Skip to main content
Log in

Nash Equilibrium Seeking in Quadratic Noncooperative Games Under Two Delayed Information-Sharing Schemes

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose non-model-based strategies for locally stable convergence to Nash equilibrium in quadratic noncooperative games where acquisition of information (of two different types) incurs delays. Two sets of results are introduced: (a) one, which we call cooperative scenario, where each player employs the knowledge of the functional form of his payoff and knowledge of other players’ actions, but with delays; and (b) the second one, which we term the noncooperative scenario, where the players have access only to their own payoff values, again with delay. Both approaches are based on the extremum seeking perspective, which has previously been reported for real-time optimization problems by exploring sinusoidal excitation signals to estimate the Gradient (first derivative) and Hessian (second derivative) of unknown quadratic functions. In order to compensate distinct delays in the inputs of the players, we have employed predictor feedback. We apply a small-gain analysis as well as averaging theory in infinite dimensions, due to the infinite-dimensional state of the time delays, in order to obtain local convergence results for the unknown quadratic payoffs to a small neighborhood of the Nash equilibrium. We quantify the size of these residual sets and corroborate the theoretical results numerically on an example of a two-player game with delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. By strict concavity, we mean \(J_i(\theta )\) is strictly concave in \(\theta _i\) for all \(\theta _{-i}\), this being so for each \(i=1,\ldots , N\).

  2. If the scalar \(c<0\) is considered, the direction of convection must be reversed such that the boundary u(0, t) is replaced by u(1, t) and vice versa.

Abbreviations

ES:

Extremum seeking

ODE:

Ordinary differential equation

PDE:

Partial differential equation

FDE:

Functional differential equation

ISS:

Input-to-state stability

References

  1. Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Başar, T., Zaccour, G. (eds.): Handbook of Dynamic Game Theory, vol. I. Springer International Publishing, Berlin (2018)

    Google Scholar 

  3. Han, Z., Niyato, D., Saad, W., Başar, T.: Game Theory for Next Generation Wireless and Communication Networks: Modeling, Analysis, and Design. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  4. Amina, S., Schwartz, G.A., Sastry, S.S.: Security of interdependent and identical networked control systems. Automatica 49, 186–192 (2013)

    Article  MathSciNet  Google Scholar 

  5. Başar, T., Zaccour, G. (eds.): Handbook of Dynamic Game Theory, (Applications of Dynamic Games), vol. II. Springer International Publishing, Berlin (2018)

    Google Scholar 

  6. Starr, A.W., Ho, Y.C.: Nonzero-sum differential games. J. Optim. Theory Appl. 3, 184–206 (1969)

    Article  MathSciNet  Google Scholar 

  7. Petrovic, B., Gajic, Z.: Recursive solution of linear-quadratic Nash games for weakly interconnected systems. J. Optim. Theory Appl. 56, 463–477 (1988)

    Article  MathSciNet  Google Scholar 

  8. Srikant, R., Başar, T.: Iterative computation of noncooperative equilibria in nonzero-sum differential games with weakly coupled players. J. Optim. Theory Appl. 71, 137–168 (1991)

    Article  MathSciNet  Google Scholar 

  9. Wang, W., Sun, H., Van den Brink, R., Xu, G.: The family of ideal values for cooperative games. J. Optim. Theory Appl. 180, 1065–1086 (2018)

    Article  MathSciNet  Google Scholar 

  10. Cotrina, J., Zúñiga, J.: Time-dependent generalized Nash equilibrium problem. J. Optim. Theory Appl. 179, 1054–1064 (2018)

    Article  MathSciNet  Google Scholar 

  11. Aussel, D., Svensson, A.: Towards tractable constraint qualifications for parametric optimisation problems and applications to generalised Nash games. J. Optim. Theory Appl. 182, 404–416 (2019)

    Article  MathSciNet  Google Scholar 

  12. Alasseur, C., Taher, I.B., Matoussi, A.: An extended mean field game for storage in smart grids. J. Optim. Theory Appl. 184, 644–670 (2020)

    Article  MathSciNet  Google Scholar 

  13. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. SIAM Series in Classics in Applied Mathematics. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  14. Nash, J.F.: Noncooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  15. Li, S., Başar, T.: Distributed learning algorithms for the computation of noncooperative equilibria. Automatica 23, 523–533 (1987)

    Article  MathSciNet  Google Scholar 

  16. Başar, T.: Relaxation techniques and the on-line asynchronous algorithms for computation of noncooperative equilibria. J. Econ. Dyn. Control 11, 531–549 (1987)

    Article  Google Scholar 

  17. Zhu, Q., Tembine, H., Başar, T.: Hybrid learning in stochastic games and its applications in network security (chapter 14). In: Lewis, F.L., Liu, D. (eds.) Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Series on Computational Intelligence, pp. 305–329. IEEE Press/Wiley, New York (2013)

    Google Scholar 

  18. Frihauf, P., Krstic, M., Başar, T.: Nash equilibrium seeking in noncooperative games. IEEE Trans. Autom. Control 57, 1192–1207 (2012)

    Article  MathSciNet  Google Scholar 

  19. Krstic, M., Wang, H.H.: Stability of extremum seeking feedback for general dynamic systems. Automatica 36, 595–601 (2000)

    Article  MathSciNet  Google Scholar 

  20. Alpcan, T., Başar, T.: Network Security: A Decision and Game Theoretic Approach. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  21. Ciletti, M.D.: Differential games with information time lag: norm-invariant systems. J. Optim. Theory Appl. 9, 293–301 (1972)

    Article  MathSciNet  Google Scholar 

  22. Mori, K., Shimemura, E.: Linear differential games with delayed and noisy information. J. Optim. Theory Appl. 13, 275–289 (1974)

    Article  MathSciNet  Google Scholar 

  23. Kaskosz, B., Tadumadze, T.: A differential game of evasion with delays. J. Optim. Theory Appl. 44, 231–268 (1984)

    Article  MathSciNet  Google Scholar 

  24. Ehtamo, H., Hämäläinen, R.P.: Incentive strategies and equilibria for dynamic games with delayed information. J. Optim. Theory Appl. 63, 355–369 (1989)

    Article  MathSciNet  Google Scholar 

  25. Glizer, V.Y., Shinar, J.: Optimal evasion from a pursuer with delayed information. J. Optim. Theory Appl. 111, 7–38 (2001)

    Article  MathSciNet  Google Scholar 

  26. Pamen, O.M.: Optimal control for stochastic delay systems under model uncertainty: a stochastic differential game approach. J. Optim. Theory Appl. 167, 998–1031 (2015)

    Article  MathSciNet  Google Scholar 

  27. Carmona, R., Fouque, J.-P., Mousavi, S.M., Sun, L.-H.: Systemic risk and stochastic games with delay. J. Optim. Theory Appl. 179, 366–399 (2018)

    Article  MathSciNet  Google Scholar 

  28. Krstic, M.: Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhauser, Boston (2009)

    Book  Google Scholar 

  29. Oliveira, T.R., Krstic, M., Tsubakino, D.: Extremum seeking for static maps with delays. IEEE Trans. Autom. Control 62, 1911–1926 (2017)

    Article  MathSciNet  Google Scholar 

  30. Oliveira, T.R., Tsubakino, D., Krstic, M.: A simplified multivariable gradient extremum seeking for distinct input delays with delay-independent convergence rates. In: American Control Conference (ACC), Denver, CO, USA, pp. 608–613 (2020)

  31. Karafyllis, I., Krstic, M.: Input-to-State Stability for PDEs. Springer, Cham (2018)

    MATH  Google Scholar 

  32. Hale, J.K., Lunel, S.M.V.: Averaging in infinite dimensions. J. Integral Equ. Appl. 2, 463–494 (1990)

    Article  MathSciNet  Google Scholar 

  33. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  34. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, Berlin (1993)

    Book  Google Scholar 

  35. Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control. Birkhäuser, Basel (2014)

    Book  Google Scholar 

  36. Ghaffari, A., Krstic, M., Nesic, D.: Multivariable Newton-based extremum seeking. Automatica 48, 1759–1767 (2012)

    Article  MathSciNet  Google Scholar 

  37. Artstein, Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Autom. Control 27, 869–879 (1982)

    Article  MathSciNet  Google Scholar 

  38. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1985)

    Book  Google Scholar 

  39. Oliveira, T.R., Hsu, L., Peixoto, A.J.: Output-feedback global tracking for unknown control direction plants with application to extremum-seeking control. Automatica 47, 2029–2038 (2011)

    Article  MathSciNet  Google Scholar 

  40. Feiling, J., Koga, S., Krstic, M., Oliveira, T.R.: Gradient extremum seeking for static maps with actuation dynamics governed by diffusion PDEs. Automatica 95, 197–206 (2018)

    Article  MathSciNet  Google Scholar 

  41. Oliveira, T.R., Feiling, J., Koga, S., Krstic, M.: Multivariable extremum seeking for PDE dynamic systems. IEEE Trans. Autom. Control (Early Access). 10.1109/TAC.2020.3005177 (2020)

Download references

Acknowledgements

The first and second authors thank the Brazilian funding agencies CAPES, CNPq and FAPERJ for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Roux Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Averaging and Small-Gain Theorems

Appendix: Averaging and Small-Gain Theorems

Theorem A.1

(Averaging Theorem for FDEs [32]) Consider the delay system

$$\begin{aligned} {\dot{x}}(t)= & {} f(t/\epsilon ,x_t), \quad \forall t \ge 0, \end{aligned}$$
(134)

where \(\epsilon \) is a real parameter, \(x_t(\varTheta ) = x (t+\varTheta )\) for \(-r\le \varTheta \le 0\), and \(f : {\mathbb {R}}_{+} \times \varOmega \rightarrow {\mathbb {R}}^n\) is a continuous functional from a neighborhood \(\varOmega \) of 0 of the supremum-normed Banach space \(X = C([-r, 0]; {\mathbb {R}}^n)\) of continuous functions from \([-r, 0]\) to \({\mathbb {R}}^n\). Assume that \(f(t,\varphi )\) is periodic in t uniformly with respect to \(\varphi \) in compact subsets of \(\varOmega \) and that f has a continuous Fréchet derivative \(\partial f (t,\varphi )/\partial \varphi \) in \(\varphi \) on \({\mathbb {R}}_{+} \times \varOmega \). If \(y = y_0\in \varOmega \) is an exponentially stable equilibrium for the average system

$$\begin{aligned} {\dot{y}}(t)= & {} f_0(y_t), \quad \forall t\ge 0, \end{aligned}$$
(135)

where \(f_0(\varphi )=\lim _{T\rightarrow \infty }\frac{1}{T} \int _{0}^{T} f(s,\varphi ) \hbox {d}s\), then, for some \(\epsilon _0 > 0\) and \(0 <\epsilon \le \epsilon _0\), there is a unique periodic solution \(t \mapsto x^*(t,\epsilon )\) of (134) with the properties of being continuous in t and \(\epsilon \), satisfying \(|x^*(t, \epsilon ) - y_0| \le {\mathcal {O}}(\epsilon )\), for \(t \in {\mathbb {R}}_{+}\), and such that there is \(\rho >0\) so that if \(x(\cdot ;\varphi )\) is a solution of (134) with \(x(s) = \varphi \) and \(|\varphi - y_0| < \rho \), then \(|x(t)-x^*(t,\epsilon )| \le C e^{-\gamma (t-s)}\), for \(C>0\) and \(\gamma >0\).

Theorem A.2

(Small-Gain Theorem for ODE and Hyperbolic PDE Loops [31]) Consider generalized solutions of the following initial-boundary value problem

$$\begin{aligned}&{\dot{x}}(t)=F(x(t),u(z,t),v(t)), \quad \forall t \ge 0, \end{aligned}$$
(136)
$$\begin{aligned}&u_t(z,t)+cu_z(z,t)=a(z)u(z,t)+g(z,x(t),u(z,t))+f(z,t), \quad \forall (z,t) \in [0,1] \times {\mathbb {R}}_{+}, \end{aligned}$$
(137)
$$\begin{aligned}&u(0,t)=\varphi (d(t), u(z,t),x(t)), \quad \forall t \ge 0, \quad u(z,0)=u_0, \quad x(0)=x_0. \end{aligned}$$
(138)

The state of the system (136)–(138) is \((u(z,t),x(t))\in C^{0}([0,1]\times {\mathbb {R}}_{+}) \times {\mathbb {R}}^n\), while the other variables \(d\in C^{0}({\mathbb {R}}_+;{\mathbb {R}}^q)\), \(f\in C^{0}([0,1] \times {\mathbb {R}}_+)\) and \(v\in C^{0}({\mathbb {R}}_+\,;{\mathbb {R}}^m)\) are external inputs. We assume that \((0,0) \in C^{0}([0,1])\times {\mathbb {R}}^n\) is an equilibrium point for the input-free system, i.e., \(F(0,0,0)=0\), \(g(z,0,0)=0\), and \(\varphi (0,0,0)=0\). Now, we assume that the ODE subsystem satisfies the ISS property:

  • (H1) There exist constants \(M, \sigma >0\), \(b_3, \gamma _3\ge 0\), such that for every \(x_0\in {\mathbb {R}}^n\), \(u\in C^{0}([0,1] \times {\mathbb {R}}_{+})\) and \(v\in C^0({\mathbb {R}}_{+}\,;{\mathbb {R}}^{m})\) the unique solution \(x \in C^{1}({\mathbb {R}}_{+}\,;{\mathbb {R}}^{n})\) of (136) with \(x(0)=x_0\) satisfies the following estimate

    $$\begin{aligned} |x(t)| \le M |x_0| \exp (-\sigma t) + \max _{0\le s \le t}(\gamma _3 \Vert u(s)\Vert _{\infty }+b_3|v(s)|), \quad \forall t \ge 0. \end{aligned}$$
    (139)

    We next need to estimate the static gain of the interconnections. To this purpose, we employ the following further assumption.

  • (H2) There exist constants \(b_2,\gamma _1,\gamma _2,A,B \ge 0\) such that the following growth conditions hold for every \(x\in C^{1}({\mathbb {R}}_{+};{\mathbb {R}}^{n})\), \(u \in C^{0}([0,1]\times {\mathbb {R}}_{+})\) and \(d \in C^{0}({\mathbb {R}}_{+};{\mathbb {R}}^{q})\):

    $$\begin{aligned} |g(z,x,u)|\le & {} A \Vert u\Vert _{\infty } + \gamma _1 |x|, \quad \forall z \in [0,1], \end{aligned}$$
    (140)
    $$\begin{aligned} |\varphi (d,u,x)|\le & {} B \Vert u\Vert _{\infty } + \gamma _2 |x| + b_2 |d|. \end{aligned}$$
    (141)

Let \(c>0\)Footnote 2 be a given constant and \(a \in C^{0}([0,1])\) be a given function. Consider the mappings as \(F:{\mathbb {R}}^n \times C^{0}([0,1]) \times {\mathbb {R}}^m \rightarrow {\mathbb {R}}^n\), \(g:[0,1] \times {\mathbb {R}}^n \times C^{0}([0,1]) \rightarrow {\mathbb {R}}\), \(\varphi : {\mathbb {R}}^q \times C^{0}([0,1]) \times {\mathbb {R}}^n \rightarrow {\mathbb {R}}\) being continuous mappings with \(F(0,0,0)=0\) for which there exist constants \(L>0\), \({\bar{N}}\in {[0,1 [}\) such that the inequalities \(\max _{0\le z \le 1}(|g(z,x,u)-g(z,y,w)|)+|F(x,u,v)-F(y,w,v)|\le L|x-y|+L\Vert u-w\Vert _{\infty }\), \(|\varphi (d,u,x)-\varphi (d,w,y)|\le \bar{N}|x-y|+\bar{N}\Vert u-w\Vert _{\infty }\), hold for all \(u, w \in C^{0}([0,1])\), \(x,y \in {\mathbb {R}}^n\), \(v\in {\mathbb {R}}^{m}\), \(d\in {\mathbb {R}}^{q}\). Suppose that Assumptions (H1) and (H2) hold and that the following small-gain condition is satisfied:

$$\begin{aligned} (\gamma _1 \gamma _3+ & {} A)c^{-1} \max _{0\le z \le 1}\left( p(z) \int _{0}^{z}\frac{1}{p(l)}dl \right) +(\gamma _2 \gamma _3+B)\max _{0\le z \le 1}(p(z)) \nonumber \\+ & {} 2 \sqrt{(\gamma _1 \gamma _3 +A)c^{-1}(\gamma _2 \gamma _3+B)\max _{0\le z \le 1}(p(z)) \max _{0\le z \le 1}\left( p(z)\int _{0}^{z}\frac{1}{p(l)}dl \right) }< 1 \end{aligned}$$
(142)

with \(p(z) {:=} \exp \left( c^{-1}\int _{0}^{z}a(w)dw\right) \) for \(z \in [0,1]\) [recall (8.2.11) and (8.2.14)] in [31, Section 8.2]. Then, there exist constants \(\delta , \varTheta , \gamma > 0\) such that for every \(u_0 \in C^{0}([0,1])\), \(x_0 \in {\mathbb {R}}^{n}\), \(d \in C^{0}({\mathbb {R}}_{+}\,;{\mathbb {R}}^{q})\) with \(u_0(0) = \varphi (d(0),u_0,x_0)\), \(f \in C^{0}([0,1] \times {\mathbb {R}}_{+})\), and \(v \in C^{0}({\mathbb {R}}_{+}\,;{\mathbb {R}}^{m})\) the unique generalized solution of the initial-boundary value problem (136), (137), (138) satisfies the following estimate:

$$\begin{aligned} |x(t)|+\Vert u(t)\Vert _{\infty }\le & {} \varTheta (|x_0|+\Vert u_0\Vert _{\infty })\exp (-\delta t) \nonumber \\+ & {} \gamma \left[ \max _{0\le s\le t}(|v(s)|) + \max _{0\le s\le t}(\Vert f(s)\Vert _{\infty }) + \max _{0\le s\le t}(|d(s)|) \right] , \quad \forall t \ge 0. \end{aligned}$$
(143)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, T.R., Rodrigues, V.H.P., Krstić, M. et al. Nash Equilibrium Seeking in Quadratic Noncooperative Games Under Two Delayed Information-Sharing Schemes. J Optim Theory Appl 191, 700–735 (2021). https://doi.org/10.1007/s10957-020-01757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-020-01757-z

Keywords

Mathematics Subject Classification

Navigation