contain systems with
discrete delay. The optimal control problem for systems with discrete delay
was considered in [23]. It was proved that the value functional is a viscos-
ity solution of the Cauchy problem for the HJB equation, but the uniqueness
question of the viscosity solution was not investigated. One could also mention
papers [24,25] in which optimization problems for quite general delay differ-
ential inclusions (which cover the case of discrete delay) were considered and
various necessary optimality conditions were given.

In [26], for the description of infinitesimal properties of a value functional
in optimal control problems for time-delay systems, the notion of coinvariant
derivatives was used. Note that such derivatives and their close analogues were
applied later to a wide range of control problems for various functional differ-
ential systems (see, e.g., [27,28,29,30,31,32,33,34]). The theory of minimax
and viscosity solutions of Cauchy problems for HJ equations with coinvari-
ant derivatives and its application to differential games for time-delay systems
were developed in [27,28,29,30]. In these papers, the class of time-delay sys-
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tems under consideration is quite general and includes systems with discrete
delay. In [27,28], it was shown that the value functional is the unique minimax
solution. In [29], the description of the value functional in terms of suitable
directional derivatives was given. In [30], similar to [19], the modified defini-
tion of a viscosity solution based on a sequence of compact sets is considered.
It allows to prove that the viscosity solution exists, is unique and coincides
with the minimax solution, however, such definition is not reduced to the clas-
sical definition of a viscosity solution in the particular case without delay. For
more natural definitions of a viscosity solution, the uniqueness questions is
still open.

This paper is aimed to solve this question and to develop the theory of min-
imax and viscosity solutions of HJB equations for time-delay systems, which
generalizes in a natural way the classical theory of both minimax and viscosity
solutions of HJB equations for systems of ordinary differential equations.

In the paper, a Bolza optimal control problem for a time-delay system with
discrete delay is considered. For the value functional of this problem, a HJB
equation with coinvariant derivatives is investigated. Definitions of minimax
and viscosity solutions (which are consistent with the classical definitions) of
the Cauchy problems for this equation are studied. It is proved that both of
these solutions exist, are unique and coincide with the value functional. Be-
sides, the feedback scheme for constructing the optimal control by the minimax
(viscosity) solution is given (see the proof of Theorem 2.2 (b) ⇒ (a)).

A principle idea for obtaining these results is to use the space of piecewise
continuous functions as the state space in which the optimal control problem
and the HJB equation are considered. As already noted earlier (see [24]), the
choice of a suitable state space plays an important role for an application of
the viscosity approach to HJB equations for time-delay systems. The space of
measurable functions can be used as the state space. But such choice signifi-
cantly narrows the class of the corresponding time-delay systems and excludes
important for applications systems with discrete delay (see [19]). The space
of continuous functions can also be used as the state space. It allows to cover
the case of systems with discrete delay, but, as mentioned above, it makes it
possible to prove the uniqueness only of the modified viscosity solution (see
[30]). In [23,24], other functional spaces were considered as the state space,
but the uniqueness question of the viscosity solutions was not investigated.
Presented in this paper choice of the space of piecewise continuous functions
allows on the one hand to consider the case of systems with discrete delays,
and on the other hand, to prove the uniqueness of the viscosity solutions in
the classical sense. Note that this proof is based on Lemma 4.7, which is an
analogue of the theorem about ”Mean value inequality” [35,36] (see also [37])
for functionals defined on the space of piecewise continuous functions.

2 Formulation of Results

Let Rn be the n-dimensional Euclidian space with the inner product 〈·, ·〉 and
the norm ‖ · ‖. A function x(·) : [a, b] 7→ Rn is called piecewise continuous if
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there exist numbers a = ξ1 < ξ2 < . . . < ξk = b such that, for each i ∈ 1, k − 1,
the function x(·) is continuous on the interval [ξi, ξi+1) and there exist a fi-
nite limit of x(ξ) as ξ approaches ξi+1 from left. Denote by PC([a, b],Rn) and
Lip([a, b],Rn) the linear spaces of piecewise continuous and Lipschitz contin-
uous functions x(·) : [a, b] 7→ Rn.

Let t0 < ϑ and h > 0. Let us denote

PC = PC([−h, 0],Rn), G = [t0, ϑ]× R
n × PC.

Define the following norms on the space PC:

‖w(·)‖1 =

0
∫

−h

‖w(ξ)‖dξ, ‖w(·)‖∞ = sup
ξ∈[−h,0]

‖w(ξ)‖, w(·) ∈ PC.

Consider a dynamical system which motion is described by the following
delay differential equation:

ẋ(τ) = f(τ, x(τ), x(τ − h), u(τ)), τ ∈ [t0, ϑ], x(τ) ∈ R
n, u(τ) ∈ U. (1)

Here, τ is the time variable, x(τ) is the state vector at the time τ , ẋ(τ) =
dx(τ)/dτ , u(τ) is the current control action, U ⊂ Rm is a compact set.

Let (t, z, w(·)) ∈ G. Define

Λ(t, z, w(·)) =
{

x(·) ∈ PC([t− h, ϑ],Rn) : x(τ) = w(τ − t), τ ∈ [t− h, t),

x(τ) = y(τ), τ ∈ [t, ϑ], y(·) ∈ Lip([t, ϑ],Rn), y(t) = z
}

.

Denote by U(t) the set of measurable functions u(·) : [t, ϑ] 7→ U. Let u(·) ∈ U(t).
By a motion x(·) = x(· | t, z, w(·), u(·)) of system (1), we mean a function
x(·) ∈ Λ(t, z, w(·)) that satisfies equation (1) for almost every τ ∈ [t, ϑ].

Consider the following optimal control problem: for each (t, z, w(·)) ∈ G,
minimize the Bolza cost functional

J(t, z, w(·), u(·)) = σ(x(ϑ), xϑ(·)) +

ϑ
∫

t

f0(ξ, x(ξ), x(ξ − h), u(ξ))dξ, (2)

over all u(·) ∈ U(t), where x(·) = x(· | t, z, w(·), u(·)) is the motion of system
(1), xϑ(·) is the function defined by xϑ(ξ) = x(ϑ+ ξ), ξ ∈ [−h, 0].

We assume that the following conditions hold:

(f1) The functions f(t, x, y, u) ∈ Rn, f0(t, x, y, u) ∈ R, t ∈ [t0, ϑ], x, y ∈ Rn,
u ∈ U are continuous.

(f2) For every α > 0, there exists a number λf = λf (α) > 0 such that
∥

∥f(t, x, y, u)− f(t, x′, y′, u)
∥

∥+
∣

∣f0(t, x, y, u)− f0(t, x′, y′, u)
∣

∣

≤ λf
(

‖x− x′‖+ ‖y − y′‖
)

for any t ∈ [t0, ϑ], x, y, x
′, y′ ∈ O(α) = {x ∈ Rn : ‖x‖ ≤ α} and u ∈ U.
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(f3) There exists a constant cf > 0 such that
∥

∥f(t, x, y, u)
∥

∥+
∣

∣f0(t, x, y, u)
∣

∣ ≤ cf (1 + ‖x‖+ ‖y‖)

for any t ∈ [t0, ϑ], x, y ∈ Rn and u ∈ U.
(σ) For every α > 0, there exists a number λσ = λσ(α) > 0 such that

∣

∣σ(z, w(·)) − σ(z′, w′(·))
∣

∣ ≤ λσ
(

‖z − z′‖+ ‖w(·) − w′(·)‖1
)

for any (z, w(·)), (z′, w′(·)) ∈ P (α), where

P (α) =
{

(z, w(·)) ∈ R
n × PC: ‖z‖ ≤ α, ‖w(·)‖∞ ≤ α

}

.

It is known that, under such conditions, for each (t, z, w(·)) ∈ G and u(·) ∈
U(t), there exists a unique motion x(·) = x(· | t, z, w(·), u(·)) of system (1).

The value functional ρ : G 7→ R in optimal control problem (1), (2) is
defined by

ρ(t, z, w(·)) = inf
u(·)∈U(t)

J(t, z, w(·), u(·)), (t, z, w(·)) ∈ G. (3)

One can show (following, e.g., the scheme from [10, p. 553]) that, for every
(t, z, w(·)) ∈ G and τ ∈ [t, ϑ], the functional ρ satisfies the following equation
(a dynamic programming principle):

ρ(t, z, w(·)) = inf
u(·)∈U(t)

(

ρ(τ, x(τ), xτ (·)) +

τ
∫

t

f0(ξ, x(ξ), x(ξ − h), u(ξ))dξ

)

,

(4)
where x(·) = x(· | t, z, w(·), u(·)) is the motion of system (1).

In order to obtain a Hamilton-Jacobi-Bellman (HJB) equation as infinitesi-
mal form of equation (4), we will use the following definition of differentiability
of functionals. Following [26,27,28], a functional ϕ : G 7→ R is called coinvari-
antly differentiable (ci-differentiable) at a point (t, z, w(·)) ∈ G, t < ϑ if there
exist a number ∂cit,wϕ(t, z, w(·)) ∈ R and a vector ∇zϕ(t, z, w(·)) ∈ Rn such
that, for any v ∈ Rn, x(·) ∈ Λ(t, z, w(·)) and τ ∈ [t, ϑ], the following relation
holds:

ϕ(τ, v, xτ (·)) − ϕ(t, z, w(·)) = ∂cit,wϕ(t, z, w(·))(τ − t)

+〈v − z,∇zϕ(t, z, w(·))〉 + o(|τ − t|+ ‖v − z‖),
(5)

where the function xτ (·) ∈ PC is defined by xτ (ξ) = x(τ + ξ), ξ ∈ [−h, 0],
the value o(·) depends on the triplet {t, z, x(·)}, and o(δ)/δ → 0 as δ → +0.
Then ∂cit,wϕ(t, z, w(·)) is called the ci-derivative of ϕ with respect to {t, w(·)}
and ∇zϕ(t, z, w(·)) is the gradient of ϕ with respect to z. Let us note that if
ϕ does not depend on the functional variable w(·), then the definition of ci-
differentiability coincides with the definition of differentiability of functions.

Define the Hamiltonian of problem (1), (2) by

H(t, x, y, s) = min
u∈U

(

〈f(t, x, y, u), s〉+ f0(t, x, y, u)
)

,

t ∈ [t0, ϑ], x, y, s ∈ Rn.
(6)
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Consider the following Cauchy problem for the HJB equation

∂cit,wϕ(t, z, w(·)) +H(t, z, w(−h),∇zϕ(t, z, w(·))) = 0,

(t, z, w(·)) ∈ G, t < ϑ,
(7)

and the terminal condition

ϕ(ϑ, z, w(·)) = σ(z, w(·)), (ϑ, z, w(·)) ∈ G. (8)

Define the class of functionals in which we will search a solution of this prob-
lem. Denote by Φ the set of functionals ϕ = ϕ(t, z, w(·)) ∈ R, (t, z, w(·)) ∈ G

which are continuous with respect to t and satisfy the following Lipschitz con-
dition: for every α > 0, there exists a number λϕ = λϕ(α) > 0 such that

|ϕ(t, z, w(·))− ϕ(t, z′, w′(·))| ≤ λϕ
(

‖z − z′‖+ ‖w(·)− w′(·)‖1
)

(9)

for any t ∈ [t0, ϑ] and (z, w(·)), (z′, w′(·)) ∈ P (α). The choice of this class is mo-
tivated, in particular, the inclusion ρ ∈ Φ, which will be shown in Lemma 4.1.

The following theorem establishes the relation between problem (7), (8)
and the value functional ρ in the case when ρ is ci-differentiable.

Theorem 2.1 The following statements hold:

1. If a functional ϕ ∈ Φ is ci-differentiable at each point (t, z, w(·)) ∈ G,
t < ϑ, satisfies HJB equation (7) at these points and satisfies terminal
condition (8), then the identity ϕ ≡ ρ holds.

2. If the value functional ρ is ci-differentiable at a point (t, z, w(·)) ∈ G, t < ϑ,
then it satisfies HJB equation (7) at this point.

The proof of this theorem is described after the Theorem 2.2.

For the case when ρ is not ci-differentiable, definitions of generalized (min-
imax and viscosity) solutions of problem (7), (8) are given below.

Taking the constant cf > 0 form (f3), we denote

F (x, y) =
{

l ∈ R
n : ‖l‖ ≤ cf (1 + ‖x‖+ ‖y‖)

}

⊂ R
n, x, y ∈ R

n. (10)

Let (t, z, w(·)) ∈ G. Denote by X(t, z, w(·)) the set of the functions x(·) ∈
Λ(t, z, w(·)) that satisfy the following delay differential inclusion:

ẋ(τ) ∈ F (x(τ), x(τ − h)) for a.e. τ ∈ [t, ϑ]. (11)

Note that the set X(t, z, w(·)) is not empty. In particular, for each u(·) ∈ U(t),
the motion x(·) = x(· | t, z, w(·), u(·)) of system (1) satisfies the inclusion

x(·) ∈ X(t, z, w(·)). (12)
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Definition 2.1 A functional ϕ : G 7→ R is called a minimax solution of prob-
lem (7), (8) if ϕ satisfies the inclusion ϕ ∈ Φ, terminal condition (8) and the
following inequalities:

inf
x(·)∈X(t,z,w(·))

(

ϕ(τ, x(τ), xτ (·))− ϕ(t, z, w(·))

+

τ
∫

t

(

H(ξ, x(ξ), x(ξ − h), s)− 〈ẋ(ξ), s〉
)

dξ

)

≤ 0,
(13a)

sup
x(·)∈X(t,z,w(·))

(

ϕ(τ, x(τ), xτ (·))− ϕ(t, z, w(·))

+

τ
∫

t

(

H(ξ, x(ξ), x(ξ − h), s)− 〈ẋ(ξ), s〉
)

dξ

)

≥ 0,

(13b)

for any (t, z, w(·)) ∈ G, t < ϑ, τ ∈ (t, ϑ] and s ∈ R
n.

By analogy with [29], lower and upper right directional derivatives of a
functional ϕ : G 7→ R along l ∈ Rn at (t, z, w(·)) ∈ G, t < ϑ are defined by

∂−l ϕ(t, z, w(·)) = lim inf
τ→t+0

ϕ(τ, xl(τ), xlτ (·))− ϕ(t, z, w(·))

τ − t
, (14a)

∂+l ϕ(t, z, w(·)) = lim sup
τ→t+0

ϕ(τ, xl(τ), xlτ (·)) − ϕ(t, z, w(·))

τ − t
, (14b)

where xl(·) ∈ Λ(t, z, w(·)) and xl(τ) = z + l(τ − t), τ ∈ [t, ϑ].
The following sets are called the subdifferential D−ϕ(t, z, w(·)) and the

superdifferential D+ϕ(t, z, w(·)) of the functional ϕ at (t, z, w(·)) ∈ G, t < ϑ:

D−ϕ(t, z, w(·)) =
{

(p0, p) ∈ R× Rn :

p0 + 〈l, p〉 ≤ ∂−l ϕ(t, z, w(·)), l ∈ Rn
}

,
(15a)

D+ϕ(t, z, w(·)) =
{

(q0, q) ∈ R× Rn :

q0 + 〈l, q〉 ≥ ∂+l ϕ(t, z, w(·)), l ∈ Rn
}

.
(15b)

Note that if a functional ϕ is ci-differentiable at (t, z, w(·)) ∈ G, t < ϑ, then

∂−l ϕ(t, z, w(·)) = ∂+l ϕ(t, z, w(·)) = ∂cit,wϕ(t, z, w(·)) + 〈l,∇zϕ(t, z, w(·))〉,

D−ϕ(t, z, w(·)) =
{

(p0, p) : p0 ≤ ∂cit,wϕ(t, z, w(·)), p = ∇zϕ(t, z, w(·))
}

, (16)

D+ϕ(t, z, w(·)) =
{

(q0, q) : q0 ≥ ∂cit,wϕ(t, z, w(·)), q = ∇zϕ(t, z, w(·))
}

.

Definition 2.2 A functional ϕ : G 7→ R is called a viscosity solution of prob-
lem (7), (8) if ϕ satisfies the inclusion ϕ ∈ Φ, terminal condition (8) and the
following inequalities:

p0 +H(t, z, w(−h), p) ≤ 0, (p0, p) ∈ D−ϕ(t, z, w(·)), (17a)

q0 +H(t, z, w(−h), q) ≥ 0, (q0, q) ∈ D+ϕ(t, z, w(·)) (17b)

for any (t, z, w(·)) ∈ G, t < ϑ.
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Theorem 2.2 For ϕ : G 7→ R, the following statements are equivalent:

(a) The identity ϕ ≡ ρ holds.

(b) ϕ is a minimax solution of problem (7), (8).

(c) ϕ ∈ Φ satisfies terminal condition (8) and the following inequalities:

inf
l∈F (z,w(−h))

(

∂−l ϕ(t, z, w(·)) +H(t, z, w(−h), s)− 〈l, s〉
)

≤ 0, (18a)

sup
l∈F (z,w(−h))

(

∂+l ϕ(t, z, w(·)) +H(t, z, w(−h), s)− 〈l, s〉
)

≥ 0 (18b)

for any (t, z, w(·)) ∈ G, t < ϑ and s ∈ Rn.

(d) ϕ is a viscosity solution of problem (7), (8).

In particular, this theorem establishes the existence and uniqueness of the min-
imax and viscosity solutions since the value functional ρ is uniquely defined.

Note that Theorem 2.1 follows from the equivalence of statements (a) and
(d) if we take into account (16). Below in the paper, auxiliary properties of
system (1) and inclusion (11) will be given and Theorem 2.2 will be proved.

3 Properties of Time-Delay Systems

Proposition 3.1 For every α > 0, there exist numbers αX = αX(α) > α and
λX = λX(α) > 0 such that

(x(τ), xτ (·)) ∈ P (αX), ‖x(τ)− x(τ ′)‖ ≤ λX |τ − τ ′|, τ, τ ′ ∈ [t, ϑ] (19)

for each t ∈ [t0, ϑ], (z, w(·)) ∈ P (α) and x(·) ∈ X(t, z, w(·)).

Proof Let α > 0. Put α∗ = (1 + cfh)α + cf (ϑ − t0), αX = α∗e
2cf (ϑ−t0) and

λX = cf (1 + 2αX). Let t ∈ [t0, ϑ], (z, w(·)) ∈ P (α) and x(·) ∈ X(t, z, w(·)).
Then, according to (10), (11), we derive

‖x(τ)‖ ≤ ‖z‖+ cf

τ
∫

t

(

1 + ‖x(ξ)‖ + ‖x(ξ − h)‖
)

dξ ≤ α∗ + 2cf

τ
∫

t

‖x(ξ)‖dξ.

Therefore, applying Bellman-Gronwall lemma (see, e.g., [38, p. 31]), we obtain
(x(τ), xτ (·)) ∈ P (αX), τ ∈ [t, ϑ]. Then, from (11), we deduce ‖ẋ(τ)‖ ≤ λX for
almost every τ ∈ [t, ϑ], which concludes the proof. �

For (t, z, w(·)) ∈ G and u(·) ∈ U(t), we denote

I(t, z, w(·), u(·)) =

ϑ
∫

t

f0(ξ, x(ξ), x(ξ − h), u(ξ))dξ, (20)

where x(·) = x(· | t, z, w(·), u(·)) is the motion of system (1).
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Proposition 3.2 For every α > 0, there exists a number λ∗ = λ∗(α) > 0
such that, for each t ∈ [t0, ϑ], (z, w(·)), (z

′, w′(·)) ∈ P (α) and u(·) ∈ U(t), the
motions x(·) = x(· | t, z, w(·), u(·)) and x′(·) = x(· | t, z′, w′(·), u(·)) of system
(1) satisfy the inequality

‖x(ϑ)− x′(ϑ)‖ + ‖xϑ(·)− x′ϑ(·)‖1 + |I(t, z, w(·), u(·))− I(t, z′, w′(·), u(·))|

≤ λ∗
(

‖z − z′‖+ ‖w(·) − w′(·)‖1
)

. (21)

Proof Let α > 0. According to Proposition 3.1 and condition (f2), let us define
the numbers αX = αX(α) > α and λf = λf (αX) > 0. Put

λ∗ = (1 + λf )
(

2 + (1 + 2λf )(ϑ− t0)e
2λf (ϑ−t0)

)

. (22)

Let t ∈ [t0, ϑ], (z, w(·)), (z′, w′(·)) ∈ P (α) and u(·) ∈ U(t). Then, in ac-
cordance with (12), for the motions x(·) = x(· | t, z, w(·), u(·)) and x′(·) =
x(· | t, z′, w′(·), u(·)), we have

‖x(τ) − x′(τ)‖ + |I(t, z, w(·), u(·))− I(t, z′, w′(·), u(·))|

≤ ‖z − z′‖+ λf‖w(·)− w′(·)‖1 + 2λf

τ
∫

t

‖x(ξ)− x′(ξ)‖dξ, τ ∈ [t, ϑ].
(23)

Then, applying Bellman-Gronwall lemma (see, e.g., [38, p. 31]), we obtain

‖x(τ)− x′(τ)‖ ≤
(

‖z − z′‖+ λf‖w(·)− w′(·)‖1
)

e2λf (ϑ−t0), τ ∈ [t, ϑ]. (24)

From (22)–(24), taking into account the estimate

‖xτ (·)− x′τ (·)‖1 ≤ ‖w(·)− w′(·)‖1 + (ϑ− t0) max
ξ∈[t,τ ]

‖x(ξ)− x′(ξ)‖, τ ∈ [t, ϑ],

we conclude (21). �

Proposition 3.3 Let (t, z, w(·)) ∈ G. For every ε > 0, there exists a number
δ = δ(ε) > 0 such that, for every t′ ∈ [t, t + δ] and x(·) ∈ X(t, z, w(·)), the
inequality ‖w(·)− xt′(·)‖1 ≤ ε holds.

This proposition one can proved, using approximation of w(·) by a Lipschitz
function (see, e.g., [39, p. 214]) and Proposition 3.1.

Proposition 3.4 For every (z, w(·)) ∈ Rn×PC and every ε > 0, there exists a
number δ∗ = δ∗(z, w(·), ε) > 0 such that, for every t, t′ ∈ [t0, ϑ] with |t−t′| ≤ δ∗
and every u(·) ∈ U(t), there exists a function u′(·) ∈ U(t′) such that the motions
x(·) = x(· | t, z, w(·), u(·)) and x′(·) = x(· | t′, z, w(·), u′(·)) of system (1) satisfy
the inequality

‖x(ϑ)− x′(ϑ)‖+ ‖xϑ(·)− x′ϑ(·)‖1 + |I(t, z, w(·), u(·))− I(t′, z, w(·), u′(·))| ≤ ε.
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Proof Let (z, w(·)) ∈ Rn × PC and ε > 0. Take a number α > 0 so that
(z, w(·)) ∈ P (α) (for instance, α = max{‖z‖, ‖w(·)‖∞} + 1). In accordance
with Proposition 3.1, let us the take numbers αX = αX(α) > α and λX =
λX(α) > 0. Then, taking into account (f3), for any t ∈ [t0, ϑ], t

′ ∈ [t, ϑ] and
u(·) ∈ U(t), the motion x(·) = x(· | t, z, w(·), u(·)) satisfies

‖x(t′)− z‖ ≤ λX(t′ − t),

|I(t′, x(t′), xt′ (·), u(·))− I(t, z, w(·), u(·))| ≤ cf (1 + 2αX)(t′ − t).
(25)

Doe to Proposition 3.2, let us take λ∗ = λ∗(αX) > 0. Let t, t′ ∈ [t0, ϑ] and
u(·) ∈ U(t). If t′ ≥ t then, defining u′(·) ∈ U(t′) by u′(τ) = u(τ), τ ∈ [t′, ϑ], for
x(·) = x(· | t, z, w(·), u(·)) and x′(·) = x(· | t′, z, w(·), u′(·)), we have

‖x(ϑ)− x′(ϑ)‖+ ‖xϑ(·)− x′ϑ(·)‖1 + |I(t′, x(t′), xt′(·), u(·))− I(t′, z, w(·), u′(·))|

≤ λ∗
(

‖x(t′)− z‖+ ‖xt′(·)− w(·)‖1
)

, (26)

If t′ < t, then, defining u′(·) ∈ U(t′) by u′(τ) = u(t), τ ∈ [t′, t) and u′(τ) =
u(τ), τ ∈ [t, ϑ], for x(·) = x(· | t, z, w(·), u(·)) and x′(·) = x(· | t′, z, w(·), u′(·)),
we have

‖x(ϑ)− x′(ϑ)‖+ ‖xϑ(·)− x′ϑ(·)‖1 + |I(t, z, w(·), u(·)) − I(t, x′(t), x′t(·), u
′(·))|

≤ λ∗
(

‖z − x′(t)‖+ ‖w(·) − x′t(·)‖1
)

. (27)

The proof of this proposition follows from (25)–(27) and Proposition 3.3. �

4 Proof of Theorem 2.2

4.1 Proof (a) ⇒ (d)

Notes that, under conditions (f1)–(f3), the following conditions hold:

(H1) The function H(t, x, y, s) ∈ Rn, t ∈ [t0, ϑ], x, y, s ∈ Rn defined by (6) is
continuous.

(H2) For every α > 0, there exists a number λH = λH(α) > 0 such that

|H(t, x, y, s)−H(t, x′, y′, s)| ≤ λH(‖x− x′‖+ ‖y − y′‖)(1 + ‖s‖)

for any t ∈ [t0, ϑ], x, y, x
′, y′ ∈ O(α) and u ∈ U.

(H3) For any t ∈ [t, ϑ] and x, y, s ∈ Rn the following equalities hold:

H(t, x, y, s) = max
q∈Rn

min
f∈F (x,y)

(

H(t, x, y, q) + 〈f, s− q〉
)

= min
p∈Rn

max
f∈F (x,y)

(

H(t, x, y, p) + 〈f, s− p〉
)

.

(F ) The multi-valued mapping F (x, y) ⊂ Rn, x, y ∈ Rn defined by (10) is
continuous with respect to Hausdorff metric.
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Conditions (H1)–(H3) can be proved by analogy with [3, p. 14] and [3, p.
177]. Condition (F ) directly follows from (10).

Lemma 4.1 The value functional ρ satisfies the inclusion ρ ∈ Φ.

Proof Let us first prove that ρ is uniformly continuous with respect to t. Let
(z, w(·)) ∈ Rn ×PC and ε > 0. Take a number α > 0 so that (z, w(·)) ∈ P (α).
In accordance with Proposition 3.1 and condition (σ), define the numbers
αX = αX(α) > α and λσ = λσ(αX). Then, according to Proposition 3.4, there
exists δ∗ = δ∗(ε/(2λσ + 2)) such that, for every t, t′ ∈ [t0, ϑ] with |t− t′| ≤ δ∗
and every u(·) ∈ U(t), there exists u′(·) ∈ U(t′) such that

|J(t, z, w(·), u(·)) − J(t′, z, w(·), u′(·))| ≤ ε/2, (28)

where J(t, z, w(·), u(·)), J(t′, z, w(·), u′(·)) are defined by (2), (20).

Let t, t′ ∈ [t0, ϑ], |t− t′| ≤ δ∗. Due to (3), there exists u(·) ∈ U(t) such that

J(t, z, w(·), u(·)) ≤ ρ(t, z, w(·)) + ε/2. (29)

Defining u′(·) ∈ U(t′) so that (28) holds and taking into account (3), we obtain

ρ(t′, z, w(·))− ρ(t, z, w(·)) ≤ J(t′, z, w(·), u′(·)) − J(t, z, w(·), u(·)) + ε/2 ≤ ε.

Thus, uniform continuity of ρ with respect to t has been proved. Also, using
the similar way of proving, basing on Proposition 3.2, one can show that ρ
satisfies Lipschitz condition (9). �

Lemma 4.2 Let (t, z, w(·)) ∈ G, t < ϑ and τk ∈ [t, ϑ], x(k)(·) ∈ X(t, z, w(·)),
k ∈ N. Let τk → t and lk = (x(k)(τk)− z)/(τk− t) → l∗ ∈ R

n as k → ∞. Then
the following inequalities hold:

∂−l∗ρ(t, z, w(·)) ≤ lim inf
k→∞

ρ(τk, x
(k)(τk), x

(k)
τk (·)) − ρ(t, z, w(·))

τk − t
, (30a)

∂+l∗ρ(t, z, w(·)) ≥ lim sup
k→∞

ρ(τk, x
(k)(τk), x

(k)
τk (·)) − ρ(t, z, w(·))

τk − t
. (30b)

Proof Take a number α > 0 so that (z, w(·)) ∈ P (α). In accordance with
Proposition 3.1, define the number λX = λX(α). Then we have ‖lk‖ ≤ λX ,
k ∈ N and ‖l∗‖ ≤ λX . Put α∗ = α + λX(ϑ − t). Then, according to Lemma
4.1, there exists a number λϕ = λϕ(α∗) > 0 such that

|ρ(τk, x
(k)(τk), x

(k)
τk

(·))−ρ(τk, x
l∗(τk), x

l∗
τk
(·))| ≤ λϕ

(

‖lk−l∗‖+λX(τk−t)
)

(τk−t).

Consequently, taking into account (14a), (14b), we obtain (30a), (30b). �
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Proof (a) ⇒ (d). According to (3), the value functional ρ satisfies terminal
condition (8). Due to Lemma 4.1, the inclusion ρ ∈ Φ holds. Thus, for the
proof of statement (d), it is sufficient to show that ρ satisfies (17a), (17b).

Let (t, z, w(·)) ∈ G, t < ϑ. Let (p0, p) ∈ D−ϕ(t, z, w(·)) and (q0, q) ∈
D+ϕ(t, z, w(·)). Since w(·) ∈ PC, then there exists τ∗ ∈ (t,min{ϑ, t+h}) such
that w(·) is continuous on [−h, τ∗− t− h]. Then, according to conditions (f1),
(H1), taking into account Proposition 3.1, there exists a sequence τk ∈ [t, τ∗],
k ∈ N such that τk → t as k → ∞ and

∣

∣H(ξ, x(ξ), w(ξ − t− h), p)−H(t, z, w(−h), p)
∣

∣ ≤ 1/k,
∣

∣f0(ξ, x(ξ), w(ξ − t− h), u)− f0(t, z, w(−h), u)
∣

∣ ≤ 1/k,
∥

∥f(ξ, x(ξ), w(ξ − t− h), u)− f(t, z, w(−h), u)
∥

∥ ≤ 1/k

(31)

for any ξ ∈ [t, τk], x(·) ∈ X(t, z, w(·)), u ∈ U.
Let us prove that ρ satisfies (17a). Due to (4), for each k ∈ N, there exists

a function u(k)(·) ∈ U(t) such that the motion x(k)(·) = x(· | t, z, w(·), u(k)(·))
satisfies the inequality

ρ(τk, x
(k)(τk), x

(k)
τk

(·)) +

τk
∫

t

f0(ξ, x(k)(ξ), w(ξ − t− h), u(k)(ξ))dξ

≤ ρ(t, z, w(·)) + (τk − t)/k.

From this inequality, using (6), (12), (31), we get

ρ(τk, x
(k)(τk), x

(k)
τk (·)) +H(t, z, w(−h), p)(τk − t)− 〈x(k)(τk)− z, p〉

≤ ρ(t, z, w(·)) + 2(τk − t)/k.
(32)

We denote lk = (x(k)(τk)− z)/(τk − t). Then, taking into account (12), for the
number λX > 0 from Proposition 3.1, we have ‖lk‖ ≤ λX , k ∈ N. Without loss
of generality, we can suppose that lk → l∗ ∈ Rn as k → ∞. Then, applying
Lemma 4.2 and inequality (32), we obtain

∂−l∗ρ(t, z, w(·)) ≤ −H(t, z, w(−h), p) + 〈l∗, p〉.

Consequently, in accordance with (15a), we conclude (17a).
Let us prove that ρ satisfies (17b). According to (6), there exists u∗ ∈ U

such that

〈f(t, z, w(−h), u∗), q〉+ f0(t, z, w(−h), u∗) = H(t, z, w(−h), q). (33)

Consider the motion x(·) = x(· | t, z, w(·), u(·) ≡ u∗). Due to (4), we have

ρ(τ, x(τ), xτ (·))+

∫ τ

t

f0(ξ, x(ξ), w(ξ− t−h), u∗)dξ ≥ ρ(t, z, w(·)), τ ∈ [t, τ∗].

Then, using (31), (33), we get

ρ(τk, x(τk), xτk(·)) + (τk − t)
(

H(t, z, w(−h), q)− 〈f(t, z, w(−h), u∗), q〉
)
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≥ ρ(t, z, w(·)) − (τk − t)/k. (34)

We denote l∗ = f(t, z, w(−h), u∗) and lk = (x(τk)− z)/(τk − t), k ∈ N. Then,
according to (31), we have lk → l∗ as k → ∞. Applying Lemma 4.2 and
inequality (34), we obtain

∂+l∗ρ(t, z, w(·)) ≥ −H(t, z, w(−h), q) + 〈l∗, q〉.

Consequently, in accordance with (15b), we conclude (17b). �

4.2 Proof (d) ⇒ (c)

Lemma 4.3 Let ϕ ∈ Φ, (t, z, w(·)) ∈ G, τk, τ∗ ∈ [t, ϑ], zk, z∗ ∈ Rn and
x(k)(·), x∗(·) ∈ Λ(t, z, w(·)), k ∈ N. Let

τk → τ∗, zk → z∗, max
ξ∈[t,ϑ]

‖x(k)(ξ)− x∗(ξ)‖ → 0 as k → ∞. (35)

Then ϕ(τk, zk, x
(k)
τk (·)) → ϕ(τ∗, z∗, x

∗

τ∗
(·)) as k → ∞.

Using approximation of the function x∗(·) by a Lipschitz function (see, e.g.,
[39, p. 214]), we can get that ‖x∗τk(·) − x∗τ∗(·)‖1 → 0 as k → ∞. Then the
lemma follows from (35), according to the inclusion ϕ ∈ Φ

Lemma 4.4 Let ϕ ∈ Φ and (t, z, w(·)) ∈ G, t < ϑ. If there exists a vector l0 ∈
R

n such that ∂−l0ϕ(t, z, w(·)) ∈ R, then ∂−l ϕ(t, z, w(·)) ∈ R for every l ∈ R
n,

and the function Rn ∋ l 7→ ∂−l ϕ(t, z, w(·)) ∈ R is continuous. If there exists a
vector l0 ∈ Rn such that ∂−l0ϕ(t, z, w(·)) = +∞, then ∂−l ϕ(t, z, w(·)) +∞ for
every l ∈ Rn.

The lemma follows directly from the inclusion ϕ ∈ Φ and definition (14a).

Lemma 4.5 Let ϕ ∈ Φ, (t, z, w(·)) ∈ G, t < ϑ and τk ∈ [t, ϑ], lk, l∗, gk, g∗ ∈
Rn, k ∈ N. Let τk → t, lk → l∗, gk → g∗ as k → ∞. Then

∂−l∗ϕ(t, z, w(·)) ≤ lim inf
k→∞

ϕ(τk, x
lk(τk), x

gk
τk
(·))− ϕ(t, z, w(·))

τk − t
. (36)

The lemma can be proved similar to Lemma 4.2.

Lemma 4.6 Let ϕ ∈ Φ and (t, z, w(·)) ∈ G, t < ϑ. Let L ⊂ Rn be a nonempty
compact set. Suppose that

∂−l ϕ(t, z, w(·)) > 0, l ∈ L. (37)

Then there exist numbers ǫ∗, δ∗ > 0 such that

ϕ(τ, xl(τ), xgτ (·))− ϕ(t, z, w(·)) > ǫ∗(τ − t), τ ∈ (t, t+ δ∗], l, g ∈ L. (38)
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Proof In the case when there exists l0 ∈ L such that ∂−l0ϕ(t, z, w(·)) < +∞,
according to Lemma 4.4 and compactness of L, there exists ǫ∗ > 0 such that

ǫ∗ < (1/2)min
l∈L

∂−l ϕ(t, z, w(·)). (39)

In the case when ∂−l ϕ(t, z, w(·)) = +∞ for every l ∈ L, we take an arbitrary
number ǫ∗ > 0. For the sake of a contradiction, suppose that, for each k ∈ N,
there exists a number τk ∈ (t, t+ 1/k] and vectors lk, gk ∈ L such that

ϕ(τk, x
lk(τk), x

gk
τk
(·))− ϕ(t, z, w(·)) ≤ ǫ∗(τk − t). (40)

Since L is compact, then, without loss of generality, we can suppose that
lk → l∗ and gk → g∗ as k → ∞. Then, applying Lemma 4.5, we obtain
∂−l∗ϕ(t, z, w(·)) ≤ ǫ∗. It contradicts (39). �

Lemma 4.7 Let ϕ ∈ Φ and (t, z, w(·)) ∈ G, t < ϑ. Let L ⊂ Rn be the
nonempty convex compact set. Suppose that (37) holds. Then, for every δ ∈
(0, ϑ− t), there exist

(τ∗, v∗) ∈ Ωδ =
{

(τ, v) ∈ [t, t+ δ]× Rn : min
l∈L

‖v − z − l(τ − t)‖ ≤ δ
}

,

g∗ ∈ L, (p0, p) ∈ D−ϕ(τ∗, v∗, x
g∗
τ∗
(·))

(41)

such that
p0 + 〈l, p〉 > 0, l ∈ L. (42)

Proof By the definition of Ωδ, one can take α > 0 such that ‖v‖ ≤ α, for every
(τ, v) ∈ Ω(ϑ−t). Due to the inclusion ϕ ∈ Φ, there exists λϕ = λϕ(α) such that

|ϕ(τ, v, r(·)) − ϕ(τ, v, r′(·))| ≤ λϕ‖r(·) − r′(·)‖1 (43)

for any τ ∈ [t, ϑ] and (v, r(·)), (v, r′(·)) ∈ P (α). According to Lemma 4.6, there
exist ǫ∗, δ∗ > 0 such that (38) holds. Let λL = max{‖l‖ | l ∈ L}. Then, without
loss of generality, we can suppose that

δ ≤ δ∗, δ < ǫ∗/(λϕ(1 + 2λL)). (44)

On the set Ωδ = Ωδ × L × [t, t + δ] × L, for each k ∈ N, let us define the
function

γk(τ, v, g, ξ, l) = ϕ(τ, v, xgτ (·)) + k‖v − z − l(ξ − t)‖2 + k(τ − ξ)2 − ǫ∗(ξ − t),

(τ, v, g, ξ, l) ∈ Ωδ. (45)

Using Lemma 4.3, one can show that this function is continuous. The set Ωδ

is compact. Therefore, there exists a point (τk, vk, gk, ξk, lk) ∈ Ωδ such that

γk(τk, vk, gk, ξk, lk) = min
(τ,v,g,ξ,l)∈Ωδ

γk(τ, v, g, ξ, l). (46)

Furthermore, without loss of generality, we suppose that (τk, vk, gk, ξk, lk) →
(τ , v, g, ξ, l) ∈ Ωδ as k → ∞. Due to (46), we have

γk(τk, vk, gk, ξk, lk) ≤ γk(t, z, gk, t, lk) = ϕ(t, z, w(·)). (47)
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Consequently, we obtain

τ = ξ, v = z + l(ξ − t). (48)

Let us show that ξ < t + δ. For the sake of a contradiction, suppose that
ξ = t+ δ. Then, applying Lemma 4.3 and (38), (44), (45), (48), we derive

lim inf
k→∞

γk(τk, vk, gk, ξk, lk) ≥ lim
k→∞

(

ϕ(τk, vk, x
gk
τk
(·))− ǫ∗(ξk − t)

)

= ϕ(t+ δ, z + lδ, xgt+δ(·))− ǫ∗δ > ϕ(t, z, w(·)).

This inequality contradicts (47).
In accordance with ξ < t+ δ and (48), one can take k ∈ N so that

ξk < t+δ, τk < t+δ, ‖vk−z− lk(ξk−t)‖ ≤ δ/3, λL|τk−ξk| ≤ δ/3, (49)

where the number λL is chosen above. Put

p0 = −λϕ‖vk−z−gk(τk−t)‖−2k(τk−ξk), p = −2k(vk−z−lk(ξk−t)). (50)

Let us prove the inclusion (p0, p) ∈ D−ϕ(τk, vk, x
gk
τk
(·)). Take a vector l ∈

Rn and define a function yl(·) ∈ Λ(τk, vk, x
gk
τk
(·)) by yl(τ) = vk + l(τ − τk),

τ ∈ [τk, ϑ]. Let δl = min{t − τk + δ, δ/(3‖l − lk‖ + 1)}. Then, applying (49),
for every τ ∈ [τk, τk + δl], we get

‖yl(τ)−z− lk(τ−t)‖ ≤ ‖l− lk‖(τ−τk)+‖vk−z− lk(ξk−t)‖+ |ξk−τk|‖lk‖ ≤ δ.

Therefore, taking into account the definition of Ωδ in (41), we have (τ, yl(τ)) ∈
Ωδ, for every τ ∈ [τk, τk + δl]. Then, applying (45), (46), we obtain

0 ≤ γk(τ, y
l(τ), gk, ξk, lk)− γk(τk, vk, gk, ξk, lk)

= ϕ(τ, yl(τ), xgkτ (·))− ϕ(τk, vk, x
gk
τk
(·)) + k‖l‖2(τ − τk)

2

+2k〈l, vk − z − lk(ξk − t)〉(τ − τk) + k(τ − τk)
2 + 2k(τk − ξ∗)(τ − τk).

(51)

Furthermore, using (43), we derive

|ϕ(τ, yl(τ), ylτ (·)) − ϕ(τ, yl(τ), xgkτ (·))|

≤ λϕ‖l− gk‖(τ − τk)
2 + λϕ‖vk − z − gk(τk − t)‖(τ − τk).

(52)

From (50)–(52), taking into account (14a), (15a), we obtain the inclusion
(p0, p) ∈ D−ϕ(τk, vk, x

gk
τk
(·)).

Let us prove (42). We first consider the case when ξk > t. Let l ∈ L. Since
L is convex, then we have lν = lk+ ν(l− lk)/(ξk − t) ∈ L, ν ∈ [0, ξk − t]. Then,
according to (45), (46), for every ν ∈ [0,min{ξk − t, t+ δ − ξk}], we derive

0 ≤ γk(τk, vk, gk, ξk + ν, lν)− γk(τk, vk, gk, ξk, lk)

= kν2‖l+ lν − lk‖
2 − 2kν〈l + lν − lk, vk − z − lk(ξk − t)〉

+kν2 − 2k(τk − ξk)ν − ǫ∗ν.
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Dividing this inequality by ν and passing to the limit as ν → 0, we get

ǫ∗ ≤ −2k〈l, vk − z − lk(ξk − t)〉 − 2k(τk − ξk). (53)

Using (44), (49), we have

‖vk − z − gk(τk − t)‖ ≤ ‖vk − z − lk(ξk − t)‖ + ‖lk‖(ξk − t) + ‖gk‖(τk − t)

≤ (1 + 2λL)δ < ǫ∗/λϕ. (54)

From (50), (53), (54) we obtain (42).
Let us consider the case when ξk = t. In accordance with (45), (46), for

every l ∈ L and ν ∈ [0, δ], we have

0 ≤ γk(τk, vk, gk, t+ ν, l)− γk(τk, vk, gk, t, lk)

= k‖l‖2ν2 − 2kν〈l, vk − z〉+ kν2 − 2k(τk − t)ν − ǫ∗ν.

Dividing this inequality by ν and passing to the limit as ν → 0, we get

ǫ∗ ≤ −2k〈l, vk − z〉 − 2k(τk − t).

From this estimate, taking into account (50), (54) we conclude (42). �

Proof (d) ⇒ (c). Let ϕ be a viscosity solution of problem (7), (8). Then ϕ
satisfies the inclusion ϕ ∈ Φ and terminal condition (8).

Let us prove (18a). For the sake of a contradiction, suppose that there exist
(t, z, w(·)) ∈ G, t < ϑ and s ∈ Rn such that

∂−l ϕ(t, z, w(·)) +H(t, z, w(−h), s)− 〈l, s〉 > 0, l ∈ F (z, w(−h)).

If there exists l0 ∈ F (z, w(−h)) such that ∂−l0ϕ(t, z, w(·)) ∈ R, then, taking
into account condition (H1) and Lemma 4.4, one can take η, ǫ > 0 so that

∂−l ϕ(t, z, w(·)) +H(t, z, w(−h), s)− 〈l, s〉 > ǫ, l ∈ [F (z, w(−h))]η, (55)

where the symbol [F ]η denote the closed η-neighborhood of a set F ⊂ Rn.
If there exists l0 ∈ F (z, w(−h)) such that ∂−l0ϕ(t, z, w(·)) = +∞, then, in
accordance with Lemma 4.4, inequality (55) also holds.

Put L = [F (z, w(−h))]η. Since w(·) ∈ PC, then there exists a number
τ0 ∈ (t,min{ϑ, t+ h}) such that w(·) is continuous on [−h, τ0 − t− h]. Then,
according to (H1), (F ), there exists a number δ ∈ (0, τ0 − t) such that

|H(τ, v, w(τ − t− h), s)−H(t, z, w(−h), s)| ≤ ǫ,

F (v, w(τ − t− h)) ⊂ [F (z, w(−h))]η,
(τ, v) ∈ Ωδ, (56)

where Ωδ is defined by (41). Define the functional ϕ̃ : G 7→ R by

ϕ̃(τ, v, r(·)) = ϕ(τ, v, r(·))+(H(t, z, w(−h), s)−ǫ)(τ−t)−〈v, s〉, (τ, v, r(·)) ∈ G.

Science ϕ ∈ Φ, then the inclusion ϕ̃ ∈ Φ holds. Furthermore, from (55), we
have ∂−l ϕ̃(t, z, w(·)) > 0, l ∈ L. Applying Lemma 4.7 to the functional ϕ̃
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and the set L, we obtain that there exist (τ∗, v∗) ∈ Ωδ, g∗ ∈ L and (p0, p) ∈
D−ϕ̃(τ∗, v∗, x

g∗
τ∗
(·)) such that

p0 + 〈l, p〉 > 0, l ∈ L = [F (z, w(−h))]η. (57)

Let us define p′0 = p0 − H(t, z, w(·), s) + ǫ and p′ = p + s. Then we have
(p′0, p

′) ∈ D−ϕ(τ∗, v∗, x
g∗
τ∗
(·)). Thus, from (17a), (56) and (H3), we obtain

0 ≥ p′0 +H(τ∗, v∗, w(τ∗ − t− h), p′) ≥ p0 + min
l∈[F (z,w(−h))]η

〈l, p〉,

that contradict (57). Thus, (18a) holds. For ∂+l ϕ(t, z, w(·)) and D
+ϕ(t, z, w(·))

one can establish statements similar to Lemmas 4.4–4.7 and prove (18b). �

4.3 Proof (c) ⇒ (b)

Let (t, z, w(·)) ∈ G and η ≥ 0. Denote byX(t, z, w(·), η) the set of the functions
x(·) ∈ Λ(t, z, w(·)) that satisfy the following delay differential inclusion:

ẋ(τ) ∈ [F (x(τ), x(τ − h))]η for a.e. τ ∈ [t, ϑ], (58)

where the symbol [F ]η denote the closed η-neighborhood of a set F ⊂ Rn.

Lemma 4.8 Let (t, z, w(·)) ∈ G, t < ϑ and η∗, ηk ≥ 0, k ∈ N. Let ηk → η∗ as
k → ∞. Let a sequence x(k)(·) ∈ X(t, z, w(·), ηk), k ∈ N be chosen. Then there
exists a subsequence x(ki)(·) and a function x∗(·) ∈ X(t, z, w(·), η∗) such that

max
τ∈[t−h,ϑ]

‖x(ki)(τ) − x∗(τ)‖ → 0 as i→ ∞. (59)

Proof By analogy with Proposition 3.1, one can show the existence of numbers
αX , λX > 0 such that, for every k ∈ N and τ, τ ′ ∈ [t, ϑ], we have

(x(k)(τ), x(k)τ (·)) ∈ P (αX), ‖x(k)(τ) − x(k)(τ ′)‖ ≤ λX |τ − τ ′|. (60)

Then, due to C. Arzela–G. Ascoli Theorem (see, e.g., [39, p. 207]), there exists
a subsequence x(ki)(·) and a function x∗(·) ∈ Λ(t, z, w(·)) such that (59) holds.

The inclusion x∗(·) ∈ X(t, z, w(·), η∗) can be proved similar to Lemma 1 of
[40, p. 76]). �

Lemma 4.9 For a functional ϕ ∈ Φ, inequalities (13a), (13b) are equivalent
the following inequalities:

inf
x(·)∈X(t,z,w(·),η)

ω(t, x(·), τ, s) ≤ ζ, (61a)

sup
x(·)∈X(t,z,w(·),η)

ω(t, x(·), τ, s) ≥ ζ (61b)

for any (t, z, w(·)) ∈ G, t < ϑ, τ ∈ (t, ϑ], s ∈ Rn and η, ζ > 0, where

ω(t, x(·), τ, s) = ϕ(τ, x(τ), xτ (·))− ϕ(t, x(t), xt(·))

+

τ
∫

t

(

H(ξ, x(ξ), x(ξ − h), s)− 〈ẋ(ξ), s〉
)

dξ.
(62)
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Proof It is easy to show that (61a), (61b) follow from (13a), (13b).
Let us prove that (13a) follow from (61a). Let (t, z, w(·)) ∈ G, t < ϑ,

τ ∈ (t, ϑ] and s ∈ Rn. Due to (61a), for every k ∈ N there exists a function
x(k)(·) ∈ X(t, z, w(·), 1/k) such that

ω(t, x(k)(·), τ, s) ≤ 1/k. (63)

According to Lemma 4.8, there exist a subsequence x(ki)(·), i ∈ N and a
function x∗(·) ∈ X(t, z, w(·)) such that (59) holds. Then, due to Lemma 4.3
and condition (H1), passing to the limit in (63) as i→ ∞, we conclude (13a).
In the similar way, one can prove that (13b) follows from (61b). �

Proof (c) ⇒ (b). Let a functional ϕ ∈ Φ satisfies (8), (18a), (18b). According
to the definition of a minimax solution of problem (7), (8) and Lemma 4.9, for
proving of statement (b), it is sufficient to show that ϕ satisfies (61a), (61b).

For the sake of a contradiction, suppose that there exist (t, z, w(·)) ∈ G,
t < ϑ, τ ∈ (t, ϑ], s ∈ R

n and η, ζ > 0 such that

ω(t, x(·), τ , s) > ζ, x(·) ∈ X(t, z, w(·), η). (64)

Define

β(τ) = ζ(τ − t)/(τ − t), τ ∈ [t, ϑ],

τ∗ = max
{

τ ∈ [t, τ )
∣

∣

∣
min

x(·)∈X(t,z,w(·),η)
ω(t, x(·), τ, s) ≤ β(τ)

}

.
(65)

The minimum and maximum in this relation are achieved by virtue of Lemmas
4.3, 4.8, condition (H1) and inequality (64). Therefore, there exists a function
x∗(·) ∈ X(t, z, w(·), η) such that

ω(t, x∗(·), τ∗, s) ≤ β(τ∗). (66)

For l ∈ Rn, let us define the function yl(·) ∈ Λ(τ∗, x
∗(τ∗), x

∗

τ∗
(·)) by the rule

yl(τ) = x∗(τ∗) + l(τ − τ∗), τ ∈ [τ∗, ϑ]. Since x
∗(·) ∈ PC([t − h, ϑ],Rn), then

there exists a number δ0 ∈ (0,min{h, τ − τ∗}) such that the function x∗(·) is
continuous on [τ∗ − h, τ∗ − h+ δ0]. Then, in accordance with (H1), (F ), there
exists a number δ∗ ∈ (0, δ0) such that

|H(τ∗, x
∗(τ∗), x

∗(τ∗ − h), s)−H(ξ, yl(ξ), x∗(ξ − h), s)| ≤ ζ/(2(τ − t)),

F (x∗(τ∗), x
∗(τ∗ − h)) ⊂ [F (yl(ξ), x∗(ξ − h))]η.

(67)

for any ξ ∈ [τ∗, τ∗+ δ∗] and l ∈ F (x∗(τ∗), x
∗(τ∗−h)). Due to (18a), there exist

a vector l′ ∈ F (x∗(τ∗), x
∗(τ∗ − h)) and a number τ ′ ∈ (τ∗, τ∗ + δ∗] such that

ϕ(τ ′, yl
′

(τ ′), yl
′

τ ′(·))− ϕ(τ∗, x
∗(τ∗), x

∗

τ∗
(·))

τ ′ − τ∗
+H(τ∗, x

∗(τ∗), x
∗(τ∗ − h), s)− 〈l′, s〉 ≤ ζ/(2(τ − t)).
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From this estimate, using the first inequality in (67), we derive

ω(τ∗, y
l′(·), τ ′, s) ≤ ζ(τ ′ − τ∗)/(τ − t). (68)

In accordance with the second inequality in (67), one can define a function
x′(·) ∈ X(t, z, w(·), η) so that x′(τ) = x∗(τ), τ ∈ [t, τ∗] and x′(τ) = yl

′

(τ),
τ ∈ [τ∗, τ

′]. Then, from (66), (68), taking into account the definition of β(·)
in (65), we obtain ω(t, x′(·), τ ′, s) ≤ β(τ ′), that contradicts the choice of τ∗ in
(65). Thus, (61a) has been proved. In the similar way, one can prove (61b). �

4.4 Proof (b) ⇒ (a)

Lemma 4.10 Let ϕ ∈ Φ be ci-differentiable at every point (t, z, w(·)) ∈ G,
t < ϑ. Let t ∈ [t0, ϑ] and p(·) ∈ Lip([t − h, ϑ],Rn). Then the function ω(τ) =
ϕ(τ, p(τ), pτ (·)), τ ∈ [t, ϑ] is Lipschitz continuous and

ω̇(τ) = ∂cit,wϕ(τ, p(τ), pτ (·)) + 〈ṗ(τ),∇zϕ(τ, p(τ), pτ (·))〉 (69)

for almost every τ ∈ [t, ϑ].

Proof Lipschitz continuity of the function ω(·) follows directly from the inclu-
sions ϕ ∈ Φ and p(·) ∈ Lip([t − h, ϑ],Rn). Let τ ∈ (t, ϑ) be a point such that
the derivatives ω̇(τ) and ṗ(τ) exist. Then, using ci-differentiability of ϕ at the
point (τ, p(τ), pτ (·)), we obtain (69) at this point. �

For λ > 1, ε∗(λ) = e−2λ(ϑ−t0) and ε ∈ (0, ε∗(λ)), let us define the functional

µλ
ε (t, z, w(·)) = νλε (t)η

λ
ε (z, w(·)), (t, z, w(·)) ∈ G,

νλε (t) = (e−2λ(t−t0) − ε)/ε, ηλε (z, w(·)) =
√

ε4 + ‖z‖2 + λ‖w(·)‖1.
(70)

Then the inclusion µλ
ε ∈ Φ holds. Furthermore, µλ

ε is ci-differentiable at every
point (t, z, w(·)) ∈ G, t < ϑ and

∂cit,wµ
λ
ε (t, z, w(·)) = −2λ(νλε (t) + 1)ηλε (z, w(·)) + νλε (t)

(

‖z‖ − ‖w(−h)‖
)

,

∇zµ
λ
ε (t, z, w(·)) =

(

νε(t)/
√

ε4 + ‖z‖2
)

z. (71)

Lemma 4.11 Let (t, z, w(·)) ∈ G. There exists a number λ = λ(t, z, w(·)) > 1
such that, for every ε ∈ (0, ε∗(λ)) and every x(·), y(·) ∈ X(t, z, w(·)), the
functions p(τ) = x(τ) − y(τ), τ ∈ [t − h, ϑ] and ω(τ) = µλ

ε (τ, p(τ), pτ (·)),
τ ∈ [t, ϑ] are Lipschitz continuous and

ω̇(τ) + |H(τ, x(τ), κ(τ), s(τ)) −H(τ, y(τ), κ(τ), s(τ)) − 〈ṗ(τ), s(τ)〉| ≤ 0 (72)

for almost every τ ∈ [t,min{t+ h, ϑ}], where

κ(τ) = w(τ − t− h), s(τ) = ∇zµ
λ
ε (τ, p(τ), pτ (·)). (73)
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Proof Due to Proposition 3.1 and condition (H2), there is λH > 0 such that

|H(τ, x(τ), κ(τ), s) −H(τ, y(τ), κ(τ), s)| ≤ λH‖x(τ) − y(τ)‖(1 + ‖s‖)

for any τ ∈ [t,min{t + h, ϑ}], x(·), y(·) ∈ X(t, z, w(·)) and s ∈ Rn. Put λ =
λH +1. Let ε ∈ (0, ε∗(λ)) and x(·), y(·) ∈ X(t, z, w(·)). Then, applying Lemma
4.10 to the functional µλ

ε and using (71), we obtain (72). �

Lemma 4.12 Let ϕ ∈ Φ and (t, z, w(·)) ∈ G. For every λ > 1 and ζ > 0,
there exists a number ε = ε(t, z, w(·), λ, ζ) > 0 such that the functionals

ψ−(τ, v, r(·)) = min
y(·)∈X(t,z,w(·))

(

ϕ(τ, y(τ), yτ (·))

+µλ
ε (τ, v − y(τ), r(·) − yτ (·))

)

,
(74a)

ψ+(τ, v, r(·)) = max
y(·)∈X(t,z,w(·))

(

ϕ(τ, y(τ), yτ (·))

−µλ
ε (τ, v − y(τ), r(·) − yτ (·))

)

,
(74b)

where (τ, v, r(·)) ∈ G, satisfy the inequalities

|ϕ(τ, x(τ), xτ (·)) − ψ−(τ, x(τ), xτ (·))| ≤ ζ, (75a)

|ϕ(τ, x(τ), xτ (·)) − ψ+(τ, x(τ), xτ (·))| ≤ ζ (75b)

for any τ ∈ [t, ϑ], x(·) ∈ X(t, z, w(·)).

Proof Let ϕ ∈ Φ and (t, z, w(·)) ∈ G. Take a number α > 0 so that (z, w(·)) ∈
P (α). According to Proposition 3.1, there exists a number αX = αX(α) > α
such that (19) holds. Then, due to the inclusion ϕ ∈ Φ, there exists a number
λϕ = λϕ(αX) > 0 such that

|ϕ(τ, x(τ), xτ (·)) − ϕ(τ, y(τ), yτ (·))|

≤ λϕ
(

‖x(τ) − y(τ)‖ + ‖xτ (·)− yτ (·)‖1
)

(76)

for any τ ∈ [t, ϑ] and x(·), y(·) ∈ X(t, z, w(·)).
Let λ > 1 and ζ > 0. Let us choose ε0 ∈ (0, ε∗(λ)) and define ε > 0 so that

ε < ζ, ε < ε0, ε < ζ(ε∗(λ)− ε0)/(λϕθ), θ = 2λϕ(1 + h)αX + ζ. (77)

We will show that (75a) holds. Let τ ∈ [t, ϑ] and x(·) ∈ X(t, z, w(·)). In
accordance with (70), (74a), (77), we have

ψ−(τ, x(τ), xτ (·))− ϕ(τ, x(τ), xτ (·)) ≤ µλ
ε (τ, 0, r(·) ≡ 0) ≤ ζ. (78)

Due to Lemma 4.3 and Lemma 4.9 (for ηk = η = 0), the minimum in (74a) is
attained. Therefore, there exists a function y∗(·) ∈ X(t, z, w(·)) such that

ψ−(τ, x(τ), xτ (·)) = ϕ(τ, y∗(τ), y∗τ (·))+µ
λ
ε (τ, x(τ)−y

∗(τ), xτ (·)−y
∗

τ (·)). (79)

Hence, taking into account (19), (76)–(78), we derive

µλ
ε (τ, x(τ)−y

∗(τ), xτ (·)−y
∗

τ (·)) ≤ ϕ(τ, x(τ), xτ (·))−ϕ(τ, y
∗(τ), y∗τ (·))+ ζ ≤ θ.
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From this inequality, in accordance with (70), (77), we get

‖x(τ)− y∗(τ)‖ + ‖xτ (·)− y∗τ (·)‖1 ≤ ηλε (x(τ) − y∗(τ), xτ (·)− y∗τ (·)) ≤ ζ/λϕ.

Therefore, in accordance with (76), (79), we obtain

ϕ(τ, x(τ), xτ (·)) − ψ−(τ, x(τ), xτ (·)) ≤ ζ. (80)

From (78), (80) we conclude (75a). In the similar way, (75b) can be proved.�

Proof (b) ⇒ (a). Let ϕ ∈ Φ be a minimax solution of problem (7), (8). It
means that ϕ satisfies (8) and (13a), (13b). For proving statement (a), we
need to show that ϕ satisfies (4), in which, without loss of generality, we can
suppose that τ < t+ h.

Let (t, z, w(·)) ∈ G, t < ϑ, τ ∈ (t,min{t+ h, ϑ}) and ζ > 0. According to
Lemmas 4.11, 4.12, let us choose λ = λ(t, z, w(·)), ε = ε(ζ/3) and define the
functionals µλ

ε , ψ− and ψ+. Then, for proving (4), it is sufficient to show the
following inequalities:

inf
u(·)∈U(t)

(

ψ−(τ , x(τ ), xτ (·)) +

τ
∫

t

f0(ξ, x(ξ), x(ξ − h), u(ξ))dξ

)

≤ ψ−(t, z, w(·)) + ζ/3,

(81a)

inf
u(·)∈U(t)

(

ψ+(τ , x(τ ), xτ (·)) +

τ
∫

t

f0(ξ, x(ξ), x(ξ − h), u(ξ))dξ

)

≥ ψ+(t, z, w(·))− ζ/3,

(81b)

where x(·) = x(· | t, z, w(·), u(·)) is the motion of system (1).
Let ζ∗ = ζ/(30(τ− t)). In accordance with piecewise continuity of w(·) and

Proposition 3.1, due to conditions (f1) and (H1), there exists a partition

t = τ1 < τ2 < . . . < τk < τk+1 = τ .

such that for every x(·), y(·) ∈ X(t, z, w(·)) and u ∈ U, we have

τi+1
∫

τi

|f0(ξ, x(ξ), κ(ξ), u) − f0(τi, x(τi), κ(τi), u)|dξ ≤ ζ∗,

τi+1
∫

τi

|〈f(ξ, x(ξ), κ(ξ), u), s(ξ)〉 − 〈f(τi, x(τi), κ(τi), u), s(τi)〉|dξ ≤ ζ∗,

τi+1
∫

τi

|H(ξ, x(ξ), κ(ξ), s(ξ)) −H(τi, x(τi), κ(τi), s(τi))|dξ ≤ ζ∗,

τi+1
∫

τi

|H(ξ, y(ξ), κ(ξ), s(ξ)) −H(ξ, y(ξ), κ(ξ), s(τi))|dξ ≤ ζ∗,

τi+1
∫

τi

|〈ẏ(ξ), s(ξ)〉 − 〈ẏ(ξ), s(τi)〉|dξ ≤ ζ∗,

(82)
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where κ(·) and s(·) are defined by (73).
Define u(·) ∈ U(t) and the corresponding motion x(·) = x(· | t, z, w(·), u(·))

of system (1) so that

u(τ) = ui ∈ argmin
u∈U

(

〈f(τi, x(τi), κ(τi), u), si〉+ f0(τi, x(τi), κ(τi), u)
)

,

τ ∈ [τi, τi+1), i ∈ 1, k,
(83)

where

si = ∇zµ
λ
ε (τi, p

(i)(τi), p
(i)
τi
(·)), p(i)(τ) = x(τ)− y(i)(τ), τ ∈ [t−h, ϑ], (84)

and the function y(i)(·) ∈ X(t, z, w(·)) satisfies the equality

ϕ(τi, y
(i)(τi), y

(i)
τi
(·)) + µλ

ε (τi, p
(i)(τi), p

(i)
τi
(·)) = ψ−(τi, x(τi), xτi(·)). (85)

The minimum in (83) is attained according to condition (f1) and a compact-
ness of the set U.

Let i ∈ 1, k. Take the vector si from (84). Due to (13a), there exists y(i)(·) ∈
X(t, z, w(·)) that satisfies (85) and the inequality

ϕ(τi+1, y
(i)(τi+1), y

(i)
τi+1

(·)) +

τi+1
∫

τi

(

H(ξ, y(i)(ξ), κ(ξ), si)− 〈ẏ(i)(ξ), si〉
)

dξ

≤ ϕ(τi, y
(i)(τi), y

(i)
τi (·)) + ζ(τi+1 − τi)/(6(τ − t)).

From this inequality, applying Lemma 4.11 and (6), (74a), (82)–(85), we derive

ψ−(τi+1, x(τi+1), xτi+1
(·)) +

τi+1
∫

τi

f0(ξ, x(ξ), κ(ξ), ui)dξ

≤ ψ−(τi, x(τi), xτi(·)) + ζ(τi+1 − τi)/(3(τ − t)),

and, consequently, we get (81a).
Let us prove (81b). Let u(·) ∈ U(t) and x(·) = x(· | t, z, w(·), u(·)). Let

i ∈ 1, k. Due to (13b), (74b), there exists y(i)(·) ∈ X(t, x, w(·)) such that

ϕ(τi, y
(i)(τi), y

(i)
τi
(·)) − µλ

ε (τi, p
(i)(τi), p

(i)
τi
(·)) = ψ+(τi, x(τi), xτi(·)), (86)

ϕ(τi+1, y
(i)(τi+1), y

(i)
τi+1

(·)) +

τi+1
∫

τi

(

H(ξ, y(i)(ξ), κ(ξ),−si) + 〈ẏ(i)(ξ), si〉
)

dξ

≥ ϕ(τi, y
(i)(τi), y

(i)
τi (·)) − ζ(τi+1 − τi)/(6(τ − t)),

where si and p(i)(·) are defined by (84). Then, from Lemma 4.11 and (6),
(74b), (82)–(85), we derive

ψ+(τi+1, x(τi+1), xτi+1
(·)) +

τi+1
∫

τi

f0(ξ, x(ξ), κ(ξ), u(ξ))dξ

≥ ψ+(τi, x(τi), xτi(·)) − ζ(τi+1 − τi)/(3(τ − t)),

and, consequently, we get (81b). �
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5 Conclusions

On the space of piecewise continuous functions, an optimal control problem
for time-delay systems with discrete delay is considered. For the value func-
tional, the corresponding Hamilton-Jacobi-Bellman equation with coinvariant
derivatives is investigated. Definitions of minimax and viscosity solutions of
the Cauchy problem for this equation are studied. It is proved that both of
these solutions exist, are unique and coincide with the value functional. The
proof of the viscosity solution uniqueness is based on an analogue of the the-
orem about ”Mean value inequality” for functionals defined on the space of
piecewise continuous functions.

In the future, we plan to get analogous results for more general dynamical
systems which motions are described by functional differential equations of
delay and neutral types. We plan to consider positional differential games for
such systems and apply minimax and viscosity approaches to the correspond-
ing Hamilton-Jacobi equations with a non-convex Hamiltonian. Also, it seems
interesting to investigate generalized solutions of boundary value problems for
Hamilton-Jacobi equations that correspond to time-optimal control problems
and infinite horizon optimal control problems in time-delay systems. Perhaps,
results of this paper will be useful for such investigations.
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